Mixed Hodge complexes and higher extensions of mixed Hodge modules on algebraic varieties
Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 11-78.
@article{RSMUP_2015__133__11_0,
     author = {Ivorra, Florian},
     title = {Mixed {Hodge} complexes and higher extensions of mixed {Hodge} modules on algebraic varieties},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {11--78},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {133},
     year = {2015},
     mrnumber = {3354943},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_2015__133__11_0/}
}
TY  - JOUR
AU  - Ivorra, Florian
TI  - Mixed Hodge complexes and higher extensions of mixed Hodge modules on algebraic varieties
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2015
SP  - 11
EP  - 78
VL  - 133
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_2015__133__11_0/
LA  - en
ID  - RSMUP_2015__133__11_0
ER  - 
%0 Journal Article
%A Ivorra, Florian
%T Mixed Hodge complexes and higher extensions of mixed Hodge modules on algebraic varieties
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2015
%P 11-78
%V 133
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_2015__133__11_0/
%G en
%F RSMUP_2015__133__11_0
Ivorra, Florian. Mixed Hodge complexes and higher extensions of mixed Hodge modules on algebraic varieties. Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 11-78. http://archive.numdam.org/item/RSMUP_2015__133__11_0/

[1] A. A. Beĭlinson, Notes on absolute Hodge cohomology, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35–68. MR MR862628 (87m:14019) | MR | Zbl

[2] A. A. Beĭlinson, Correction to: “Notes on absolute Hodge cohomology” [applications of algebraic K-theory to algebraic geometry and number theory, part i, ii (Boulder, Colo., 1983), 35–68, Amer. Math. Soc., Providence, R.I., 1986; MR0862628 (87m:14019)], K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 25–26. MR MR923132 (89a:14023) | MR | Zbl

[3] A. A. Beĭlinson, On the derived category of perverse sheaves, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 27–41. MR MR923133 (89b:14027) | MR | Zbl

[4] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171. MRMR751966 (86g:32015) | MR | Zbl

[5] Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974), no. 44, 5–77. MR 0498552 (58 #16653b) | EuDML | Numdam | MR | Zbl

[6] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, D-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston Inc., Boston, MA, 2008, Translated from the 1995 Japanese edition by Takeuchi. MR 2357361 (2008k:32022) | MR | Zbl

[7] Annette Huber, Realization of Voevodsky’s motives, J. Algebraic Geom. 9 (2000), no. 4, 755–799. MR MR1775312 (2002d:14029) | MR | Zbl

[8] Annette Huber, Corrigendum to: “Realization of Voevodsky’s motives”, [J. Algebraic Geom. 9 (2000), no. 4, 755–799], J. Algebraic Geom. 13 (2004), no. 1, 195–207. MR MR2008720 (2004h:14030) | MR | Zbl

[9] Florian Ivorra, Mixed Hodge complexes on algebraic varieties and t-structure, Journal of Algebra 433 (2015) 107–167. | MR

[10] Masaki Kashiwara, A study of variation of mixed Hodge structure, Publ. Res. Inst. Math. Sci. 22 (1986), no. 5, 991–1024. MR MR866665 (89i:32050) | MR | Zbl

[11] Masaki Kashiwara, Algebraic study of systems of partial differential equations, Mém. Soc. Math. France (N.S.) (1995), no. 63, xiv+72. MR 1384226 (97f:32012) | Numdam | MR | Zbl

[12] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994, With a chapter in French by Christian Houzel, Corrected reprint of the 1990 original. MR 1299726 (95g:58222) | MR | Zbl

[13] G. Laumon, Sur la catégorie dérivée des 𝒟 -modules filtrés, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 151–237. MR MR726427 (85d:32022) | MR | Zbl

[14] Marc Levine, Mixed motives, Mathematical Surveys and Monographs, vol. 57, American Mathematical Society, Providence, RI, 1998. MR 99i:14025 | MR | Zbl

[15] Philippe Maisonobe and Zoghman Mebkhout, Le théorème de comparaison pour les cycles évanescents, Éléments de la théorie des systèmes différentiels géométriques, Sémin. Congr., vol. 8, Soc. Math. France, Paris, 2004, pp. 311–389. MR 2077650 (2005k:32032) | MR | Zbl

[16] Zoghman Mebkhout, Le théorème de positivité, le théorème de comparaison et le théorème d’existence de Riemann, Éléments de la théorie des systèmes différentiels géométriques, Sémin. Congr., vol. 8, Soc. Math. France, Paris, 2004, pp. 165–310. MR 2077649 (2005h:32020) | MR | Zbl

[17] Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995 (1989). MR MR1000123 (90k:32038) | MR | Zbl

[18] Morihiko Saito, Extension of mixed Hodge modules, Compositio Math. 74 (1990), no. 2, 209–234. MR MR1047741 (91f:32046) | Numdam | MR | Zbl

[19] Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR MR1047415 (91m:14014) | MR | Zbl

[20] Morihiko Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), no. 2, 283–331. MR MR1741272 (2002h:14012) | MR | Zbl

[21] Joseph Steenbrink and Steven Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489–542. MR MR791673 (87h:32050a) | MR | Zbl