@article{RSMUP_2015__133__173_0, author = {Kiani, S. and Maimani, H. R. and Pournaki, M. R. and Yassemi, S.}, title = {Classification of rings with unit graphs having domination number less than four}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {173--196}, publisher = {Seminario Matematico of the University of Padua}, volume = {133}, year = {2015}, mrnumber = {3354950}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2015__133__173_0/} }
TY - JOUR AU - Kiani, S. AU - Maimani, H. R. AU - Pournaki, M. R. AU - Yassemi, S. TI - Classification of rings with unit graphs having domination number less than four JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2015 SP - 173 EP - 196 VL - 133 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2015__133__173_0/ LA - en ID - RSMUP_2015__133__173_0 ER -
%0 Journal Article %A Kiani, S. %A Maimani, H. R. %A Pournaki, M. R. %A Yassemi, S. %T Classification of rings with unit graphs having domination number less than four %J Rendiconti del Seminario Matematico della Università di Padova %D 2015 %P 173-196 %V 133 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2015__133__173_0/ %G en %F RSMUP_2015__133__173_0
Kiani, S.; Maimani, H. R.; Pournaki, M. R.; Yassemi, S. Classification of rings with unit graphs having domination number less than four. Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 173-196. http://archive.numdam.org/item/RSMUP_2015__133__173_0/
[1] Unit graphs associated with rings, Comm. Algebra 38 (2010), no. 8, 2851–2871.. | MR | Zbl
, , , ,[2] Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969. | MR | Zbl
, ,[3] Computers and Intractability. A Guide to the Theory of NP-Completeness, A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San Francisco, Calif., 1979. | MR | Zbl
, ,[4] Graphs from rings, Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), Congr. Numer. 71 (1990), 95–103.. | MR | Zbl
,[5] Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208, Marcel Dekker, Inc., New York, 1998. | MR | Zbl
, , ,[6] Domination in Graphs. Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, 209, Marcel Dekker, Inc., New York, 1998. | MR | Zbl
, , (Editors),[7] Rings which are generated by their units: a graph theoretical approach, Elem. Math. 65 (2010), no. 1, 17–25.. | MR | Zbl
, , ,[8] Weakly perfect graphs arising from rings, Glasg. Math. J. 52 (2010), no. 3, 417–425.. | MR | Zbl
, , ,[9] Necessary and sufficient conditions for unit graphs to be Hamiltonian, Pacific J. Math. 249 (2011), no. 2, 419–429.. | MR | Zbl
, , ,[10] Finite Rings with Identity, Pure and Applied Mathematics, 28, Marcel Dekker, Inc., New York, 1974. | MR | Zbl
,[11] Lower bounds for the domination number and the total domination number of direct product graphs, Discrete Math. 310 (2010), no. 23, 3310–3317.. | MR | Zbl
,[12] Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996. | MR | Zbl
,