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CLASSICAL AND BAYESIAN APPROACHES TO THE CHANGE-POINT PROBLEM: 

FIXED SAMPLE AND SEOUENTIAL PROCEDURES* 

S. ZACKS 

Department of Mathematical Sciences 
SUNY, Binghamton, NY 

RESUME 

Le problème du point de changement peut être décrit en,, ce s termes. Considérons 

une suite de variables aléatoires indépendantes X.,X2,...et une,suite de para

mètres à valeurs entières positives 2 £ T < T„ < T3 *•• ^ e s P°i-nts T^ 

(j - 1,2,...) sont les instants de changements dans les lois de probabilité 

des variables aléatoires, c'est-à-dire X. ,...9X _j ont une distribution iden

tique F. ; X ,...,X , ont une distribution F-, etc. Les distributions Fj,F2,... 

peuvent être connues ou partiellement connues, mais les points de changement T. 

sont inconnus. Le problème est d'estimer les paramètres inconnus T. OU de tester 

des hypothèses les concernant. Cette classe de problèmes est très vaste. Elle 

contient essentiellement tous les problèmes de tests de la stationnarité d'une 

suite de variables aléatoires contre la possiblité de changements brusques en 

localisation, échelle ou forme de la loi de probabilité. Ainsi tous les problèmes 

de contrôle statistique sont dans ce domaine. Il y a dans la littérature, diverses 

formulations du problème et différentes approches. Il existe des formulations 

statiques ou dynamiques du problème, avec la possibilité de un ou plusieurs 

points de changement. Les procédures d'échantillonnage sont fixes ou séquentiel

les. Les structures inférentielles sont soit classiques soit bayesiennes. Ce 

texte passe en revue les différentes formulations et approches et produit une 

bibliographie importante. 

Partially supported by ONR Contract NOOOI4-8I-K-0407 at SUNY-Binghamton, and 
by ONR Contract N00014-75-C-0729 at the Program in Logistics, The George 
Washington Univeristy. 

* Texte de la conférence invitée faite par le professeur S. ZACKS aux Journées 
de Statistique de l'Association des Statisticiens Universitaires tenues à 
Bruxelles, du 24 au 27 mai 1982. 
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ABSTRACT 

The change-point problem can be described in the following terms. Consider a 

séquence of independent random variables X.,X.,... and a séquence of positive-

integer valued parameters 2 £ T. < x~ < T~ <.. . The points x. (j - 1,2,...) 

are epochs of change in the distribution laws of the random variables ; i.e., 

X. ,.. . ,X , hâve an identical distribution F, ; X ,... ,X . hâve an identical 
1 Tj-I l Tj T 2-1 

distribution F etc. The distributions F ,F- ,... may be known or partially 

known, but the points of change, T., are unknown. The problem is to estimate 

the unknown parameters x. or to test hypothèses concerning thèse points of change. 

This class of problems is a very broad one. It embraces essentially ail pro-

blems which test the stationarity of a séquence of random variables versus the 

possibility of abrupt changes in the location, scale o r shape of the distri

butions. Thus, ail problems of statistical control fall in this domain. In the 

literature there are various formulations of the problem and différent approa

ches. There are static or dynaxnic formulations of the problem ; with a possi

bility of only one point-of-change or many -points of change. The sampling 

procédures are either fixed sample or sequential sampling. The inference 

framework is either classical or Bayesian. The présent paper reviews the various 

formulations and approaches and provides an extensive bibliography. 

I - INTRODUCTION 

The change-point problem can be considered one of the central problems of statis

tical inference, linking together statistical control theory, theory of estima

tion and testing hypothèses, classical and Bayesian approaches, fixed sample and 

sequential procédures. It is very often the case that observations are taken 

sequentially over time, or can be intrinsically ordered in some other fashion. 

The basic question is therefore, whether the observations represent indepen

dent and identically disbributed random variables, or whether at least one 

change in the distribution law has taken place. 

This is the fundamental problem of statistical control theory, testing the 

stationarity of stochastic processes, estimation of the current position of 

a time-series, etc.. Accordingly, a survey of ail the major developments in 

statistical theory and methodology connected with the very gênerai outlook of 

the change-point problem, would require review of the field of statistical 

quality control, the switching régression problems, inventory and queueing 

control, etc. This is, however, too broad to cover in a single revue paper. 
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The présent review paper is therefore focused on methods developed during 

the last two décades for the estimation of the current position of the mean 

function of a séquence of random variables (orof'-a stochastic process) ; 

testing the null hypothesis of no change among given n observations, against 

the alternative of at most one change ; the estimation of the location of the 

change-point(s) and some sequential détection procédures. The présent paper 

is composed accordingly of five major sections. Section 2 is devoted to the 

problem of estimating the current position of a séquence of random variables, 

specifically discussing the problem with respect to possible changes of the 

means of independent normally distributed random variables. We review the 

studies on this problem of Barnard [6], Chernoff and Zacks [14], Mustafi [45] 

and others. Section 3 is devoted to the testing problem in a fixed sample. 

More specifically, we consider a sample of n independent random variables. 

The null hypothesis is H : F (x) = ... = F1 (x),' against the alternative, 

Hj : Fj(x) =...= F T(X) ; F T + J (X) = ..'/- F'^X) , where F T * F ^+] and 

x - l,2,...,n-l désignâtes a possible unknown change point. The studies of 

Chernoff and Zacks [!4], Kander and Zacks [36Ï, Gardner [21], Bhattacharya 

and Johnson [9], Sen and Srivastava [57] and others are discussed. Thèse 

studies develop test statistics in parametric and non-parametric, classical 

and Bayesian frameworks. Section 4 présents Bayesian and maximum likelihood 

estimation of the location of the shift points. The Bayesian approach is 

based on modeling the prior distribution of the unknown parameters, adopting 

a loss function and deriving the estimator which minimizes the posterior risk. 

This approach is demonstrated with an example of a shift in the mean of a 

normal séquence. The estimators obtained are gêneraily non-linear complicated 

functions of the random variables. From the Bayesian point of view thèse 

estimators are optimal. If we ask, however, classical questions concerning 

the asymptotic behavior of such estimators, or their sampling distributions 

under répétitive sampling, the analytical problems become very difficult and 

untractable. The classical efficiency of such estimators is often estimated 

in some spécial cases by extensive simulations. The maximum likelihood esti

mation of the location parameter of the change point is an attractive alter

native to the Bayes estimators. Hinkley [26-30] investigated the asymptotic 

behavior of thèse estimators. The dérivation of the asymptotic distributions 

of thèse estimators is very complicated. We présent in Section 4 Hinkley*s 

approach for the détermination of the sampling distributions of the maximum 

likelihood estimators. Section 5 is devoted to sequential détection procédures. 

We présent the basic Bayesian and classical results in this area. The studies 

of Shiryaev [60,61] , Bather [7,8], Lorden [43] and Zacks and Barzily [69] 
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are discussed with some détails. The study of Lorden [43] is especially 

significant in proving that Page's CUSUM procédures [47-49] are asympto-

tically minimax. 

The important area of switching régressions hâve not been reviewed hère in 

any détails. The relevance of the switching régression studies to the change-

point problem is obvious. Régression relationship may change at unknown epochs 

(change points), resulting in différent régression régimes that should be 

detected and identified. The reader is referred to the important studies of 

Quandt [51,52], Inselman and Arsenal [35], Ferreira [19], Maronna and Yohai 

[44] and others. 

An annotated bibliography on the change-point problem was published récently 

by Shaban [59]. The reader can find there additional références to the seventy-

one références given in the last section of the présent paper. 

2 - ESTIMATING THE CURRENT POSITION OF A PROCESS 

G. Barnard, in his celebrated 1959 paper [6] on control charts and stochastic 

processes, suggested to consider the problem of estimating the current position 

of a process as a tool of statistical control. The problem of estimating the 

current mean of a process requires modeling of the possible change mechanism 

of the mean function. In the context of statistical control problems the mean, 

as function of time, is generally assumed to commence at an initial point, y , 

known or unknown, and then change abruptly at unknown epochs, x.,x?,... 

Let X.,X.,...,X be a séquence of random variables. We dénote by y. (i = 1 ,.. . ,n) 

a location parameter of the distribution of X.. If the random variables are 

normally distributed then y. is the expected value (mean) of X.. 

Generally, neither the change points x., x?,... nor the size of changes are 

known, and the problem of estimating y » after observing X. ,X , ...,X , might 

hâve no better solution than the trivial estimator y = X , unless the pheno-
n n 

menon studied allows proper modeling. In the présent paper we discuss the 

models adopted by Barnard [6] and by Chernoff and Zacks [14], and the estima

tors of the current position which they derived from thèse models. The related 

study of Mustafi [45] is also presented. As will be shown, time-series procé

dures of exponential smoothing are strongly related to linear unbiased esti

mator studied in [6] and [14]. 



2.1. - Barnard's Estimator of y 
— — — _ — _ _ ^ ^ _ _ _ n 

Consider the given séquence of observations in a reversed time manner, i.e., 

X ,X ,X «,... Barnard adopted the basic assumption that the corresponding 
n n—1 n—c 

random variables are independent and normally distributed, with the same known 

variance (a2 = 1). Suppose that the observations are taken at regular time 

intervais of 1 unit. Barnard's model assumes that the epochs of change r ,x~,.. 

follow a Poisson process with intensity X (per time unit). At each of the 

random change epochs x ,x~ ,... the size of the shift in the mean is a random 

variable, 6, following a normal distribution, N(0,a2). Moreover, 6.,6.,... 

are mutually independent, and the séquence {6} is independent of {x}. Thus, 

if J.,J„,... designate the number of change epochs between, X and X _ , X 

and X __, then J.,J9,... is a séquence of i.i.d. (independent and identical ly 

distributed) random variables having a Poisson distribution, P(X). The models 
is X = y + E 

n n n 

i 
(2.1) X . = y + t S, + E . i=l,...,n-l 

n-i Mn , , k n-i * ' 
k=I 

Ji 

where S. = E 6. and E.,..., E are i.i.d. N(0,!). Assuming that X and a2 

are known, J Barnard provided the gênerai f orm of the minimum mean square 

error (MSE) linear estimator of y , and that of its (formai) Bayes estimator 

(which is actually called by Barnard "the mean-likelihood estimator") . It is 

shown that the'minimum MSE linear estimator, is the exponential smooting esti

mator 

(2.2) y = B X + A y ,. 
n n n-l 

The (formai) Bayes estimator of y i s of the fora 

1' V -1X 
(2.3) yn = Z i r ( j l X ) - n ~ V n 

n .n .n y ^ 
n -n -n -n 

where 1 i s an n-dimensional vector of l ' s ; j - ( j t , , j . ) ' i s a p a r t i c u l a r 
-n - n i , J n - l 

r e a l i z a t i o n of J, J . ; X * (X ,X , , . . . , X f ) f ; ir(j X ) i t s p o s t e r i o r 
1 n-I ~n n n-l 1 in -n r 

probability, and V the covariance matrix of X corresponding to a given reali-
—n -n 

zation j . 
-n 
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2.2. - Chernoff and Zacks' Model and BLUE of y 

Chernoff and Zacks assumed a model différent from that of Barnard, although 

there are gênerai similarities. According to their model, if y . = E{X.} then 

(2.4) y. «y... + J . Ô. , i - î,...,n-l 
î î+l i i ' 

where J. is a random variable assuming the value ! if there is a shift in 

the mean between the ith and (i+l)st observations, and the value 0 otherwise. 

Furthermore, 6.9...9Ô . are i.i.d. N(0,a2), J., ...,Jn . are i.i.d., 
i n — i i " — i 

P[J i=U - p (i=l n ) . Let J = (Jj , ..., J n - J) and 6 = (6 { , .. . ,fin-I ) , J J[ 6 . 

Chernoff and Zacks showed that the minimum variance linear unbiased estimator 

(BLUE) of y is 
n 

(2.5) 

n-l 
X + Z Ç.X. 
n . . i l 

% = ^ 
n-l 

1 + Z Ç. 
i-l ' 

where 

(2.6) 

and 

(2.7) 

(v. T1)/V. ...v (v -1) , i = 2,...,n-I 
i l i—i n—z n—i 

,/vlV2-"Vn-2(Vr°' 

2+o2p , 

2+o2-v 
-1 

if k = 1 

if k = 2,...,n-l 
p k-1 

In the following table we illustrate some of thèse weights 

Table 2.1. Weights for the BLUE 

a2= 1, p ,1 

.909 

.763 

.606 

.464 

.000 

.840 

.666 

.510 

1 .000 

.793 

.735 

1 .000 

.745 1 .000 
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Notice that when pa2 = 0 then £. = l for ail i=l,...,n-l. In this case 

y - x is the common sample mean. On the other hand, when pa2 •* °° then the 

weights t,- diminish to zéro in a géométrie rate, i.e. Ç = 0 ((pa2) ). 

Accordingly, as n increases, the weight given to observations at the beginning 

of the séquence is close to zéro. In particular, if pa2 is large, it is 

sufficient to base the estimator only on the last m observations. Mustafi 

[45] investigated the characteristics of such estimators based on the last 

block of m observations. 

Moreover, Mustafi showedthat, if the value of c = pa2 is unknown, it can be 

estimated consistently by 

(2.8) 

where 

(2.9) 

6S2 - 2S2 

S2 - 2S2 b2 ^\ 

S]-^T £ (Vxi+i
)2' 

S 2 3 À ^ (V2Xi+l+Xi+2)2-
i = l 

Let y dénote the UMVU est imator of y , based on the l a s t m observa t ions 
Mn,m ri 

in which c is replaced by its estimate c. According to Mustafi's procédure, 

the first n-m observations are used to estimate c by (2.9), and the estimator 

c of c is substituted in (2.6)-(2.7) to obtain the corresponding weights 

Ç. . Notice that the estimator obtained in this manner is not BLUE anymore. 

Furthermore, c might be négative (with positive probability). In such a case, 
I- is replaced by its positive part çl" - max(0, Ç. ). Mustafi established si,m r J r r ^i,m i ,m 
that 

(i) E{y } = y , for each n,m 
n,m n 

(ii) V{y } < 1 + a2 p(m-l) , 

n,m 

and 

(iii) lim V{y } = V{y } 
t H œ n,m m 

where y is the BLUE estimator based on the last m observations, with known c. 
m 
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2.3, - Chernoff-Zacks Bayes Estimators of y 

Assuming that y has a prior normal distribution N(0,x2), we obtain that 

the posterior distribution of y , given X and J ~ (J.,...,J .) is normal, 
n-r 

with mean 

(2.10) 

and variance 

(2.11) 

where 

V ^ 1 (-T ) X 
u(J ) = ~n , ~n ~n n -n i' r (j ) i 

,n r \.TI ,n 

v{J } 
~n -2 

x 
+ 1' Jf1 (J ) 1 

n » x n n -n n ,n 

t (J ) = I + a2 J J' and 

(2.12) 

Jl J2 n-l 

n-l 

n-l 

_ 0* 

Let p (j) be a prior probability function of J . The posterior probability 

function of J , given X , is then -n -n 

(2.13) 
p (j)n(X |0 t (j)) 

p (JlX) = J£-= =2^ = 
" ' £ p (j)n(X |0,$*(j)) 

(j} \.n'. 

where t (j) = t(j) + x2l 1', and n(x |0,I) is the multivariate normal p.d.f. 
~n^n „n ~ 

at X , with mean vector 0 and covariance matrix $. Finally, the Bayes esti
mator of y is 

n 

(2.14) i/ B ) = r pn<i|x > û n(i). 
n , ., n , , n n .. 

This estimator is obviously non-linear, due to the non-linear structure of the 

posterior probabilités. The structure of the Bayes estimator (2.14) is the 

same as that of Barnard1 s mean-likelihood estimator (2.3). The problem with 

thèse estimators is in their degree of complexitv. The sample space of J 



consists of 2 différent points and it is a very difficult matter to choose 

a proper prior distribution. Even if we ascribe, a priori, each of thèse 2n 

points equal probabilities, we hâve to make a significantly large number of 
(B) 

calculations to détermine y . In manv problems of interest it is unrea-

sonable to assume that the mean is likely to shift between any two obser

vations. If it is reasonable to assume that the number of possible shifts 

among a relatively small number of observations is at most one, the computa-

tions will be significantly simplified. The Bayes estimator based on the 

assumption of at most one change (AMOC) is presented in the next section. 

2.4. - The AMOC-Bayes Estimator of y 
1 n 

According to the AMOC model we assume that among the given n observations 

there is at most one change. Let x be an integer valued parameter assuming 

the values 0,1 , .,. 3n-l , If x- 1, the first t random variables hâve the same 

mean y +6 and the last n-t random variables hâve the mean y . If x = 0 
n n 

there vas no shift in the mean among the n observations. Let Tr(t) be the 

prior probability of {x« t}. The conditional Bayes estimator, for a given 

value of t, is 

nX + a2t(n-t)X* 
(2.15) y (t) « — 2 £^- , t * 0,...,n-l, 

where n ^ '<»-*> 
. n . n 

X =» - Z X. and X* = Z X.. 

Furthermore, the posterior probability of {x=t}, given X , is 

(2.,6) ,f. f, ^
2 ( n - Q 2 ( y t t )

2 , 
u(t) exp{?. } 

2 -2*„2 irCtlx ) = n z+^ t(n-t)n 

'n (n + c2t(n-t))'/2 D 
n 

where 

(2.17) 
' n-l ,., , a2j2(n-j)2 (X.-X . ) 2 

D , z ^—JTJ exp 4 . — LJ-i_} 

j-0 (n+a2j(n-j))l/Z n2+a2j(n-j)n 

The Bayes estimator of y in the AMOC model is accordingly 

n-l 
(2.18) y^ - ï ir(j|X )un(j). 

j-0 
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2. *+. ï . - AûapLâiive riI«mC-.6ayes estimation 

The AMOC procédure can be applied on the last m observations sequentially, 

starting with mœ2 and increasing it until a strong indication émerges that 

a shift has taken place. The procédure is then stopped and y is estimated 

according to (2.18) on the basis of the last m observations. This process 

is summarized in algorithm : 

Step 0. Set m = 2. 

Step 1. Set Y. = X . ,..., Y = X . v 1 n-m+I m n 

Step 2. Compute ir(t|Y ), t * 0,...,m-l. 
"m 

If TT(0|Y ) » max ir(j |Y ) 

~n CKj<m-l "m 

go to Step 3 ; else go to Step 4. 

Step 3. Set m «- m+1 and go to Step 1. 

Step 4. Let k =» least j = 1, m-I such that 

ir(j|Y ) * max *(t|Y ). 
~m OStSn-1 ^ 

Step 5. Apply estimator (2.18) on the last ra-k observations. 

The following numerical example illustrâtes the adaptative estimation process 

according to the above algorithm. Consider the following n=9 observations on 

independent, normally distributed r.v.'s : X - 2.613, X„ » 1.661, X_ = 1.814, 

XA = 1.274, X5 - 2.616, X6 = -.326, X; = -2.422, Xg = -.119, Xg = -.034. 

Assume that a2= 3 and the prior distribution is 

ir(0) = (l-p)*"1 

m -r-l 
^(t) = p(l-p)m " , t * l,...,m-l , 

with p «.2 • The posterior probabilities of the change points, given the last 

m observations, are given in the following table. 
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Table 2.2. Posterior Probabilities of the Shift Locations 

s 1 

.9298 

.6804 

,7844 

.1765 

.0702 

.0722 

.0660 

.0107 

.2474 

.0954 

.0088 

.0542 

.0890 .7149 

According to thèse posterior probabilités there is a strong indication that 

a shift took place between the fifth and the sixth observation. The AMOC Bayes 

estimator based on the last four observations is y^ , = -.6301. 
9,4 

Expérience with the application of this method on various data sets shows that 

it could be too sensitive as an estimator of the location of the shift points. 

Farley and Hinich [18] showed in a séries of simulations that the above 

procédure ieads to a high proportion of indication of change when there are 

none (false alarms). This problem can, however, be overcome by proper choice 

of the parameters p and o2 . 

a2should be at least 3 or 4 times the variance of the random variables 

E. ,.., E . As an estimator of the current position the above procédure performs 

very well. This was also reported by Farley and Hinich in [18]. We provide 

hère some numerical comparisons of the characteristics of the UMVU, AMOC-Bayes 

and the adaptive AMOC-Bayes estimators of y , based on some simulation experi-
n 

ments. Thèse results are taken from Chernoff and Zacks [14]. In thèse experiments 

100 replicas of samples of size n=9 were simulated from normal distributions, 

with means y. and variance 1 . In ail cases yq=0. We compare the means and 

MSE, over the 100 replicas, of the following estimators : UMVU with ,2= 3, P 

AMOC-Bayes, a2= 3, p = .2 

Adaptive AMOC-Bayes, a2 = 3, p = .2. 

The models of shifts in the means are 

Model I : A random change between every two observations, i.e. u. ̂  M(0,2) 

(i = 1,...,8). 

Model II 
8 

k-i 
Jk nk 
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J ,J ?,— are i.i.d. Bernouilli, with p - ,1, a = 2. 

n] ,^,. . . are i.i.d. N(0,1). 

Model III : No change. 

The simulation estimâtes are 

Table 2.3 - Simulation Characteristics of Three Estimators 

Model 
Estimâtes 

u-i 

II 

III 

-.2718 
2.1406 

.0847 

.4460 

.0255 

.3078 

-.1866 
3.3140 

.0539 

.4337 

.0027 

.6112 

-.0827 
1.0235 

.0525 

.4135 

-.0122 
.2679 

Mean 
MSE 

Mean 
MSE 

Mean 
MSE 

The above results indicate that the adaptive AMOC-Bayes estimator is perfor-

ming as well or better than the UMVU or the AMOC-Bayes, especially when the 

actual process of shifts in the means is différent from the one assumed in 

the model. 

3 - TESTING HYPOTHESES CONCERNING CHANGE POINTS 

The problem of testing hypothèses concerning the existence of shift points 

was posed by Chernoff and Zacks [14] in the following form. 

Let X ,...,X be a séquence of independent random variables having normal 

distributions N(8.,I), i - 1, ,n. The hypothesis of no shift in the means, 

versus the alternative of one shift in a positive direction is 

vs 

H : 6, 
o 1 

Hl : ei 

= e = e 
n o 

9 = 9 ;9 , = . . . = 9 = 9 + 6 , 
x o x+1 n o 

where x = l,...,n-l is an unknown index of the shift point, ô > 0 is unknown 

and the initial mean 6 may or may not be known. 
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Chernoff and Zacks showed in [14] t h a t a Baves t e s t of H v e r s u s H. , fo r 
o ï 

6 values close to zéro, is given by the test statistic 

n-l 
Z (i+t)X. , if 6 is known 
" i L ° 

(3.1) T - £ 
n n—i 

Z (i+t)(X.-X ), if 9 is unknown, 
. , i n o 
i=l 

where X is the overage of ail the n observations. It is interesting to see 
n 

that this test statistic weighs the current observations (those with index 

close to n) more than the initial ones. However, the weight is linear rather 

than géométrie (as in the estimation of the current position) . Since the 

above test statistic is a linear function of normal random variables T 
n 

is normally distributed and it is easy to obtain the critical value for a 

size a test and the power function. Thèse functions are given in the paper 

of Chernoff and Zacks [14] with some numerical illustrations. 

The above results of Chernoff and Zacks were later gêneraiized by Kander 

and Zacks [36] to the case of the one-parameter exponential family, in which 

the density functions are expressed, in the natural parameter form as 

f(x;9) = h(x) exp {8U(x)+\|;(9)} (see Zacks [70, pp. 95]). Again, Kander and 

Zacks established that the Bayes test of F , for small values of Ô when 9 
o o 

is known, is of the form (3.1), where X. are replaced by U(X.) (i « l,...,n). 

The exact détermination of the critical levels might require a numerical 

approach, since the exact distribution of T is not normal, if U(X.) are not 

normal. Kander and Zacks showed how the critical levels and the power func

tions can be determined exact ly, in the binomial and the negative-exponen-

tial cases. If the samples are large, the null distribution of T converges 

to a normal one, according to the Lapunov version of the Central Limit 

Theorem (see Fisz [20, pp. 202]). Kander and Zacks [36] provided numerical 

comparisons of the exact asymptotic power functions of T , in the binomial 

and the negative-exponential cases. 

It is often the case that the sample size is not sufficiently large for the 

normal approximation to yield results close to the true ones. For this reason, 

Kander and Zacks tried to approximate the exact distribution of T by the 

Edgeworth expansion 
(3.2) Fn(Z) - *(Z) - -iS. $

(3)(Z) + -|j£ $(4)(Z) 

+ (10Y2 /6!)*W(Z) 
l»n 
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where F (Z) is the exact distribution of the standardized test statistic 

Z - (T -E{T })/(Var {T } ) I / 2 ; <3>(Z) is the standard normal c.d.f. ; *(v)(Z) 
n n n n - ,* 
is the v-th derivative of $(Z) and y. = u~ /(y0 ) , Y 0 * u, /y? „-3 

l,n j,n 2,n 2,n ^,n z,n 
where y. is the j-th central moment of T . 

j^n J n 

It was shown that when the samples are not large (n=10) the Edgeworth expansion of 

the c.d.f. of Z , under the alternative hypothesis H , provides power function 

approximation better than those of the normal approximation. Hsu [34] utilized 

the above test for testing whether a shift occurred in the variance of a normal 

distribution. 

Gardner [21] considered the testing problem of H versus H. for the normally 

distributed random variables, but with Ô ̂  0 unknown. He showed that the Bayes 

test statistics, with prior probabilities TT , t = 1,2,...,n-l, is 

n-l n-l 
(3.3) 0 = Z II [ Z (X. - X )]2 

n
 t.,

 c j. t J + l 

n-l 

= Z n (n-t? (X* - x ) 2 , 
t-1 t n't n 

—* ~ 
where X fc is the mean of the last n-t observations and X is the mean of ail 

n-t n 

n observations. Gardner investigated the exact and the asymptotic distributions 

of Q , under the null hypothesis H and under the alternative H. , for the 

case of equal prior probabilities. Scaling 0 , so that its expected value 

will be 1 for each n, by the transformation Y = (6n/(n2-I))Q , n = 2,3,..., 
n , n 

we obtain that, under H , Y is distributed like y X, U2 where U ,.. . ,U 
o n , i . k k i n-l 

are i . i . d . standard normal r . v . ' s and 
(3 .4 ) X, = — =- [ ^ cos (kir /2n)]" 2 , k = l , . . . , n - l . 

K 2 f 2 i M * KIT 
•nr z (n z - l )k 

Thus, as n •* «, the asymptotic distribution of Y , under H , is like that of 
n o 

oo 

(3.5) Y - -- Z — U2 . 
TT2 k=I k2 k 

The distribution of Y is that of the asymptotic distribution of Smirnov's 

statistic tu2, normalized to hâve mean 1. Smirnov's statistic compares the 

empirical c.d.f. of a sample of continuous random variables to a particular 

distribution, F (x) . More specifically, if X... < ...< X, . is the order 

statistic, corresponding to n i.i.d. random variables, and if F (x) is the 
n 

corresponding empirical c.d.f., i.e., 
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F n ( x ) = .ji, I { X
( j ) ^ X < X ( j + , ) } i ' 

Smirnov's s t a t i s t i c i s 

> . rr
 i: „ , „ , „ , _ , . 1 ,2 (3.6) . 2 . ^ 6 ^ Fo(X(j))-FB(,)+ £ ] 

Gardner refers the reader to Table VIII of VonMises [66] for the critical 

values of Y , for large n. Critical values c (a), for a= .10,-05 and .01 and 
n n 

various values of n, can be obtained from Figure 1 of Gardner1 s paper. 

Gardner showed also that, under H , the p.d.f. of Y is 

r« n-l „ , ,, , n-l , _. 
(3.7) f (y) = - It (l+t2cO " cos(ty-T Z tan ta, )dt, 

n * in ici k ù k-1 K 

where ĉ  - —^ cos2 (kir/2n), k = l,...,n-l. The intégration of fn(y) for the 

détermination of its (l-a)th fractile, c (a), requires spécial numerical 
n 

techniques. The power function of the t e s t was determined by Gardner in some 

spécia l cases by s imulat ion. 

Sen and Srivastava [56] discussed the s t a t i s t i c 
. n-l n-l 

(3 .8) Un * — Z ( Z X. . ) 2 

r i= l j = i J 

n-l 
- — S (n- i ) 2 (X* . ) 2 , 

n 2 i - ! 

for testing H versus H. with 6^0, when the initial mean, y , is known. 
o l o 

They showed that the asymptotic distribution of U , under H , bas the c.d.f. 

(3.9) F(Z) - ± Z (-l)J l i l ^ O - ^ J L g ^ i ) ) . 

In addition, they derived the c.d.f. of U for finite values of n, and provided 

a table in which thèse distributions are presented for n=10, 20, 50 and °° 

(asymptotic). 

In addition, Sen and Srivastava proposed test statistics which are based on 

the likelihood ratio test. More specifically, for testing H Q versus H , with 

ô > 0, when y is unknown, the likelihood function, when the shift is at a point 

t , i s 

i c n 

(3.10) L.(X ) = L _ exp { - l / 2 [ Z ( X . - X J 2 + Z (X.-X* J 2 ] } 
C ~n (27r)n / 2 i -1 L t i - t+1 L n _ t 
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It can be easily shown that the likelihood ratio test statistic is then 

(3.11) An - sup (X -X* J/(7 + T T ) 1 / 2 . 
n l<t<n-l C n't C n t 

Power comparisons of the Chernoff and Zacks Bayesian statistic T- and the 

likelihood ratio statistic A are given for some values of n and point of shift T, 

Thèse power comparisons are based on simulations, which indicate that the 

Chernoff-Zacks Bayesian statistic is generally more powerful-than* the-Sen -»• 

Srivastava likelihood ratio statistic when T ZJ n/2. On the other hand, when 

T is close to 1 or to n, the likelihood ratio test statistic is mote powerful. 

Bhattacharyya and Johnson [9] approached the testing problem in a non-para-

metric fashion. It is assumed that the random variables X.,Xn,...,X are inde-
l Z n 

pendent and hâve continuous distributions F. (i-l,...,n). Two types of pro

blems are discussed. One in which the initial distribution, F , is known and 

o -^_^ 
is symmetric around the origin. The other one is that in which the initial 
distribution is unknown and not necessarily symmetric. The hypothèses corres
ponding to the shift problem when F is known is H : F =...= F , for some 
r & r o o o n 
specified F in F - {F:F continuous and symmetric about 0}. 
versus 

H. = F = F. =...= F > F . = F , some F € F . 
l o i T T+1 n o o 

T is an unknown shift parameter. F > F indicates that the random variables 
t + 1 

after the point of shift are stochastically greater than the ones before it. 
For the case of known initial distribution F (x), the test is constructed with 

o 
respect to a translation alternative of the form F . (x) - F (x-û) , where 

T+1 O 

A > 0 is an unknown parameter. The problem is invariant with respect to the 

group of ail transformations xï = g(x.), i = 1,.. . ,n, where g(x) is continuous, 

odd and strictly increasing. The maximal invariant statistic is (R.,...R ) 
and (J.,...,J ), where R, = rank of |X. I (i = l,...,n), and J. = 0 if 

i n i i i 
sgn (Xi) « -l, j - i if Sgn (X.) = 1, 

The average power of a t e s t i s thus 

n 
ip<A) - Z q . * ( û [ î - I ) , 

i -1 L 
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where ip(A11) is the power at A, when the shift occurs after t observations, 

qj,...,q are given probability weights (q. > 0, Eq. = 1). Bhattacharyya and 

Johnson proved that, under some gênerai smoothness conditions on the p.d.f. 

f (x), the form of the invariant test statistic, maximizing the derivative of 

the average power ijï(A) at A 3 0, is 

(3.12) Tn = Z 0. sgn(X.) E{-r (V(Ri))/fQ (V(Ri})}, 
i=l 

where V £...< V is an ordered statistic of n i.i.d. random variables 
n 

having a distribution F (x), and Q. = £ q.. More spécifie formulae for the 
0 L î=l ^ 

cases of double-exponential, logisticsJ and normal distributions are given. 

The null hypothesis H is rejected for large values of T . It is further proven 

that, any test of the form T = £ Q. sgn(X.) U(R.), where U is a strictly 

increasing function, is unbiasea. Moreover, if the system of weights 
q . ; i=l,...,n satisfies the condition. nn,i 

1 n 

(3.13) lim - Z Q2 . = b2 , 0 < b2 < « , 
n . . n,i 

n-*» i= 1 ' 
ri 

_5S tO 

the standard distribution, where 

f 1 11 
then, the distribution of T /(nb2( IJJ2(U) dn)) , as n -*- «, converges 

(3.14) iji(u) - "f! (F_1 ( i (u+,))/f (F_10/2(u+>))). 
o o 2 o o 

Similar analysis is done for the case of unknown initial distribution F . 
o 

In this case the test statistic is a function of the maximal invariant 
(S.,...,S ), which are the ranks of (X.,...,X ). The test statistic in this i n i n 
case is of the gênerai form 

(3.15) T* = Z Q. E{-ff(V(Si))/f(V(Si))}. 
i=l L 

In the normal case, for example, with equal weights for t-2,...,n and weight 
* n 

0 for t-1, the test statistic is T - Z (i-ï)S.. 
n i=l L 

Notice the similarity in structure between the s t a t i s t i c T and that of 
J n 

Chernoff and Zacks, T . The différence is that the actual values of X. are 
n i 

replaced by their ranks, S.. 
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Hawkins [23] also considered the normal case, with two sided hypothesis, 

both 0 and 6 unknown. Like Sen and Srivastava, he considered the test statis-
o 

tic U - max |T |, where 
n Uk<n-1 k 

(3-î6) Tk = V n 5 r j k
 ( xrV- *- ' . - .»-»• 

The statistics T.,...,T , are normally distributed, having a corrélation 

function 

(3.17) «VV-VS»"' ^ 

Hawkins provides recursive formulae for the exact détermination of the distri

bution of U. Conservative testing can be made by applying the Banferroni inequa-

lity 

P{ max |T | > c} 5 (n-l) P |T | > c} 
l<k<n-l 

* 2(n-l) *(-c) 

Hence, a conservative a level test of H can be on the critical level 
o 

Z, . .« - 2 V w ^ e r e z ^ s c ^ e Y"frac t i l e of the standard normal d i s t r i b u t i o n . 

A numerical example i s g iven to compare the exact and the Banferroni approximation 

to the c r i t i c a l va lues of the t e s t s t a t i s t i c U . In an attempt to understand 
n 

the asymptotic properties of U , Hawkins considered the behavior of the maximum 
n 

of à Gaussian process having the same covariance structure as that of 

T ,T2,... The asymptotic results are still not satisfactory. 

Pettitt [50] discussed non-parametrie tests différent from those of 

Bhattacharyya and Johnson. He defined for each 
t n 

t = I , . . . , n , U » Z Z sgn(X.-X.) and studied the propert ies of the t e s t 
. . c » n i=i 4« t+l 1 J 

s t a t i s t i c J 

( 3 . 1 8 ) K = max |U I . 
n l < t < n C ' n 

The distribution of K was studied for Bernouîlli random variables. 
n 



4 - ESTIMATING THE LOCATION OF THE SHIFT POINT 

Two types of estimators of the location of the shift point T, appear in the 

literature : Bayesian and maximum likelihood. El-Sayyad [17], Smith [62], 

Broemeling [t], Zacks [70; pp. 311] and others, give the gênerai Bayesian 

framework for inference concerning the location of the shift point , T, in 

an AMOC model. 

Hinkley [28] studied the maximum likelihood estimator. We stard with an 

example concerning the Bayesian estimation and proceed then to présent 

Hinkley's results. 

4.1. - Bayesian Estimation of the Change Point 

The Bayesian procédure is to dérive the posterior distribution of the change 

point T, and détermine the estimator which minimizes the posterior risk, for 

a specified loss function. 

If the loss function for estimating T by T is L ( T , T ) = j T —c | , then the Bayes 

estimator of the change point is the médian of the posterior distribution 

of T, given X . For example, suppose that X.,...,X are independent random 
*-n j n 

variables having normal distributions N(8.,l), where 

9 , = . . . = 8 = 9 , 9 , = . . . = 9 = 9 + 6 , 
l T o T+1 n o ' 

with 9 known (9 = 0 say). Furtherfore, assume that the prior distribution of 
o o J 

6 is normal, N(0,a2), independently of T, and T has prior probabilities 

H(t) = P{T=t}, t = l,,..,n. Hère {T = n} indicates the event of no change. 

The posterior probabilities of T for this model are 

n(t)(Kn-t)a 2) l / 2 exp 

(4.1) ïï(t|Xn) = 

(f_t)
2(n-t)V 

2(l+(n-t)a2) 

î n<i)<l+(n-i)oV'
2 „p % i l 2 l-iliHi-

j-1 (l+(n-j)a2) 

where X* = £ X. is the average of che last (n-t) observations. 

The médian of the posterior distribution is then the Bayes estimator of T , 

namely 
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(4.2) T ( X ) = l e a s t p o s i t i v e integer t , such that 
-n 

Z ï ï ( i |X ) > . 5 . 
i-o -n 

In the following table we présent the posterior probabilités (4.1) computed 

for the values of four simulated samples. Each sample consists of n=20 normal 

variâtes with means 6. and variance 1. In ail cases 9̂  = 0. Case I consists 
i o 

of a sample with no change in the mean, 6 = 0 . Cases II-IV hâve a shift in the 

mean at T = 10, and 6 =.5, 1.0 and 2.0. Furthermore, the prior probabilities of 

T are n(t) » p d - p ) ^ 1 for t=î,...,n-l and ïï(n) = (l-p)n~ , with p = .01 ; 

and the prior variance of Ô is a2- 3. 

Table 4.1 Posterior Probabilities of {r=t} 

1.0 2.0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0,002252 
0.004284 
0.004923 
0.006869 
0.006079 
0.004210 
0,004020 
0.002867 
0.003534 
0.002972 
0,003033 
0.003070 
0.003395 
0.003087 
0.004064 
0.003355 
0.004991 
0.009664 
0.007255 
0.916077 

0.012063 
0.016045 
.016150 
.022634 
.008002 
.006261 
.006735 
.015830 

0.015914 
0.011537 
.019014 
.010335 
.006026 
.003201 
.003461 

0.002709 
0.002899 
0.003486 
0.006106 
0.811593 

0. 
0. 
0. 
0. 
0. 

003005 
002885 
002075 
002193 
002202 
002291 
001954 

0,001789 
0.001959 
0.002228 
0.002708 
0.002661 
0.002996 
0.003017 
0.003096 
0.002820 
0.003078 
0.004004 
0.012432 
0.940607 

0.000000 
0.000000 
0.000000 
0.000000 
0.000001 
0.000050 
0.000026 
000015 
001087 
068996 
908434 
016125 

0.005237 
0.000009 
0.000011 
0.000009 
0.000000 
0.000000 
0.000000 
0.000000 

We see in Table 4.1. that Bayes estimator for Cases I-III is T- 20 (no change), 

while in Case IV it is T=1 1 . That is, if the magnitude of change in the mean 

is about twice the standard déviation of the random variables, the posterior 

distribution is expected to hâve its médian close to the true change point. 

In many studies (for example, Smith [62]) the Bayesian model is based on the 

assumption of equal prior probabilities of { T=t}. Such prior probabilities 

yield in the above cases the following posterior probabilities. 
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Table 4.2. Posterior Probabilities of {r=c} , for Equal Prior Probabilities 

S 1.0 2.0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.023329 
0.020209 
0.024060 
0.023996 
0.023063 
0.022546 
.022951 
.029850 
.043298 
.043976 
.052939 
.059540 
.065588 
.037356 
.060050 
.055957 
.049753 
.050994 

0.156117 
0.134429 

0. 
0. 
0. 
0. 
0. 
0. 
0, 
0. 
0. 
0, 
0. 
0. 

0.030693 
0.031206 
0.028078 
0.024921 
0.026290 
0.030888 
0.042321 
0.036347 
0.030515 
0.031933 
0.033107 
.037187 
.048819 
.040960 
.049399 
.055566 
.069433 
.085113 
.092993 
.174230 

0. 
0, 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

0.019 734 
0.037996 
.125330 
.081694 
.083705 
.111434 
.079959 
.059293 

0.026376 
0.069415 
.020594 
.034396 
.033543 
,052289 
.043785 
.048865 
.022328 
.034621 
.012691 
.001955 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0, 
0. 

0.000001 
0.000006 
.000035 
.000149 
.002859 
.005653 
.001071 

0.005238 
0.029615 
.931462 
.014332 
.008651 
.000431 
.000457 
.000037 
.000004 

0.000000 
0.000000 
0.000000 
0.000000 

0. 
0. 
0. 
0, 
0. 

0. 
0. 
0, 
0. 
0. 
0. 
0. 

As seen in Table 4.2, the Bayes estimator T when 6=2 is exact ly at the true 

point of change T=10. On the other hand, when 6=0 the estimate is T=16. 

Smith derived formulae of the Bayes estimators for cases of séquences of 

Bernouilli trials [62], and for switching linear régression problems [63]. 

Bayesian estimators for the location of the shift parameter for switching 

régression problems are given also by Ferriera [19], Holbert and Broemeling 

[32], Tsurumi [65] and others. 

4.2. Maximum Likelihood Estimators 

Let X. ,X2,...,X be a séquence of independent random variables. As before, 

assume that 

and 

X.,X,,...,X 'v F (x) 
I L T O 

îT+1,...,Xn^F1(x), 
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where F (x) and F. (x) are specified distributions, x is the unknown point 

of shift. The maximum likelihood estimator (MLE) of T is 

(4.3) T = least positive integer t 

t = l,...,n, maximizing S . where 
n, t 

t n 
Z log f (X.) + Z log f,(X.) , if t = 1,...,n-l 

(4.4.) 1 i=l ° x i=t+l
 ] X 

Sn,t 

Z log f (X.) , if t = n. 
i=, ° x 

f (x) and f.(x) are the p.d.f.'s corresponding to F (x) and F (x). We présent 

hère the method of deriving the asymptotic distribution of T , as n and T-*» , 

following the development of Hinkley [28]. 

Let U. = log fQ(X.) - log fj(X.), i = l,2,...,n. 

t n 
Since S = Z U. + Z log f,(X.), it readily follows that T is the least 

n, t . i . I T n 
i=l i=l L t 

positive integer maximizing V = Z U. (t = 1 , .. . ,n) . Consider the séquence 

W = V -V , where T is the true point of shift. For very large value of T 

(T-**> ) consider the backward and forward séquences 

k 
W = {0, -u , -u -u .,...,- z u .,...} 

T' T T-1' . _ T-J 
and , J=0 

k 
w = {o, U T + 1 , . . . , Z U ,...}. 

j=0 J 

k k 
Let M = sup {- Z U .} and M' = sup { Z U .} , 

0<k<T j=0 T~J 0<k<« j=0 T+J 

and Yj = "UT„j+1, Y! = UT+j , j = 1,... . Thus, 

w = (O,Y Î,Y 1+Y 2,...}, W* = {O,Y;,Y;+Y^,...} . 

Let T be the point at which Max{M,MT} occurs. Notice that 

{T = T} = {M = M' = 0} , 

(4.5) {T = T+k} = {M'> 0 and M' > M} , 

{T = T-k}={M > 0 and M > M'}. 
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Accordingly, since the séquences W and W are independent, 

P{T » T} = P[M=0]P[M'-0] , 

(4.6) P{T = T+k} = P{M' > 0, M' > M, IT=k} 

P{T = T-k} = P{M > 0, M > M', I = k}, 
and 

where k 
I = inf {k ; M = Z Y.}, 

3 = 1 J 

k 
I' * inf {k ; M' = Z Y'.}. 

j = l J 

Thus let 6.(x)dx = P{I=k , x < M «£ x + dx} and S^(x)dx = P{I*=k, x < M' < x + dx}. 

Furthermore, let a(x) and a'(x) be the c.d.f. of M and Mf , respectively. 

Then 

P{T = T} = a(0) a'(0) , 

(4.8) P{T = T+k} = j g^(x)a(x)dx , 

and P{T= T-k} = Bk(x) a'(x)dx. 

5 - DYNAMIC CONTROL PROCEDURES 

There are numerous papers on dynamic control problems, ail of which deal in 

one way or another with the problem of shift at unknown time points. In parti-

cular we mention hère the papers of Girshick and Rubin [2], Bather [7,8] 

Lorden [43], Yadin and Zacks [68], Shiryaev [60,61], and Zacks and Barzily [69]. 

We présent first the Bayesian theory, followed by discussed of the CUSUM procé

dure. Again, we consider a séquence of independent random variables 

X.,X.,...,X t,X ,... Let T be the point of shift, T = 0,1,... If T < 1 , ail i 2. m— 1 m 

the observations are from F (x). If T = t (t = 2,3,...) then the first t-1 

observations are from F (x) and X , X .,... are from F.(x). Let f (x) and 
O t T+1 1 O 

f.(x) be the p.d.f. corresponding to F (x) and F (x), respectively. 

The random variables X. ,X.,... are observed sequentially and we wish to apply 

a stopping rule which will stop soon after the shift occurs, without too many 
Mfalse alarms". The following objectives are considered in the sélection of a 

stopping variable N : 
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1°) If ÏÏ(T) dénotes the prior distribution of T, then the prior risk 

(5.1) R(ïï,N) = Pn(N < T) + c Pn(N > T) En(N-T|N > T} 

is minimized, with respect to ail stopping rules. 

2°) To minimize E {N-T|N > T} subject to the constraint PÏÏ(N < T) < a, 

0 < a < 1 . 

5.1. - The Bayesian Procédures 

The shift index, T, is considered a random variable, having a prior p.d.f. 

îl(t), concentrated on the non-negative integers. Shiryaev [60] postulated the 

following prioir distribution 

(5.2) n(t) 

H , if t = 0 

(î-ïDpa-p)*"1 , if t = 1,2,, 

for 0 < H < 1, 0 < p < 1. (TÎ+(l-ÎT)p) is the prior probability that the shift 

has occurred before the first observation, and p is the prior probability of 

a shift occurring between any two observations. 

After observing X] ,. .. ,X , the prior p.d.f. îî(t) is converted to a posterior 

probability function on fn,n+l,...}, namely, 

(5.3) nn(t) 

nn ; t - n 

d-n^pd-p) 6" 1, t = n+I,, 

where Iïn is the posterior probability that the shift took place before the 

n-th observation. This posterior probability is given by II - 1-q , where 

and n 1=l 

n 
Dn = (n+(i-n)P) n f^x,.) + 

i=l 

(5.5) (i-n)p z (i-p)J n f (x.) n f.(x.) + 
J=l 1=1 l'=J+l 

n 
(i-n)(i-P)

n n fo(x.) . 
i=l 
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Let R(X.) = f.(X.)/f (X.), i = 1,2,..., then 
i I i o i 

(5.6) V l = a-oo-p)*" 
n + 1 R(X)[D-(l-n)(I-p)n]+B .. 

n+1 n n+i 
where 

B n + 1 = R(xn+1)(,-ii)(,-p)
n
P + (,-n)(,-P)

n+1 

But (,-n)(,-p) - q D . Hence, 

(5.7) 
qn(1-p) 

or 

(5.8) 

n+1 " R(Xn+])(,-qn(l-p))+qn(,-p) 

(nn+(i-itn)p-R(xn+1) 
[n+i " (n +(,-n )p)R(x_I)+(i-n„)(i-p) ' 

n n n+i n 

n = 0,1,... with II = IT and q = 1-ÎI. Accordingly, the séquence of posterior 

probabilities (îî ; n > 0} is Markovian, i.e., the conditional distribution of 
n 

II . dépends on the first n observations X.,...,X , only through II . This can 
n+i I n n 

lead immédiatly to the construction of recursive détermination of the distri

bution of any stopping variable depending only on II (see Zacks [71]). Shiryaev 

[60] has shown that when F and F. are known, the optimal stopping variable, vith 

respect to the above objectives, is to stop at the smallest n for which îï £ A , 

for some 0 < A < I. 

Bather [7] has shown that for the constraint of bounding the expected number of 

false alarms by n, A = (n+1) is the optimal stopping boundary. 

When the distributions F and F are not completely specified, the above problem 

of finding optimal stopping variables becomes much more complicated. Zacks and 

Barzily [69] studied Bayes procédures for detecting shifts in the probability 

of success, 0, of Bernouilli trials, when the values 6 , before the shift, and 

the value 9, after it, are unknown. The Bayesian model assumed that 0 and 8. 
1 J o 1 

hâve a uniform prior distribution over the simplex { ( 8 , 0 f ) ; O < 0 < 6. < 1} 
o 1 o 1 

and the point of shift, T, has the prior distribution (5.2). In this case, the 

posterior probability ÏÏ dépends on the whole vector of observations X ,...,X , 

and not only on ÏÏ _. and X . It is shown that this posterior probability is a 
function of X = (X.,...,X )' given by 

-n i n 

(5.9) H (X ) = I-(l-ïï)(l-p)n"1B(T +1, n-T +2)/D (X ) 
n _n n n n -n 

where B(p,q) is the beta-function ; 
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J 
T. = S X. and 
J i=l L 

(5.10) 

D (X ) = ÏÏ B(T +2, n-T +1) + 
n „n n n 

(l-ïï)p Z (l-p)j"! B(T(n^+! , n-j-T(n^+l). 

T(n) 
n-j /n-j-1 \ 
.£ ( J B(T +1, n-T +2) 

i=o V i/ n 

+ (l-ma-p)11'1 B(T +1, n-T +2). 
n n 

Hère, T ". = T -T. (j = 0,...,n). The séquence {ïï (X ) ; n > 1 } is not Markovian, 11 j n j n ^n 

but is submartingale. Zacks and Barzily considered the problem of determining the 

optimal stopping rule under the following cost conditions : 

After each observation we bave the option to stop observations and déclare that 

a shift has occurred. The process is then inspected. If the shift has not yet 

occurred a penalty of 1 unit is imposed.lf, on the other hand, the shift has already 

occurred, a penalty of C units per delayed observation (or time unit) is imposed. 

It is shown then that the optimal stopping variable is 

(5. M ) N° = least n > 1, such that n (X ) > b (X ) , 
n „n n _n 

where the stopping boundary b (X ) is given implicitly, as the limit for j •+ », of 

(5.,2) b<J>(xn)-,i,(n*-
 n

c,p -n , , ) , 

with IT = p/(C+p) are the functions M J'(X ) can be determined recursively, 

n _n 
according to the formula 
(5.13) M<j)(X ) - E{min (0,C ÏÏ . (X ,X .)} 

n _n n+l _n n+1 

It is very difficult, if not impossible, to détermine thèse functions explicitly, 

for large values of j. The authors therefore considered a suboptimal procédure 
(2) 

bases on b (X ) only. Numerical simulations illustrate the performance of the 
n ,n r 

suboptimal procédure. 
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5.2 - Asymptotically Minimax Rules and the CUSUM Control 

Lorden [42,43] considered the sequential détection procédure from a non-Bayesian 

point of view and proved that the well known CUSUM procédures of Page [47,48,49] 

are asymptotically minimax. 

Let X.,X_,... be a séquence of independent random variables. The distributions 

of X.,...,X . is F (x) and that of X ,X _ ,.. . is F.(x). The point of shift m 
i m—i o m m+1 i 

is unknown , F (x) and F.(x) are known. The family of probability measures is 

{P ; m = 1,2,...}, where P (X ) is the joint p.d.f. of X = (X. ,...,X ), in 
m m .n ,n i n 

which X is the first random variable with a c.d.f. F.(x). m l 

It is desired to devise a sequential procédure with a (possibly) extended 

stopping variable, N, (i.e., lim P [N>n] > d > 0, m = 0,1 , ...) which minimizes 
n-*» m 

the largest possible expectation of delayed action, and does not lead to too 

many false alarms. More precisely, if P (X) dénotes the c.d.f. under the assumption 

that ail observations hâve F (X) as a c.d.f. ; and if E {.} dénotes expectation 

under P (.), the objectife is to minimize 
m _ _ ^ _ 

(5.14) E.{N} = sup ess sup E {(N-m-l) + | F . } 
l ^. m m— I 

m>l 
subject to the constraint 

( 5 . 1 5 ) E {N} > y* , I < Y* < » • 

E {.IF ,} dénotes the conditional expectation given the a-field generated by 
m m—i 

(X ,...,X ). It is proven by Lorden [43] that an asymptotically minimax procé

dure, as y -*• œ» is provided by PageTs procédure, which is described below. 

Let RfX^ = f (X.)/f (X.), i = 1,2,... where f.(x) is the p.d.f. corresponding 

to F.(X), i = 0,1. Let 

k 
S. = Z log R(X.), k=l,2,... and T = S - min St . Then for Y = log Y 
k i-l x n n k<n k 

(5.16) N* = least n > 1 such that T > Y 
n 

is Page1s (extended) stopping variable. 

The statistic T can be computed recursively by the formula 

(5.17) T = (T + log R(X . ) ) \ n = 0,1,... 

T = 0. 
o 
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iûe above détection p^oceaure eau be consiaerea as a séquence of one-aidea 

Wald's SPRT with boundaries (0,Y). Whenever the T statistic hits the lower boun-

dary, 0, the SPRT is recycled, and ail the previous observations can be discarded. 

On the other hand, for the first time T > Y the sampling process is stopped. 

The repeated cycles are independent and identically distributed. Thus, WaldTs 

theory of SPRT can be used to obtain the main results of the présent theory. 

Let a and 6 be the error probabilities in each such independent cycle of 

Wald's SPRT ; i.e., a = P [T >Y] and 0 - P.[T =0]. Let N. be the length of a 
o n i n i 

cycle. Accordingly, 

(5.18) E (N*} = - E {N.} 
o a o I 

and 

MN*> =-R? V V -
* 1 

Set Y s — » then the constraint (5.15) is satisfied, since E {N } > 1. 

Moreover, Lorden proved that E.{N } = Ê,{N }. Finally, applying well known 

results on the expected sample size in Wald's SPRT, we obtain 

(5.19) E.{N*} = ̂ |-2. , as a ^ 0, 
il 

f.(X) 
where I. = E. {log J V} is the Kull back-Leibler information for discrimi
na ting between F and F,. 

o i 
The right hand size of (5.19) vas shown to be the asymptotically minimum expected 

sample size. Thus, Page's procédure is asymptotically minimax. 

in [42] Lorden and Eisenberg applied the theory presented hère to solve a problem 

of life testing for a reliability System. It is assumed that the life length of 

the System is distributed exponentially, with intensity (failure-rate) A. At an 

unknown time point, 0, the failure rate shifts from X to A(l+n), 0 < n <n^n2 <œ-

Approximations to the formulae of E {N } and E {N } are given, assuming that X 
o n 

is known. By proper transformations of the statistics the détection procédure can 

be applied also to cases of unknown A. It is interesting to présent some of the 

numerical results of this studv. For the case of X =1 and a =1/Y . The expected 

number of observations required is 
n Y E {N} Ê {N} 

o n 
.4 20 422 48 

.6 50 676 36 

.9 40 342 20 

Page's CUSUM procédure is thus very conservative, relative to the Bayes procédures, 

which detect the shifts fast, but bave also small EQ {N}. 
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