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Résumé. 
Récemment, la construction des intervalles simultanés de tolérance a reçu une 

attention dans les publications statistiques. Cet article étend un travail précédent de 

l'auteur sur les modèles de régression linéaire, aux modèles de régression Weibull. 

Quelques distributions approximatives de l'estimateur du maximum de vraisemblance de 

l'écart-type sont discutées. Le niveau de confiance actuel des limites de tolérance est 

évalué à l'aide d'une étude de simulation. Cette étude montre que les limites sont 

légèrement conservatrices pour des échantillons modérés ou larges, mais en général elles 

sont performantes. Enfin, un exemple numérique est discuté pour illustrer l'usage des 

limites de tolérance suggérées. 

Mots clés : intervalles simultanés de tolérance, inférence statistique, distribution de 

valeurs extrêmes. 
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Abstract. 
The construction ofsimultaneous tolérance intervais for linear models bas recently 

received attention in the li te rature. This article extends earlier work by this author in 

dealing with the linear normal régression models by considering extrême value and 

Weibull régression models. Alternative approximate distributions for the maximum 

likelihood estimator ofthe scale parameter are discussed. A simulation study is used to 

estimate the actual confidence level ofthe bounds. This study showed thaï the bounds are 

slightly conservativefor moderate to large sample sizes, but actual confidence levels are 

fairty close to the nominal ones. Finally, a numerical example is given to illustrate the use 

ofthe suggested one-sided tolérance bounds. 

Keywords : simultaneous tolérance intervais, statistical inference, extrême value 

distribution. 

1. INTRODUCTION. 

In this article, a procédure for constructing lower tolérance bounds in the Weibull 
régression models is discussed. The Weibull distribution is widely used in modeling 
lifetime data and failure strength of ceramic materials. Also, Weibull régression models 
are assumed in many lifetime data statistical analyses. Thèse models are usually applied 
for rcgressing the lifetime of items on the regressor variables xv x2,..., x ^ , where the 

scale parameter of the lifetime distribution, and not the shape parameter, dépends on the 

x's. Lawless (1982) describes experiments in which Weibull régression models would be 

appropriate. 

Let Wlf W2,.«, Wn dénote independent lifetimes from the Weibull distribution, 

and define Y = In W as the log of lifetime. The probability density fonction (p.d.f.) of Y 

given x is in the extrême value form : 

f(ylx) = exp{(y - x'fi)/o - exp(y - xffi/a]/a, -~ < y < ~ . 

Then, the data Y{ = ]nÇW{)9 j^ = ( l ,xn , x^,..., x ^ ) , i = 1,..., n can be written in the 

linear model form 
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Yj =x|fi + CZ[9 i=l , . . . ,n 

= Pu + Plxil + »• + Pq-lxi,q-l + ° Z i • (1-1) 

where ji is a qx 1 vector of unknown regressor coefficients and Zj has a standard 

extrême value distribution with p.d.f. g(z) = exp(z-ez), where -«» < z < o©. 

Verhagen (1961) showed that the maximum likelihood estimators (MLE's), 
h ~ Û(y) ^d a = ô(y) are equivariant estimators (see Lawless 1982, pp. 538). For this 
case, the distribution of the pivotai quantities k = (fi. - Û)/CF, and u = o/a dépend only 
on the distribution of Z and not on 0 and ô. 

The form of the model (1.1) is particularly attractive because its parameters are in 
a location-scale form. Furthermore, either model, the Weibull and the extrême value, can 
be of interest in its own right and procédures developed for one model can be applied to 
the other. Harter (1978) provides an interesting bibliography on the applications of the 
extrême value distribution. Also, Johnson and Kotz (1970) give références of 
applications for extrême value and Weibull régression models. 

Lieberman and Miller (1963), Wilson (1967), and Limam and Thomas (1988a), 
proposed simultaneous tolérance intervais for normal régression models. Earlier, Jones et 
al. (1985) considered the problem of constructing tolérance bounds for log gamma 
régression models. In this article we extend the development of simultaneous tolérance 
intervais, suggested by Limam and Thomas (1988a), for the linear régression model, to 
include Weibull régression models defined in (1.1). 

Usually, in lifetime analyses lower tolérance bounds are of interest because they 
give us information about the percentage of items with lifetimes exceeding thèse bounds. 
Thus, the problem is to fînd a tolérance factor ô such that the probability is 1 - a that at 
least a given proportion p of the population being sampled, the extrême value 
distribution with location parameter x'U , is above the quantity &'& - 50, for every x 
and p. Thatis 

Pr^{P Y [Y>x'è-6a , foral lx^,â]>p} = 1 - a , 

where Y has the extrême value distribution defined in (1.1). 
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2. THE CONFIDENCE SET PROCEDURE. 

The suggested simultaneous lower one-sided tolérance bounds are based on the 
confidence set procédure credited to Wilson (1967), where tolérance bands for the normal 
linear régression model are constructed. Later Limam and Thomas (1988a) used a similar 
method for their simultaneous tolérance intervais procédure, to produce narrower bands 
than those suggested by Wilson (1967). This method uses confidence sets for the 
parameters to put a lower bound on the content of the bands. 

The content of the extrême value distribution above the lower one-sided tolérance 

bound x'JÎ - 5a is 
1 -GKx'fi-SÔ-ï'W/aL 

where G dénotes the standard extrême value cumulative distribution function, and £ 
and b are MLE's. This content can be expressed in terms of the pivotai quantities b 

and u as 
CQç 'kSu^l -Gtx 'b -Su) ] . 

Then, tolérance factors are needed such that 

Pr{C(x'l>, Su) > p for ail x} = 1 - a . 

Confidence sets for the parameters (Ji,a) will be described in terms of a product set S, 

for pivotai quantities k and u, such that applying the Bonferroni inequality to the events 

b e E j and u e E 2 gives 

Pr{(fe,u)e S} > l - 2 a . (2.1) 

For a pivotai set S and a specified p content, which can dépend on x_»let 

5* = 5*(p, x) = min{8 : C(x'b, Su) > p, for ail Û2,u)eS) 

dénote the optimal tolérance factor. Then, (b, u) G S implies that C(x'b, 8*u) > p, for 

ail x. Hence 
Pr{C(*']2,5*u)>p, for ail x} 

> Pr{(ku)e S } > l - 2 a . (2.2) 
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In (2.1) the Bonferroni inequality is used to obtain the lower bound of 1 - 2a. 
Williams (1962) has shown that the probability in (2.1) has an upper bound of 1 - a, 

such that 
l-2oc < Pr{(b,u)e S} < 1 - a . 

In this next section two confidence sets, Ej and E2 are developed for b and u, 
respectively. The pivotai set for h, Elf dépends on u which implies that the probability 
in (2.1) is equal to its upper bound 1 - a. Actually, this is a similar situation to the one 
encountered by Limam and Thomas (1988b). Then the probability in (2.2) has a lower 
bound of 1-a. This fact suggests that by using 1 - a level sets for P and c we obtain 
1-a tolérance bounds. 

In the following section we adopt this procédure to dérive tolérance bounds for 
the Weibull régression model. It is clear from the previous development that the 
suggested procédure will be a conservative one. Improvements on this method are 
diffïcult and complicate the dérivation. 

3. DEVELOPMENT OF THE TOLERANCE BOUNDS. 

Tolérance bounds, developed in this article, employ large sample approximations 
for the distribution of the MLE's : (jL a) ~ N[(£, a) ; IQ1], where I0 is the observed 

information matrix. For uncensored data the expected information matrix is very simple, 
and a normal approximation employing the expected information matrix can be used : 
(jL à) ~ N[(fi, a), F1] (see Lawless 1982, pp. 301). 

Letting the inverse of IQ be 

'C„ C 
tf-o2 
*0 

r c n c i 2 i 

L C12 C22 J 

then ô 2 ^ is the q*q asymptotic covariance matrix for jL Under H0 : Q. = QQ , the 

quadratic fonn ( £ - ¾ ) ^ ( £ - ^ ) / 0 2 is approximately %2 in large samples. Also, a 

is distributed N(a, â2C22). where a2C2 2 is an approximation to the asymptotic 

variance of a. By using normal approximation theory, the 1 - a confidence set for fi is 
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where 
kî=4i-«) (3A) 

is the upper 1 - a percentile of the chi-square distribution with q degrees of freedom. 
Also, the 1 - a confidence set for a is 

E2 = {a : 0 < o < a[l - Za C^]}. 

where Za is the lower a percentile of the standard normal distribution. In terms of the 

pivotai quantities, both sets can be written as 

E ^ f b r b X T ^ b ^ k 2 } , 

E2 = {u : u > k2}, where k2 = [1 - Za 0¾¾-1. (3.2) 

Then, the pivotai set S is 

S = {(b,u) ib'C'^b^u2^ and u>k2 } 

By applying the Scheffé projection resuit (Miller 1981, p. 16) to the set Ev we obtain 

the following upper bounds for Ix'bl 

Ix'fel < ukjA(x) for ail x and (b, u) e S, (3.3) 

where A(x) = [x'Cnx]1/2. 

DeveTopment of the tolérance bounds requires the following resuit : given a 
desired p content, and u = k, by simple differentiation we see that C(x'h, 5u) is 
decreasing in Ix'bl. Using this resuit with (3.3) gives 

C&'h, Su) > CdikjAtx), Su) for ail (b, u) e S . 
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Note also that C(uk1A(x), 8u) is an increasing function of u for a given x. This resuit 

yiélds 

C(ukjA(x), Su) > C a ^ A f e ) , 5k2), for ail u > k2 . 

Finally, solving ¢(1¾^ A(x). 8k2) = p for the tolérance factor S = 8(p, x) yields 

5(p, x) = kjA(x) - Log(-Log p)/k2 . (3.4) 

Thèse tolérance factors are developped on the extrême value scale, Y = ln(W). 

Then, to obtain tolérance bounds on the Weibull scale we take exponentials of the 

extrême value tolérance bounds. 

Note that standard régression programs such as SAS lifereg procédure provide ail 

estimâtes needed to compute the suggested tolérance bounds. 

4. DIFFERENT DISTRIBUTIONS FOR THE MLE OF a. 

Bain and Engelhardt (1981) considered différent approximate distributions for the 

MLE of a. Their first approximation is nô2/a2 ~Xn_v which is considered to be qui te 

adéquate for practical applications, and a more reasonable approximation than the normal, 

in (3.2), since it gives a desired skewness to the distribution of a. This approximate 

distribution yields the following lower bound on u 

^ f c a . n - l W 1 ' 2 -

As an improvement on the previous approximation, Bain and Engelhardt (1981) 

suggested, for the complète sample case, the following approximate distributions : 

cnb2/a2~x2, n , where c = .822 is chosen to make this distribution exact 

asymptotically. For the complète sample case, this approximation yields 1 - a lower 

confidence bounds for u ofthe form 

, 2 / Q O O i i l 1 ^ 
k 2 = < . 8 2 2 ( n - l / - 8 2 2 n ] ' • ( 4 1 ) 
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Bain and Engelhardt (1986) showed that a chi-square distribution provides a useful 

approximation for both complète and censored sample. They suggested the following 

simple approximation : 

cfn(a/a)<1+f2> - x à f i , , ) , 

where f is the censoring fraction, and they showed that it gives a good accuracy for ail 
cases. Values of c are tabulated in Bain and Engelhardt (1986) for censoring fractions 
f = 0.1(.1)1. Constants c go from .822 to 2.0 as f goes from 1 to zéro. For the 
simulation study in the next section, we hâve a complète sample data, which means an 
uncensored data, and the upper bound k2 defined in (4.1) is used. 

5. SIMULATION STUDY. 

In this section, the accuracy of the suggested tolérance bounds is examined by a 

simulation study, for différent p contents, confidence levels, and sample sizes. We 

assume model (1.1) with one independent variable, 

yi = Pa+Pix i + a Zi« t5-1) 

where Z{ ~ EV(0,1). Without loss of generality we take P0 = 0, $x = 1, a = 1, and 

assume that x ~ N(jix, o^). Tolérance factor, ô, and x'Ji are invariant under linear 

transformations of x. Then, we let x ~ N(0,1). IMSL (1987) is used to generate Zj's, 

and Xj's, for a given sample size n. Then, Yj are calculated according to (5.1). MLE's 

for p0 , Pj, a, and the information matrix are computed through SAS (1985) Lifereg 

procédure. Then for specified a, and p, the smallest content C[l^'k1A(x), 8(p,x)k£'], 

over the range of x : (-«>, oo), is checked with the desired content p. 

Independent sets of 5000 samples were generated on an IBM 3083 computer for 

différent sample sizes, a, and p. The percentage of samples satisfying the condition 

CCkJ, kjA(x), 5(p,x)k2] > p, is recorded as the actual confidence level. The standard 

error of the estimated confidence coefficient would be approximately .003. Table 1 gives 

the empirical confidence levels of the suggested tolérance bounds, for a = .05, p = .80, 

.90, .95, .99, and n = 10, 15, 20, 30,100. 
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It is easy to see that there are three factors affecting the tolérance bounds 

confidence level : the asymptotic approximate distributions of £. and a, the desired p 

content, and the conservative nature of the suggested tolérance bounds. Table 1 reveals 

that for small sample sizes the asymptotic approximation does not work and thus the 

confidence levels tend to be less than the nominal ones. But although the actual 

confidence levels are not conservative for n = 10 they may provide a reasonable 

approximation for some applications. As the sample size increases, the small sample size 

effect decreases and the approximate distribution is improved. Then the conservative 

behaviour of the bounds is exhibited. For n = 100, the small sample size effect 

disappears, and the bounds are slightly conservative. Thus, for moderate or large sample 

sizes the lower p-content tolérance bound has a true confidence level sufficiently close to 

the nominal level. 

6. NUMERICAL EXAMPLE. 

We illustrate the suggested lower one-sided simultaneous tolérance bounds, by 

employing the example discussed by Nelson (1970), and used by Lawless (1982, p. 

185). Results of an accelerated life test experiment on a type of electrical insulating fluid 

were presented. The uncensored data are breakdown times for seven groups of 

spécimens, each group involving a différent voltage level (kvolts). For a fixed voltage 

level, the model suggests that breakdown times hâve a Weibull distribution. Also, the 

distribution for each voltage is assumed to differ only in its scale parameter. In terms of 

log lifetime the model is of the form 

yy = Po + Pixi + a Z i j ' * = * 7 ' J = 1 nj ' 

where x; is the log of voltage level Vj, and Z n4 = n = 76. 
The MLE's of p0, p l f and a are found by itération to be £0 = 64.842, P t = -17.728 

and ô2 = 1.659. The inverse of the observed information matrix is 

Î 1 = 1.659 

19.0436 -5.4429 -.00541 

-5.4429 1.5569 .00057 

. -.00541 .00057 .00775 
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Now, we compute lower one-sided tolérance bound for time to breaking, with 95 % 
confidence level, a content p = .80, and a voltage stress level v = 30. Equations (3.1), 
(3.3) and (4.1) yield kj = 2.447, A(x) = .1711, and kJJ = .85 , respectively. 
Then, k^kjAOO = .356, and using équation (3.4) with p = .80 yields a tolérance factor 
8 = 2.183. Therefore, the lower one-sided tolérance bound on the extrême value scale is 
x'Jl - Scr = 1.733. Taking the exponential of this lower bound, to make the inference on 
the Weibull scale, yields 5.660. The interprétation of this resuit is that we are 95 % sure 
that at least 80 % of times to breaking of the electrical insulating fluid exceed 5.660 
minutes, for a voltage level v = 30 kvolts. 
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Table 1. Empirical confidence levels of the tolérance bounds. 

_n :80 .90 .95 .99 
10 .935 .936 .935 .934 
15 .945 .947 .946 .949 
20 .953 .954 .952 .951 
30 .956 .955 .954 .955 
100 .955 .954 .954 .955 


