SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

S. Kwapien
 Isomorphic characterizations of Hilbert spaces by orthogonal series with vector valued coefficients

Séminaire d'analyse fonctionnelle (Polytechnique) (1972-1973), exp. no 8, p. 1-7
<http://www.numdam.org/item?id=SAF_1972-1973 \qquad A8_0>

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

TRE DE MATHEMATIQUES

17, RUE DESCARTES - PARIS V .
Téléphone : MEDicis 11.77
(633)

par S. KWAPIEN
$\dot{\delta}$ 1. Let $\left(\varepsilon_{i}\right)_{i \in N}$ be the Bernouilli sequence of independent random variables on a probability space ($\Omega, \mathfrak{M}, \mathrm{P}$) (e.g. each ε_{i} is distributed by the law $\left.P\left(\varepsilon_{i}=+1\right)=P\left(\varepsilon_{i}=-1\right)=\frac{1}{2}\right)$ and let $\left(\gamma_{i}\right)_{i \in N}$ be a sequence of independent Gaussian random variables on ($\Omega, \mathfrak{m}, \mathrm{P}$) (each of γ_{i} is distributed by the law :

$$
\left.P\left(\gamma_{i}<t\right)=\frac{1}{2 \pi} \int_{-\infty}^{t} e^{-\frac{s^{2}}{2}} d s\right)
$$

Theorem 1 : Let X be a Banach space. The following conditions are equivalent :

1) X is isomorphic with a Hilbert space.
2) $\exists_{C} \forall x_{1}, x_{2}, \ldots x_{n} \in X$

$$
\frac{1}{C} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \leq E\left(\left\|\sum_{i=1}^{n} x_{i} \varepsilon_{i}\right\|^{2}\right) \leq C \sum_{i=1}^{n}\left\|x_{i}\right\|^{2}
$$

3) $\exists_{C} \forall x_{1}, x_{2}, \ldots x_{n} \in X$

$$
\frac{1}{C} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \leq E\left(\left\|\sum_{i=1}^{n} x_{i} \gamma_{i}\right\|^{2}\right) \leq C \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} .
$$

4) $\exists_{\mathrm{C}} \forall \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}} \in \mathrm{X}, \quad \forall\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\right)_{\mathrm{n} \times \mathrm{n}}$

$$
\sum_{i=1}^{n}\left\|\sum_{j=1}^{n} a_{i j} x_{j}\right\|^{2} \leq c^{2}\|a\|^{2} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2}
$$

where $\|a\|$ is the norm of the operator $a: 1_{2}^{n} \rightarrow 1_{2}^{n}$ given by the matrix $\left(a_{i, j}\right)_{n \times n}$.
$\underline{\text { Proof }}: 1) \Rightarrow 2)$. It follows from the fact that if X is a Hilbert space then

$$
E\left\|\sum_{i=1}^{n} x_{i} \quad \varepsilon_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}
$$

$2) \Rightarrow 3)$. Let us fix a positive integer n and let us put

$$
\delta_{i}^{m}=\frac{1}{\sqrt{m}} \sum_{k=0}^{m-1} \varepsilon_{i m+k} \quad \text { for } i=1,2, \ldots n ; m=1,2, \ldots
$$

By the Moivre-Laplace theorem the common distribution of $\left(\delta_{1}^{m}, \delta_{2}^{m}, \ldots \delta_{n}^{m}\right)$ converges to the common distribution of $\left(\gamma_{1}, \gamma_{2}, \ldots \gamma_{n}\right)$ as $m \rightarrow \infty$, from which we deduce easily that if $h: R^{n} \rightarrow R$ is a continuous function such that $h\left(s_{1}, s_{2} \ldots s_{n}\right) e^{-\left(\left|s_{1}\right|+\left|s_{2}\right|+\ldots\left|s_{n}\right|\right)} \quad$ is bounded on R^{n} then

$$
\operatorname{Eh}\left(\gamma_{1}, \gamma_{2}, \ldots \gamma_{n}\right)=\lim _{m \rightarrow \infty} \operatorname{Eh}\left(\delta{ }_{1}^{m}, \delta \frac{m}{2}, \ldots \delta_{n}^{m}\right)
$$

Let $x_{1}, \ldots, x_{n} \in X$ and let $h: R^{n} \rightarrow R$ be given by $h\left(s_{1}, s_{2}, \ldots s_{n}\right)=$ $\left\|s_{1} x_{1}+s_{2} x_{2}+\ldots+s_{n} x_{n}\right\|^{n}$.

By 2) we have that

$$
\frac{1}{C} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \leq E\left\|x_{1} \delta_{1}^{m}+x_{2} \delta_{2}^{m}+\ldots x_{n} \delta_{n}^{m}\right\|^{2} \leq C \sum_{i=1}^{n}\left\|x_{i}\right\|^{2}
$$

Now passing to the limit with m we obtain 3).
$3) \Rightarrow 4)$. It is well known that the extreme points of the unit ball of the n^{2} dimensional space of linear operators on l_{2}^{n} are exactly linear isometries. Hence, by the Krein-Milman theorem any $n \times n$ real matrix $\left(a_{i j}\right)_{n \times n}$ such that $\|A\| \leq 1$ is a convex combination of matrices of isometries. Hence to estabilish 3$) \Rightarrow 4$) it is enough to show that 4) holds for any matrix $\left(a_{i j}\right)_{n \times n}$ which represents an isometry. Then we have by 3)

$$
\sum_{i=1}^{n}\left\|\sum_{j=1}^{n} a_{i j} x_{j}\right\|^{2} \leq C E\left\|\sum_{i=1}^{n}\left(\sum_{j=1}^{n-1} a_{i j} x_{j}\right) \gamma_{i}\right\|^{2}=C E\left\|\sum_{j=1}^{n} x_{j}\left(\sum_{i=1}^{n} a_{i j} \gamma_{i}\right)\right\|^{2}=
$$

$$
C E\left\|\sum_{j=1}^{n} x_{j} \gamma_{j}^{\prime}\right\|^{2}
$$

where $\gamma_{j}^{\prime}=\sum_{i=1}^{n} a_{i j} \gamma_{i}$. Since $\left(a_{i j}\right)$ is isometry $\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \ldots \gamma_{n}^{\prime}\right)$ are the same distribūted as $\left(\gamma_{1}, \gamma_{2}, \ldots \gamma_{n}\right)$ and thus

$$
C E\left\|\sum_{j=1}^{n} x_{j} \gamma_{j}^{\prime}\right\|^{2}=C E\left\|\sum_{j=1}^{n} x_{j} \gamma_{j}\right\|^{2} \leq C^{2} \sum_{j=1}^{n}\left\|x_{j}\right\|^{2}
$$

$4) \Rightarrow 1$). Let $u \in L\left(I_{1}^{I}, X\right)$ be a linear operator which is a surjection (if I is of sufficiently great cardinality then there exists such operator) and let $u\left(\bar{e}_{i}\right)=x_{i}$ for $i \in I$ where \bar{e}_{i} is the $i-t h$ unite vector in l_{1}^{I}.

We shall prove that 4) implies that u is 2-absolutely summing. For this it is enough to show that if $v \in L\left(1 \frac{I}{2}, 1_{1}^{I}\right)$ then

$$
\sum_{i \in I}\left\|u \circ v\left(e_{i}\right)\right\|^{2}<+\infty
$$

(where (e_{i}) $i \in I$ is the family of unite vectors in l_{2}^{I}). By the Grothendieck theorem $v=\Delta \circ a$ where $a \in L\left(1 \frac{I}{2}, 1_{2}^{I}\right)$ and $\Delta \in L\left(1 \frac{I}{2}, I_{1}^{I}\right)$ is a diagonal operator e.g. $\Delta\left(\left(\xi_{i}\right){ }_{i \in I}\right)=\left(\lambda_{i} \xi_{i}\right)_{i \in I}$ for fixed $\left(\lambda_{i}\right)_{i \in I}$ with $\sum_{i \in I}\left|\lambda_{i}\right|^{2}=\|\Delta\|^{2}<+\infty$. Let a be given by a matrix ($\left.a_{i, j}\right)_{i, j \in I}$. Now

$$
\sum_{i \in I}\left\|u \circ v\left(e_{i}\right)\right\|^{2}=\sum_{i \in I}\left\|\sum_{j \in I} a_{j, i} \lambda_{j} x_{j}\right\|^{2}
$$

By 4) it follows that

$$
\sum_{i \in I}\left\|\sum_{j \in I} a_{j, i} \lambda_{j} x_{j}\right\|^{2} \leq C^{2}\|a\|^{2} \sum_{j \in I}\left\|\lambda_{j} x_{j}\right\|^{2} \leq C^{2}\|a\|^{2}\|\Delta\|^{2}\|u\|^{2}
$$

(because for each $i \in I \quad\left\|x_{i}\right\| \leq\|u\|$).
Thus u is 2-absolutely summing. Hence it follows from the Pietsch factorization theorem that u may be factorized through a Hilbert space e.g. $u:=w \circ v$ where $v \in L\left(l_{1}^{I}, H\right)$ and $w \in L(H, X)$ where H is a Hilbert space. Since u is a surjection the same is true for w and this implies that X is isomorphic with a Hilbert space. Q. E. D.

Remark 1 : The proof of the implication 3) $\Rightarrow 4$) of theorem 1 is valid only for real Banach spaces. But it is not difficult to improve the arguments to obtain also the complex case.

Remark 2 : If a Banach space X fulfills the condition

$$
\exists C^{\forall}{ }_{x_{1}}, x_{2} \ldots x_{n} \in X E \sum_{i=1}^{n} x_{i} \varepsilon_{i}\left\|^{2} \leq C \sum_{i=1}^{n}\right\| x_{i} \|^{2}
$$

(resp.

$$
\left.\exists C^{\forall} x_{1}, x_{2} \ldots x_{n} \in X E \sum_{i=1}^{n} x_{i} \varepsilon_{i}\left\|^{2} \geq C \sum_{i=1}^{n}\right\| x_{i} \|^{2}\right)
$$

then it is called to be of type 2 (resp. of cotype 2). From Theorem 1 it follows that if a Banach space is of type 2 and of cotype 2 , then it is isomorphic with a Hilbert space. As it was observed by Maurey this may be generalized on operators in the following way $:$ if X is of type 2
and Y of cotype 2 then each operator $u \in L(X, Y)$ may be factorized through a Hilbert space. A simple counter-example shows that it is not the case when X is of cotype 2 and Y of type 2 .
$\S 2$.

Theorem 2 : Let $\left(\Phi_{i}\right)_{i \in N}$ be an orthonormal complete system in $L_{2}[0,1]$ and let X be a Banach space. The following two conditions are equivalent :

1) X is isomorphic with a Hilbert space,
2) $\exists^{\forall}{ }^{\forall} x_{1}, x_{2}, \ldots x_{n}$

$$
\frac{1}{C} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \leq \int_{0}^{1}\left\|\sum_{i=1}^{n} x_{i} \Phi_{i}(t)\right\|^{2} d t \leq C \sum_{i=1}^{n}\left\|x_{i}\right\|^{2}
$$

Proof : If X is a Hilbert space then the condition 2) holds with $C=1$. Therefore 1) $\Rightarrow 2$).
2) \Rightarrow 1). Let us observe that if $\left(\psi_{k}\right)_{k \in N}$ is an orthonormal system in $L_{2}[0,1]$ such that for each $k, l \in N \quad k \neq 1$ and $i \in N$ it is $\left(\psi_{\mathbf{k}}, \varphi_{i}\right)\left(\psi_{1}, \varphi_{i}\right)=0$ then 2$)$ implies that $\forall_{x_{1}}, x_{2}, \ldots x_{n} \in X$

$$
\frac{1}{C} \sum_{k=1}^{n}\left\|x_{k}\right\|^{2} \leq \int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} \psi_{k}(t)\right\|^{2} d t \leq C \sum_{k=1}^{n}\left\|x_{k}\right\|^{2}
$$

(with the same C as in 2)).
This follows from the two equalities :

$$
\begin{aligned}
\int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} \psi_{k}(t)\right\|^{2} d t= & \int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} \sum_{i=1}^{\infty}\left(\psi_{k}, \varphi_{i}\right) \varphi_{i}(t)\right\|^{2} d t= \\
& \int_{0}^{1}\left\|\sum_{i=1}^{\infty}\left(\sum_{k=1}^{n}\left(\psi_{k}, \varphi_{i}\right) x_{k}\right) \varphi_{i}(t)\right\|^{2} d t
\end{aligned}
$$

and

$$
\sum_{\mathbf{k}=1}^{n}\left\|x_{k}\right\|^{2}=\sum_{k=1}^{n}\left\|x_{k}\right\|^{2} \sum_{i=1}^{\infty}\left|\left(\psi_{k}, \varphi_{i}\right)\right|^{2}=\sum_{i=1}^{+\infty}\left(\left\|\sum_{k=1}^{n}\left(\psi_{k}, \varphi_{i}\right) x_{k}\right\|^{2}\right) .
$$

Now let $\left(\varepsilon_{n}\right)_{n \in N}$ be a Bernouilli sequence on $[0,1]$, as in Theorem 1 (for example the Rademacher system).

By the standard "gliding hump" method for a fixed $\varepsilon>0$, we can find an increasing sequence (n_{k}) of indicies and an orthonormal system $\left(\psi_{k}\right)_{k \in N}$ which fulfills the above mentioned assumption and such that

$$
\int_{0}^{1}\left|\varepsilon_{n_{k}}(t)-\psi_{k}(t)\right|^{2} d t \leq \frac{\varepsilon}{2^{k}}
$$

From this we derive easily that $\exists_{C} \forall_{x_{1}} \ldots x_{n} \in X$

$$
\frac{1}{C} \sum_{k=1}^{n}\left\|x_{k}\right\|^{2} \leq \int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} \varepsilon_{n_{k}}(t)\right\|^{2} d t \leq C \sum_{k=1}^{n}\left\|x_{k}\right\|^{2}
$$

Since

$$
\int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} \varepsilon_{n_{k}}(t)\right\|^{2} d t=\int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} \varepsilon_{k}(t)\right\|^{2} d t
$$

(because $\left(\varepsilon_{n_{k}}\right)$ is distributed the same as $\left.\left(\varepsilon_{k}\right){ }_{k \in N}\right)$, we obtain that X fulfills the condition 2) of theorem 1. By theorem 1 we obtain that X is isomorphic with a Hilbert space. Q. E. D.
§3. Let X be a complex Banach space. Denote by $L_{0}^{2}(X)$ the normed linear space of all simple functions $f: R \rightarrow X$ under the norm $|f|=\left(\int_{-\infty}^{+\infty}\|f(t)\|^{2} d t\right)^{1 / 2}$. Here by a simple function we mean any function of the form $\sum_{j=1}^{n} X_{A} x_{j}$ where $x_{j} \in X ; A_{j}$ are measurable subsets of R of finite Lebesgue measure and $X_{A_{j}}$ denotes the characteristic function of $A_{j} j=1, \ldots, n$. The completion of $L_{o}^{2}(X)$ in the norm \mid. \mid will be denoted by $L^{2}(X)$. The Fourier transform

$$
\mathfrak{J}: \mathrm{L}_{0}^{2}(\mathrm{X}) \rightarrow \mathrm{L}^{2}(\mathrm{X})
$$

is defined by

$$
\tilde{j}(f)(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-i s t} f(s) d s \quad \text { for } t \in R, f \in L_{0}^{2}(X)
$$

And similarly we define the inverse Fourier transform

$$
\tilde{F}: L_{0}^{2}(X) \rightarrow L^{2}(X)
$$

by

$$
\tilde{\mathfrak{H}}(f)(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\text {ist }} f(s) d s \quad \text { for } t \in R, \quad f \in L_{0}^{2}(X)
$$

Clearly. $\mathfrak{F}, \tilde{\mathfrak{J}}$ are linear operators in general unbounded. Our next lemma seems to be known. The proof repeat the classical argument used in the Poisson summation formula.

Lemma : Let $h=\sum_{k=-n}^{n} \frac{x_{k}}{\sqrt{a}} \chi_{[k a,(k+1) a)}$, where $a>0, x_{k} \in X$ $(k=0, \pm 1, \ldots, \pm n), n-a n y$ positive integer. Then

$$
|h|^{2}=\sum_{k=-n}^{n}\left\|x_{k}\right\|^{2} ;|\mathfrak{F}(h)|^{2}=\int_{0}^{1}\left\|\sum_{k=-n}^{n} e^{-2 \pi k t i} x_{k}\right\|^{2} d t
$$

Proof : The computation of the norm $|\mathrm{h}|$ is trivial. To establish the second formula we compute directly $\mathfrak{F}(h)$. We have

$$
\begin{aligned}
& \mathfrak{y}(h)(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \sum_{k=-n}^{n} \frac{x_{k}}{a} X_{[k a,(k+1) a)}(s) e^{-i s t} d s= \\
& \frac{1}{\sqrt{2 \pi a}} \sum_{k=-n}^{n} x_{k} \int_{k a}^{(k+1) a} e^{i s t} d s=\sqrt{\frac{a}{2 \pi}} \frac{\sin \frac{a t}{2}}{\frac{a t}{2}}\left(-e^{-i \frac{a t}{2}}\right) \sum_{k=-n}^{n} x_{k} e^{-k a t i} .
\end{aligned}
$$

Hence, changing the variable $u=\frac{a t}{2 \pi}$, we get

$$
\begin{aligned}
& \|\mathfrak{F}(h)\|^{2}=\int_{-\infty}^{+\infty} \frac{\sin ^{2} u \pi}{(u \pi)^{2}} \| \sum_{k=-n}^{n} x_{k} e^{-2 \pi i k u_{1} 2} d u= \\
& \sum_{\gamma=-\infty}^{+\infty} \int_{\gamma}^{\gamma+1} \frac{\sin ^{2} u \pi}{(u \pi)^{2}}\left\|\sum_{k=-n}^{n} x_{k} e^{-2 \pi i k u_{\|}}\right\|^{2} d u= \\
& \int_{0}^{1} \sum_{\gamma=-\infty}^{+\infty} \frac{\sin ^{2} u \pi}{[\pi(u+\gamma)]^{2}} \| \sum_{k=-n}^{n} x_{k} e^{-2 \pi i k u_{\|} 2} d u .
\end{aligned}
$$

Since $\sum_{\gamma=-\infty}^{+\infty} \frac{\sin ^{2} u \pi}{\left[\pi(u+\gamma]^{2}\right.}=1$ for all real u we get

$$
\|\mathfrak{J}(h)\|^{2}=\int_{0}^{1}\left\|\sum_{k=-n}^{n} x_{k} e^{-2 \pi k u i_{1}}\right\|^{2} d u \quad . \quad \text { Q. E. D. }
$$

Theorem 3 : Let X be a complex Banach space. The following conditions are equivalent :

1) X is isomorphic with a Hilbert space,
2) $\exists_{\mathrm{C}}^{\not \forall_{x_{0}}}, x_{1}, x_{-1}, \ldots x_{n}, x_{-n} \in X$

$$
\int_{0}^{1}\left\|\sum_{k=-n}^{n} x_{k} e^{2 \pi i k t}\right\|^{2} d t \leq C \sum_{k=-n}^{n}\left\|x_{k}\right\|^{2}
$$

3)

$\exists_{C}{ }^{\forall} x_{0}, x_{1}, x_{-1}, \ldots, x_{n}, x_{-n} \in X$

$$
\int_{0}^{1}\left\|\sum_{k=-n}^{n} x_{k} e^{2 \pi i k t}\right\|^{2} d t \geq \frac{1}{C} \sum_{k=-n}^{n}\left\|x_{k}\right\|^{2}
$$

4) The Fourier transform $\mathcal{J}: L_{0}^{2}(X) \rightarrow L^{2}(X)$ is bounded.
$\underline{\text { Proof }: 1) \Rightarrow 2) . ~ I f ~} X$ is a Hilbert space, then

$$
\int_{0}^{1}\left\|\sum_{k=-n}^{n} x_{k} e^{2 \pi i k t}\right\|^{2} d t=\sum_{k=-n}^{n}\left\|x_{k}\right\|^{2}
$$

and hence 1) \Rightarrow 2). Next, we prove that 2) $\Leftrightarrow 4$) $\Leftrightarrow 3$).

Since the simple functions h of the form as in Lemma are dense in $L_{o}^{2}(X)$ we get by Lemma that 2) $\Leftrightarrow 4$), and also that there exists $C>0$ such that $|\mathfrak{J} h|^{2} \geq \frac{1}{C}|h|^{2}$. This means exactly that the inverse Fourier transform $\tilde{\mathscr{F}}$ is bounded. But it is clear that \mathfrak{F} and $\tilde{\mathfrak{F}}$ are simultaneously bounded or unbounded. Thus we get that 4) $\Leftrightarrow 3$).
Now, if any of the conditions 2), 3), 4) is satisfied then the conditions 2) and 3) are satisfied and they together, by Theorem 2, imply the condition 1). Q. E. D.

