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VIII.1

1’ 1.. Let (£.). 1 iEN be the Bernouilli sequence of independent
random variables on a probability space (e.g. each ci is distri-

1 
1

buted by the law P(c i =+i) =P(c. 1 =-l)=.!) 2 and let be a sequen-

ce of independent Gaussian random variables on (each of y. i is

distributed by the law : ~

Theorem 1 : Let X be a Banach space. The following conditions are

equivalent :

1) X is isomorphic with a Hilbert space.

where liall is the norm of the operator ln given by the matrix

Proof : 1) ~ 2). It follows from the fact that if X is a Hilbert space

then

2) ~ 3~ . Let us fix a positive integer n and let us put
--- ,



VIII.2

By the Moivre-Laplace theorem the common distribution of (5m, 6~,.a.6’~~)1 2 n

converges to the common distribution of from

which we deduce easily that if h : Rn - R is a continuous function such

that is bounded on Rn then

Now passing to the limit with m we obtain 3). 11

3) ~ 4). It is well known that the extreme points of the unit ball of the

2 nn2 dimensional space of linear operators on ln are exactly linear .

isometries. Hence, by the Krein-Milman theorem any real matrix

such that 1 is a convex combination of matrices of
’ 

ij nx n , 

" "

isometries. Hence to estabilish 3) ~ 4) it is enough to show that 4)
holds for any matrix which represents an isometry. Then we

1J n n

have by 3)

4) =~ 1 . Let u E L(I I,X) be a linear operator which is a surjection (if1
I is of sufficiently great cardinality then there exists such operator)
and let u(e ) = x. for i E I where ë. is the i-th unite vector in 

. i 1 i l’



VIII.3

We shall prove that 4) implies that u is 2-absolutely summing. For this

it is enough to show that if vE L(lI II) theng E 2 9 1

(where (e . ) . is the family of unite vectors in 1~). By the Grothen-1 iEI y 
I 1 2 1

dieck theorem v = I::,. 0 a where a E L( y 12 ) and 6 E is a diago-
nal operator e.g. for fixed with

I 2 =)t~t) 9 ~+co. Let a be given by a matrix Now

iE I 
1 

By 4) it follows that

(because for each i E I Ilxill s Ilull, -
Thus u is 2-absolutely summing. Hence it follows from the Pietsch fac-

torization theorem that u may be factorized through a Hilbert space

e.g. u:= w o v where H) and w E L(H,X) where H is a Hilbert

space. Since u is a surjection the same is true for w and this implies
that X is isomorphic with a Hilbert space. Q. E. D.

Remark 1 : The proof of the implication 3) =~ 4) of theorem 1 is valid

only for real Banach spaces. But it is not difficult to improve the ar-

guments to obtain also the complex case.

Remark 2 : if a Banach space X fulfills the condition

(re sp,

then it is called to be of type 2 (resp. of cotype 2). From Theorem 1

it follows that if a Banach space is of type 2 and of cotype 2, then

it is isomorphic with a Hilbert space. As it was observed by Maurey this

may be generalized on operators in the following way : if X is of type 2
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and Y of cotype 2 then each operator u E L(X,Y) may be factorized through
a Hilbert space. A simple counter-example shows that it is not the case

when X is of cotype 2 and Y of type 2.

§ 2.

The orem 2 : Let ( ~ i) i E N be an orthonormal complete system in L~[0~1]
and let X be a Banach space. The following two conditions are equivalent :

1) X is isomorphic with a Hilbert space,

Proof : If X is a Hilbert space then the condition 2) holds with

C = I. Therefore 1) =~ 2) .

2) =~ 1). Let us observe that if is an orthonormal sys-
tem in L210’ 1] such that foreachk, 1EN k/1 and i E N it is

(~, ~ &#x26;i) (W i , (p.)=0 then 2) implies thatV ~ ~ yJK 9 1 (~ 1 9 1 = 0 then 2) implies that 

(with the same C as in 2) ).

This follows from the two equalities :

and

Now let be a Bernouilli sequence on ~0,1~, y as in

Theorem 1 (for example the Rademacher sys tem) e e
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By the standard " gliding hump" method for a fixed c&#x3E;0, we

can find an increasing sequence (nk) of indicies and an orthonormal sys-

tem (~ k)kEN which fulfills the above mentioned assumption and such that

From this we derive easily that

Since

(because (e ) 
kEN 

is distributed the same as obtain that

~k kEN ~ ~~~

X fulfills the condition 2) of theorem 1. By theorem 1 we obtain that X

is isomorphic with a Hilbert space. Q. E. D.

§ 3. Let X be a complex Banach space. Denote by L(X) the normed
o

linear space of all simple functions f : R-X under the norm

If 1 = (J +00 . Here by a simple function we mean any function
-00

n

of the form E X* x . where x . E X ; A . are measurable subsets of R of

j=l J J J J

finite Lebesgue measure and x denotes the characteristic function of

A . J = 1, , , , , n. The completion  of L 2 (X) in the norm 1.1 I will be deno-
J 2 0

ted by L (X) . The Fourier transform

is defined by

And similarly we define the inverse Fourier transform
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~

Clearly.3, 3 are linear operators in general unbounded. Our next lemma

seems to be known. The proof repeat the classical argument used in the

Poisson summation formula.

, n-any positive integer. Then

Proof : : The computation of the norm lhl is trivial. To establish

the second formula we compute directly ~(h7. We have

Hence, changing the variable we ge t

Since for all real u we get

Theorem 3 : Let X be a complex Banach space. The following conditions

are equivalent :

1) X is isomorphic with a Hilbert space,
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4) The Fourier transform : : L2(X).... L2(X) is bounded.
o

Proof : 11 ~ 2) . If X is a Hilbert space, then

and hence 1) a 2~ . Next, we prove that 2) ~ 4) o 3~ .

Since the simple functions h of the form as in Lemma are

dense in we get by Lemma that 21 a 4’, and also that there
o 

~ y

exists C &#x3E; 0 such that I h I 2. This means exactly that the inver-
~ 

c ~

se Fourier transform J is bounded. But it is clear that J are si-

multaneously bounded or unbounded. Thus we get that 4~ a 3).

Now, if any of the conditions 2~ , 3), 4) is satisfied then the conditions

2) and 3) are satisfied and they together , by Theorem 2, imply the

condition 1~ . Q. E. D.


