SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

N. TOMCZAK-JAEGERMANN
 On the differentiability of the norm in trace classes S_{p}

Séminaire d'analyse fonctionnelle (Polytechnique) (1974-1975), exp. no 22, p. 1-8
<http://www.numdam.org/item?id=SAF_1974-1975 \qquad A21_0>

© Séminaire Maurey-Schwartz

(École Polytechnique), 1974-1975, tous droits réservés.
L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CENTRE DE MATHEMATIQUES
17, rue Descartes
75230 Paris Cedex 05

ON THE DIFFERENTIABILITY OF THE NORM IN TRACE CLASSES S

by N. TOMCZAK-JAEGERMANN
(Institute of Mathematics, Warsaw University)

This text provides an outline of the proof of the differentiability of the norm in the trace classes S_{p}.

Let H be a real Hilbert space. By $K(H)$ we denote the space of all compact operators from H to H endowed with the operator norm \|. $\|$.

If $A \in K(H)$, then A^{*} denotes the adjoint of A. We define the sequence $\left\{S_{n}(A)\right\}_{n=1}^{\infty}$ of s-numbers of the operator A by

$$
S_{n}(A)=\lambda_{n} \quad n=1,2, \ldots
$$

where $\lambda_{1} \geq \lambda_{2} \geq \ldots$ is the decreasing sequence of non-zero eigenvalues of the operator $\left(A^{*} A\right)^{1 / 2}$, each repeated the number of times equal to its multiplicity.

Let $1 \leq \mathrm{p} \leq \infty$. We put

$$
S_{p}=\left\{A \in K(H): \quad\|A\|_{p}=\left(\sum_{n=1}^{\infty} S_{n}^{p}(A)\right)^{1 / p}<\infty\right\}
$$

It is well known that S_{p} is a Banach space under the norm $\left\|\|_{p}\right.$ and that

$$
\|A\|_{p}=\left(\operatorname{tr}\left(A_{A}^{*}\right)^{p / 2}\right)^{1 / p}
$$

Let E et F be Banach spaces. For an arbitrary natural $K, \mathfrak{B}^{K}(E, F)$ denotes the Banach space of continuous K-linear operators $v: E \times \ldots \times E \rightarrow F$ equipped with the norm

$$
\|v\|=\sup _{\left\|x_{1}\right\|=\ldots=\left\|x_{K}\right\|=1}\left\|v\left(x_{1}, \ldots, x_{K}\right)\right\|
$$

Let θ be an open set in E. A mapping $f: C \rightarrow F$ is said to be differentiable at $x \in \mathcal{O}$ if there exists a linear operator $f^{\prime}(x) \in \mathcal{B}^{1}(E, F)$ such that $\lim \left\|f(x+h)-f(x)-f^{\prime}(x) h\right\|^{\prime} \cdot\|h\|^{-1}=0$.

$$
h \rightarrow 0
$$

This $f^{\prime}(x)$, which is unique, is called the derivative of f at x. The higherorder derivatives $f^{(K)}: \mathcal{O} \rightarrow \mathfrak{B}^{K}(E, F)$ are defined in the usual manner by
induction. It is well known that the mapping $f: \theta \rightarrow F$ is n-times continuously differentiable (is class C_{n}, for short) if and only if for every $x \in \theta$ there exist a convex neighbourhood $x \in U \subset \theta$, mappings $L_{K}: U \rightarrow \mathfrak{B}^{K}(E, F)$ $(K=1,2, \ldots, n)$ and a function $R: U \times E \rightarrow F$ such that for every h with $x+H \in U$

$$
f(x+h)=f(x)+L_{1}(x ; h)+\ldots+L_{n}(x ; h)+R(x, h)
$$

where $\lim _{h \rightarrow 0}\|R(x ; h)\| .\|h\|^{-n}=0$, uniformly on U.
The differentiability of the norm in the space $L_{p}(\Omega, \mu) \quad(1 \leq p<\infty)$ was considered by Bonic and Frampton in [1]. This property can be formulated as follows :

Theorem 1 : Let $1<p<\infty$. Then
1°) p is an even integer then the norm in $L_{p}(\Omega, \mu)$ is class C_{∞} away from zero ;
2°) if p is an odd integer, then the norm in $L_{p}(\Omega, \mu)$ is class C_{p-1} away from zero and is not class C_{p};
3°) if p is not an integer and [p] denotes the integral part of p, then the norm in $L_{p}(\Omega, \mu)$ is class $C_{[p]}$ away from zero and is $\operatorname{not} \mathrm{class} \mathrm{C}_{[\mathrm{p}]+1}$;
4°) in the space c_{o} there exists an equivalent norm $|$.$| which is$ class C_{∞} away from zero.

Part 4°) of this theorem has been observed by Kuiper (see [1]). For our considerations we need only the information that this smooth norm in c_{0} locally depends only on (the absolute values of) a finite number of coordinates (away from zero).

In the case of the trace classes S_{p} we have exaculy the same result as in the case of L_{p}, but the proofs are a good deal more complicated.

Theorem 2 : Let $1<p<\infty$. Then
1°) if p is en even integer then the norm in S_{p} is class C_{∞} away from zero ;
2°) if p is an odd integer then the norm in S_{p} is class C_{p-1} away from zero and is not class C_{p};
3°) if p is not an integer then the norm in S_{p} is class $C_{[p]}$ away from zero and is not class $C[p]+1$;
4°) in $K(H)$ there exists an equivalent norm $|\|\|$.$| which is class$ C_{∞} away from zero.

We begin with some general considerations on orthogonal projections on finite-dimensional subspaces spanned by eigenvectors of a compact operator. In the book by Gohberg and Krein [2] one can find the following useful lemma :

Lemma 3 : Let $X \neq 0$ be a compact operator acting in a complex Hilbert space with eigenvalues $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ and eigenvectors $\left\{x_{n}\right\}_{n=1}^{\infty}$. Let D be a circle $D=\left\{z \in \mathbb{C}:\left|z-z_{o}\right|<r\right\}$ where $\left|z_{o}\right|>r$, and Γ be its boundary. $\Gamma=\left\{z \in \mathbb{C}:\left|z-z_{o}\right|=r\right\}$ with positive orientation. Assume that $\lambda_{m} \in D$ for $m \in M, \lambda_{K} \notin D$ for $K \notin m$ and $\lambda_{n} \notin \Gamma$ for $n=1,2, \ldots$ Then the integral

$$
-\frac{1}{2 \pi i} \int_{\Gamma}(X-\lambda I)^{-1} d \lambda
$$

is the orthogonal projection onto the subspace $E_{U}=\operatorname{span}\left(x_{m}\right)_{m} \in m_{i}$.

Now let m be a finite set of natural numbers. Let $\theta_{m} \subset K(H)$ be the set of all compact operators A such that $s_{m}(A) \neq 0$ for $m \in \mathscr{M}$. It follows from the continuity of s-numbers that $\theta_{m i}$ is open. Let $P_{A}^{\text {m }}$ denote the orthogonal
projection on the finite dimensional subspace spanned by the eigenvectors of $A^{*} A$ corresponding to the s-numbers $s_{m}(A), m \in \mathbb{M}^{\prime}$. The crucial proposition can be formulated as follows :
$\underline{\text { Proposition } 4}:$ The mapping $P_{A}^{m / n}: \theta_{m} \rightarrow K(H)$ is class C_{∞}.
$\underline{\text { Proof }: ~ L e t ~} A_{o} \neq 0$ be a compact operator $A_{o} \in \theta_{m}$. We shall prove that the mapping P_{A}^{m} is infinitely many times differentiable at A_{o}. For this let us pick a positive number $\varepsilon>0$ and a complex number $z_{o} \in \mathbb{C}$ such that $\left|s_{m}^{2}\left(A_{o}\right)-z_{o}\right|<\varepsilon$ for $m \in m$ and $\left|s_{K}^{2}\left(A_{o}\right)-z_{o}\right|>\varepsilon$ for $K \notin m_{0}$. From the continuity of s-numbers it follows that there is a $\delta>0$ such that if B is an arbitrary compact operator with $\|B\|<\delta$ then we have also

$$
\begin{array}{ll}
\left|s_{m}^{2}\left(A_{o}+B\right)-z_{o}\right|<\varepsilon & \text { for } m \in m \\
\left|s_{K}^{2}\left(A_{o}+B\right)-z_{o}\right|>\varepsilon & \text { for } K \& m
\end{array}
$$

Put $\Gamma=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=\varepsilon\right\}$. By Lemma 3 for every compact operator B with $\|B\|<\delta$ the orthogonal projection $P_{A}^{\prime \prime}+B$, considered as an operator acting in associated complex Hilbert space, can be represented in the form

$$
P_{A_{0}+B}^{m}=-\frac{1}{2 \pi i} \int_{\Gamma}\left(\left(A_{0}^{*}+B^{*}\right)\left(A_{o}+B\right)-\lambda I\right)^{-1} d \lambda
$$

where $\left(A_{o}^{*}+B^{*}\right)\left(A_{o}+B\right)$ is meant as the operator acting in the complex Hilbert space.

At first we shall show that the operator $\left(\left(A_{0}^{*}+B^{*}\right)\left(A_{0}+B\right)-\lambda I\right)^{-1}$ has an expansion in a Taylor's series at A_{0}, next we obtain the required result integrating this expansion over Γ.

Observe that for all operators X and Y (in real or complex Hilbert space), if X is invertible and $\|Y\|\left\|X^{-1}\right\|<1$, then

$$
(X+Y)^{-1}=X^{-1}\left[I+\sum_{\nu=1}^{\infty}\left(-Y X^{-1}\right)^{\nu}\right]
$$

Indeed, our assumption on Y implies that the series on the right-hand side
is absolutely convergent and we can verify this equality by multiplying it by（X＋Y）。

Now substitute in the above formula $X=A_{0}^{*} A_{0}-\lambda I, Y=A_{0}^{*} B+B^{*} A_{0}+B^{*} B$ 。 Since for every $\lambda \in \Gamma$ the operator $\left(A_{0}^{*} A_{o}-\lambda I\right)$ is invertible，we get $\left(\left(A_{0}^{*}+B^{*}\right)\left(A_{0}+B\right)-\lambda I\right)^{-i}=\left(A_{0}^{*} A_{0}-\lambda I\right)^{-1}\left[I+\sum_{\nu=1}^{\infty}\left(-\left(A_{0}^{*} B+B^{*} A_{0}+B^{*} B\right)\left(A_{0}^{*} A_{0}-\lambda I\right)^{-1}\right)^{\nu}\right]$ for all B such that $\left.\left\|A_{0}^{*} B+B^{*} A_{0}+B^{*} B\right\| \max _{\lambda \in \Gamma} \| A_{0}^{*} A_{0}-\lambda I\right)^{-1} \|<1$ ，i．e．for all B with $\|B\|<\delta^{\prime}$ ．Rearranging the terms according to the powers of B and of B^{*} we can obtain the desired expansion in a Taylor＇s series．Finally，by inte－ gration this expansion over Γ we get the＇real＇Taylor＇s formula for $P_{A_{0}}^{M} B^{\prime}$ ， as an operator acting in a real Hilbert space，with a good estimate for the remainder．This proves that the mapping $P_{A}^{m}: K(H) \rightarrow K(H)$ is infinitely many times differentiable at A_{o} 。

The easiest way to see the idea of the proof of Theorem 2 is to consider the case 4° ）．Therefore we begin with it

Case 4° ）：we define a new norm on $K(H)$ as follows

$$
\left\|\| A \| \left|=\left|\left\{s_{n}(A)\right\}\right|\right.\right.
$$

where $\left\{s_{n}(A)\right\}_{n=1}^{\infty}$ is the sequence of s－numbers of the operator A and $|$.$| is$ the Kuiper＇s norm from Theorem 1， 4° ）．This norm is obviously equivalent to the usual operator norm inK（H）。We shall show that this norm is infini－ tely many times differentiable away from zero．For this we take any compact operator $A_{0} \neq 0$ ．
As it was observed，the norm $|$.$| locally depends on a finite number of coor－$ dinates away from zero．Hence there exist a naturai number N ，a convex neigh－ bourhood V of A_{o} and mappings $L_{K}: V \rightarrow B^{K}\left(c_{o}, F\right) \quad(K=1,2, \ldots)$ such that for every $A \in V$ the $K-l i n e a r$ form $L_{K}(A)$ depends only on the first N coordinates and that for every compact operator B ，with $A+B \in V$ and every natural μ we
have
 where $R: V \times c_{o} \rightarrow \mathbb{R}$ is the real function satisfying $\underset{x \rightarrow 0}{\lim } R\left(A ;\left\{x_{n}\right\}\right) .\left\|\left\{x_{n}\right\}\right\|=0$, uniformly on V.

Now let us take any $A \in V$. To simplify the notation let us assume that only one of the s-numbers of A has multiplicity greater than 1 and that we have $s_{1}(A)=\ldots=s_{m}(A)>s_{m+1}(A)>\ldots$. It follows from the general form
 multiplicity of s-numbers of A, that

$$
\begin{aligned}
\left|\left\{s_{n}(A+B)\right\}\right|= & \left|\left\{s_{n}(A)\right\}\right|+\sum_{K=1}^{\mu} \sum_{\alpha}^{*} a_{\alpha}(A)\left[\sum_{\pi}^{* *}\left(s_{1}(A+B)-s_{1}(A)\right)^{\alpha} \pi(1)\right. \\
& \ldots \ldots \ldots \\
& \left.\ldots\left(s_{m}(A+B)-s_{m}(A)\right)^{\alpha(m)}\right] \cdot\left(s_{m+1}(A+B)-s_{m+1}(A)\right)^{\alpha} m_{m+1} \ldots \ldots \\
& \ldots\left(s_{N}(A+B)-s_{N}(A)\right)^{\alpha}+R\left(A ;\left\{s_{n}(A+B)-s_{n}(A)\right\}\right),
\end{aligned}
$$

where Σ^{*} is extended over all sequences $\left(\alpha_{i}\right)_{i=1}^{N}$ of non-negative integers with $\alpha_{1} \geq \ldots \geq \alpha_{m}$ and $\sum_{1}^{\mu} \alpha_{i}=K, \quad \sum_{\pi}^{* *}$ is extended over all permutations π of the set $\{1,2, \ldots, n\}$.

The above formula can be rewritten in the form

$$
\begin{aligned}
\left\|\mid \mathrm{A}_{\mathrm{B}}\right\| \|= & \left\|\mathrm{A}_{\mathrm{A}}\right\| \mid+\sum_{\mathrm{K}=1}^{\mu} \sum_{\alpha}^{*} \mathrm{~b}_{\alpha}(\mathrm{A})\left[\Sigma_{\pi}^{* *} \mathrm{~s}_{1}(\mathrm{~A}+\mathrm{B})^{\alpha} \pi(1) \ldots \mathrm{s}_{\mathrm{m}}(\mathrm{~A}+\mathrm{B})^{\alpha} \pi(\mathrm{m})\right. \\
& \mathrm{s}_{\mathrm{m}+1}(\mathrm{~A}+\mathrm{B})^{\alpha+1} \ldots \mathrm{~s}_{\mathrm{N}}(\mathrm{~A}+\mathrm{B})^{\alpha}+\mathrm{R}^{\prime}(\mathrm{A} ; \mathrm{B})
\end{aligned}
$$

where $R^{\prime}: V \times K(H) \rightarrow \mathbb{R}$ is a mapping satisfying $\lim _{B \rightarrow 0} R^{\prime}(A ; B) \cdot\|B\|^{-\mu}=0$, uniformly on V 。

The case where there are more s-numbers of multiplicity greater than 1 can be handled analogously.

Thus the complete the proof it is enough to show the following fact :

Lemma 5 : Let $A_{0} \neq 0$ be a compact operator and $s_{i+1}\left(A_{o}\right)$ be an s-number of multiplicity m, i.e. $s_{i+1}\left(A_{o}\right)=\ldots=s_{i+m}\left(A_{o}\right)>s_{i+m+1}\left(A_{o}\right)$. Then for every sequence $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{m}$ the mapping

$$
\varphi(C)=\Sigma_{\pi}^{* *} s_{i+1}(C)^{\alpha} \pi(1) \ldots s_{i+m}(C)^{\alpha(m)}
$$

is infinitely many times differentiable at A_{0}.

Proof of Lemma Let us take some sequence $\alpha_{1} \geq \ldots \geq \alpha_{m}$ and define the function $\bar{\varphi}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by

$$
\bar{\varphi}\left(x_{1} \ldots x_{m}\right)=\Sigma_{\pi}^{* *}{x_{1}}_{\pi(1)}^{\alpha} \ldots x_{m}^{\alpha} \pi(m)
$$

furthermore for every natural $\nu=1,2, \ldots$ and every natural $j=1, \ldots, m$ let us define the functions $g_{\nu}, h_{j}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& g_{\nu}\left(x_{1} \ldots x_{m}\right)=\sum_{n=1}^{m} x_{n}^{2 \nu} \\
& h_{j}\left(x_{1} \ldots x_{m}\right)=\sum_{1 \leq n_{1}<\ldots<n_{j} \leq m} x_{n_{1}} \ldots x_{n_{j}}
\end{aligned}
$$

It is easy to show that if $x^{0}=\left(x_{1}^{o} \ldots x_{m}^{o}\right) \in R^{m}$ satisfies $x_{n}^{o} \neq 0$ for $n=1 \ldots m$, then every function h_{j} can be expressed as an infinitely many times differentiable function of the $g_{\nu} \quad(\nu=1 \ldots m)$ in some neighbourhood of $\left(g_{1}\left(x_{o}\right) . . g_{m}\left(x_{o}\right)\right) \in \mathbb{R}^{m}$ Moreover the function φ can be expressed as an infinitely many times differentiable function of $g_{\psi}(\psi=1,2, \ldots)$ and $h_{j}(j=1, \ldots, m)$ in some neighbourhood of $\left(h_{1}\left(x^{o}\right) \ldots, h_{m}\left(x^{0}\right), g_{1}\left(x^{0}\right) \ldots\right)$. Thus, $\bar{\varphi}$ is an infinitely many times differentiable function of $g_{\psi}(\nu=1,2 \ldots)$ in some neighbourhood of $\left(g_{1}\left(x^{0}\right), \ldots\right)$.

This implies that to complete the proof of the differentiability of φ at A_{o} it is sufficient to show that the mapping

$$
\widetilde{\mathrm{g}}_{\psi}(\mathrm{C})=\sum_{\mathrm{n}=\mathbf{i}+1}^{\mathbf{i}+\mathrm{m}} \mathrm{~s}_{\mathrm{m}}^{2 \psi}(\mathrm{C})
$$

for every natural ψ is class C_{∞} at A_{o}. But this follows immediately from Proposition 4. This completes the proof of the case 4°).

```
Case 10) is obvious.
```

The proof of 2°) and 3°) starts with showing that the mapping $\|\quad\|^{p}$ is class C_{q} for $q=p-1$ or $q=[p]$ respectively. It is done using the formula mentioned in the proof of Proposition 4. We need the exact form of the Taylor's series for P_{A}^{M} since the norm $\left\|\|\right.$ in ℓ_{p} does not have the "localization property" of the Kuiper's norm $|$.$| that we have used before.$ The corresponding computations and estimates are therefore more complicated, thus we omit them.
The fact that the norm $\left\|\|\right.$ is not of class C_{q} is obvious because the space S_{p} contains a subspace isometric to ℓ_{p} 。

BIBLIOGRAPHIE

[1] R. Bonic and J. Frampton : Smooth functions on Banach manifolds. J. of Math. and Mech. 15 (1966) pp.877-898.
[2] I.C. Gohberg and M.G. Krein : Introduction to the theory of linear non-selfadjoint operators in Hilbert space. Moscow 1965 (in Russian)

