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This text provides an outline of the proof of the differentiabi-

lity of the norm in the trace classes S .
P

Let H be a real Hilbert space. By K(H) we denote the space of all

compact operators from H to H endowed with the operator norm il il.

If AE K(H), then A denotes the adjoint of A. We define the se-

quence iS (A)} . of s-numbers of the operator A by
n n-1

where ~,1 ~ ~,2 ? eu is the decreasing sequence of non-zero eigenvalues of

the operator ~ A Â ~ 1~2 , each repeated the number of times equal to its mul-

tiplicity.

It is well known that Sp is a Banach space under the norm il jj P and that

Let E et F be Banach spaces. For an arbitrary natural K, 

denotes the Banach space of continuous K-linear operators v : Ex ... x E -~ F

equipped with the norm 
K t imes

Let C be an open set in E. A mapping f : Él B F is said to be

differentiable at x EC if there exists a linear operator 

such that lim - 0.

h ~ 0

This f’(x), which is unique, is called the derivative of f at x. The higher-

order derivatives f (K) : : 0 - K (EF) are defined in the usual manner by
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induction. It is well known that the mapping f : 0 F is n-times continu-

ously differentiable (is class Cn, for short) if and only if for every x E 0-
n 

K
there exist a convex neighbourhood xE U C C mappings lx : 
(K = 1, 2, ... , n) and a function R : U x E -&#x3E; F such that for every h with x + H E U

where lim ))R(x ; h))) . - 0, uniformly on U.
h-~0

The differentiability of the norm in the space L 

was considered by Bonic and Frampton in [1]. This property can be formulated

as follows :

Theorem 1 : Let 1  p  00. Then

1°) p is an even integer then the norm in L p(0, li) is class C~
away from zero ;

2°) if p is an odd integer, then the norm in 
- 

is class

p-1 away from zero and is not class Cp ; 
P

3°) if p is not an integer and denotes the integral part of p,

then the norm in is class away from zero and is

not class 

4°) in the space c 
0 

there exists an equivalent norm ).) which is

class C 00 away from zero.

Part 4°) of this theorem has been observed by Kuiper (see [1]). For our

considerations we need only the information that this smooth norm in co
locally depends only on (the absolute values of) a finite number of coor-

dinates (away from zero).

In the case of the trace classes S 
p 

we have exactly the same

result as in the case of L , y but the proofs are a good deal more complicated.
P
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Theorem 2 : Let Then

1°) if p is en even integer then the norm in Sp is class C 00
away from zero ;

2°) if p is an odd integer then the norm in Sp is class C p-1
away from zero and is not class C ;

P

3°) if p is not an integer then the norm in Sp is class C[p]
away from zero and is not class CEP]+l ;

4°) in K(H) there exists an equivalent norm 111.111 which is class

C away from zero.

We begin with some general considerations on orthogonal pro-

jections on finite-dimensional subspaces spanned by eigenvectors of a compact

operator. In the book by Gohberg and Krein [2] one can find the following
useful lemma :

Lemma 3 : Let X/0 be a compact operator acting in a complex Hilbert space

with eigenvalues and eigenvectors lx 00 . Let D be a circle
" 

n n=l n n=l

D = where lz 0 1 &#x3E; r, and F be its boundary.

r= with positive orientation. Assume that À D
for m and Xng T for n = 1, 2, .... Then the intégral

is the orthogonal projection onto the subspace E = .

U m m ,,

Now let m be a f inite set of natural numbersr. Let 0 C K(H) be
##t

the set of all compact operators A such that s (A) f. 0 for m E m. It follows
. , 

m 0+

from the continuitv of s-numbers that (3m, 
v 
is open. Let PA denote the orthogonalv 

lit A
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projection on the finite dimensional subspace spanned by the eigenvectors

of A A corresponding to the s-numbers sm(A), y The crucial proposition

can be formulated as follows :

Proposition 4 : The mapping A : K(H) is class C

Proof : Let A /0 be a compact operator A We shall prove that the
2013201320132013 ~ o 0 ni

mapping P? is infinitely many times differentiable at A . For this let us9 A 0 
t 2 t

pick a positive number c &#x3E; 0 and a complex number z0E E such that 
f or and 1 s’ (A ) -z 1 &#x3E; F- f or From the cont inuity of s-numbers itK o 0

follows that there is a S&#x3E; 0 such that if B is an arbitrary compact operator

with Il B Il  ô then we have also

Put F = 1 z E (; : )z-z ) = c). By Lemma 3 f or every compact operator B
o +

with  à the orthogonal projection ~~, 
considered as an operator

acting in associated complex Hilbert spacel can be represented in the form

where (Ao+ B )(Ao+B) is meant as the operator acting in the complex Hilbert
o 0

space.

At first we shall show that the operator «A *+ B*)(A +B) - XI) -1p 
o 0

has an expansion in a Taylor’s series at Ao, next we obtain the required

result integrating this expansion over r.

Observe that for all operators X and Y (in real or complex Hilbert

space), if X is invertible and ttvtj  1, then

Indeed, our assumption on Y implies that the series on the right-hand side
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is absolutely convergent and we can verify this equalîty by multiplying it

by (X+Y) o

Now substitute in the above formula X = A A - XI, 
oo 

’ 
o o

Since for every XE F the operator is invertible, we get

for all B such that i.e. for all B

with ~,B~‘  8’, Rearranging the terms according to the powers of B and of B
we can obtain the desired expansion in a Taylor’s series. Finally, by inte-

gration this expansion over r we get the real 
" Taylor’s formula for P ? +B’gration this pa s g y A +B

o

as an operator acting in a real Hilbert space, with a good estimate for the

remainder. This proves that the mapping P A K(H) ~ K(H) is infinitely many

times differentiable at A 0

o

The easiest way to see the idea of the proof of Theorem 2 is to

consider the case 4°). Therefore we begin with it

Case 4°) : we define a new norm on K(H) as follows

where s (A)’00 is the sequence of s-numbers of the operator A and 1.1 is
n n=1

the Kuiper’s norm from Theorem 1, 4°) This norm is obviously equivalent

to the usual operator norm o We shall show that this norm is infini-

tely many times differentiable away from zero. For this we take a,ny compact

operator 
,

As it was observed, the norm i.1 locally depends on a finite number of coor-

dinates away from zero. Hence there exist a naturai number N, a convex neigh-

bourhood V of A and mappings L K : V - î8 K ( e0F) (K= 1, 2, such that for
o jB 0

every A E V the K-1 inear form LK(A) depends oniy. on the first N coordinates

and that for every compact operator B, with A+B~ V and every natural ~ we
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have

where R : V x c 
° 

- 1R is the real function satisfying lim 0 R(A ; {x " }).)Hx  )(Î= (o 
x 0 

n n

uniformly on V.

Now let us take any A É V. To simplify the notation let us assume

that only one of the s-numbers of A has multiplicity greater than 1 and that

we have s 1 ( A) _ 808 = s m ( A) &#x3E; s m+1 (A) &#x3E; .... It follows from the general form

of continuous K-linear symmetric forms on co and the assumption on the

multiplicity of s-numbers of A, that

SA N
where S is extended over all sequences of non-négative integers

a il 
1=

with a ai- K,E is extended over all permutations 1t of
~ m 

1 
1 

7r

the set ~1~2~...~n}.

The above formula can be rewritten in the form

where R’ : V x K(H) -’ IR is a mapping satisfying lim R’(A;B).))BJ)"~=0,
B 0

uniforml-y on V 0
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The case where there are more s-numbers of multiplicity greater

than 1 can be handled analogously.

Thus the complete the proof it is enough to show the following

fact :

Lemma 5 : Let A 0 / 0 be a compact operator and be an s-number of
201320132013201320132013 o i+l o

multiplicity m, i.e. &#x3E; si+m+l (A0) . Then for every

sequence al ? a2 ? ... &#x3E; am the mapping

is infinitely many times differentiable at Ao.

Proof of Lemma Let us take some sequence a1 ? - - - :2 ~ am and define the
funetion y : 1Rm ~ IR by

furthermore for every natural ’B) = 1,2, ... and every natural j = 1, ... ,m let

us define the functions g , h . : ]Rm ]R by
w j

It is easy to show that if xO = satisfies x 0 / 0 for n=l ... m,1 m n

then every function h. can be expressed as an infinitely many times differen-
J 

tiable function of the g m) in some neighbourhood 1 0 m 0

Moreover the funetion can be expressed as an infinitely many times dif-

ferentiable function of g (V=1,2,.o.) and h. (j=l,...,m) in some neighbourhood
v J

of (h1(xo),,..,hm(x0),g1(x0 Thus, y is an infinitely many times differen-

tiable furet ion 0f g (~=1~2...) in some neighbourhood of (g1(x0) , ...) .
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This implies that to complete the proof of the differentiability

of y at Ao it is sufficient to show that the mapping

for every natural w is class C 00 at A 0 o But this follows immediately from

Proposition 4. This completes the proof of the case 4°).

Case 1°) is obvious.

The proof of 2°) and 3°) starts with showing that the mapping

il lip is class C q for q = p-1 or q= [p ] respectively. It is done using the

formula mentioned in the proof of Proposition 4. We need the exact form of

the Taylor s series for p~ since the normil il in p does not have the
"localization property" of the Kuiper’s norm 1.1 1 that we have used before.

The corresponding computations and estimates are therefore more complicated,

thus we omit themo

The fact that the norm )) Î) is not of class C q is obvious because the space

S 
p 

contains a subspace isometric to É P 0

-----------
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