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This text provides an outline of the proof of the differentiabi-

lity of the norm in the trace classes Sp.

Let H be a real Hilbert space. By K(H) we denote the space of all

compact operators from H to H endowed with the operator norm || !I.

*
If A€ K(H), then A denotes the adjoint of A. We define the se-
quence fsn(A)}:‘1 of s-numbers of the operator A by

S (A) =2 n=1,2,..
n

n

where xl = xz 2 .. is the decreasing sequence of non-zero eigenvalues of
*
the operator (A A)1/2, each repeated the number of times equal to its mul-

tiplicity.

Let 1 = p = oo, We put

oo
s = faexm : lall = (= LNHVP < o
p p n=1 1
It is well known that Sp is a Banach space under the norm || Ilp and that
1/p
lall ) = Cer (a0 P/2)

Let E et F be Banach spaces. For an arbitrary natural K, %K(E,F)

denotes the Banach space of continuous K-linear operators v : EX .. XE - F

equipped with the norm K times

vl

= sup vix,,.w,x.)]|
Ix = oo =llx Il = 1 K
1 K

Let C be an open set in E. A mapping f : C » F is said to be
differentiable at x€C if there exists a linear operator f'(x)€f%1(E,F)

such that lim || £(x+h) - £(x) = £' O |l . |In]]~t = o.
h =0

This f'(x), which is unique, is called the derivative of f at x. The higher-

(K)

K . .
order derivatives f : 0 » B (E,F) are defined in the usual manner by
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induction. It is well known that the mapping f : C > F is n-times continu-
ously differentiable (is class Cn’ for short) if and only if for every x€O
there exist a convex neighbourhood x€ U ¢ O, mappings Lg U= %K(E,F)
(K=1,2,..,n) and a function R : UXE = F such that for every h with x+H€U

f(x+h) = f(x)4-L1(x; h) +..+ Ln(x; h) + R(x,h)

where 1lim ||R(x; h)" .||h|rql= 0, uniformly on U.
h->0
The differentiability of the norm in the space Lp(Q,p) (1=p<o)
was considered by Bonic and Frampton in [17]. This property can be formulated

as follows
Theorem 1 : Let 1< p<o. Then

1°) p is an even integer then the norm in Lp(Q,p) is class C_

away from zero ;

2°) if p is an odd integer, then the norm in Lp(Q,p) is class
CP_1 away from zero and is not class Cp 3

3°) if p is not an integer and [p] denotes the integral part of p,
then the norm in Lp(Q,p) is class C[p] away from zero and is

not class C[p]+1 ;

4°) in the space co there exists an equivalent norm |.| which is

class C away from zero.

Part 4°) of this theorem has been observed by Kuiper (see [17]). For our
congsiderations we need only the information that this smooth norm in c,
locally depends only on (the absolute values of) a finite number of coor-

dinates (away from zero).

In the case of the trace classes Sp we have exacitly the same

result as in the case of Lp’ but the proofs are a good deal more complicated.
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Theorem 2 : Let 1< p<e., Then

1°) if p is en even integer then the norm in Sp is class C_

away from zero ;

2°) if p is an odd integer then the norm in Sp is class Cp—l

away from zero and is not class Cp ;

3°) if p is not an integer then the norm in Sp is class C[

C[p]+1 ’

p]

away from zero and is not class

4°) in K(H) there exists an equivalent norm HI.HI which is class

C, away from zero.

We begin with some general considerations on orthogonal pro-
jections on finite-dimensional subspaces spanned by eigenvectors of a compact
operator. In the book by Gohberg and Krein [27] one can find the following

useful lemma

Lemma 3 : Let X# O be a compact operator acting in a complex Hilbert space

with eigenvalues {Kn}il and eigenvectors {xn}:—l' Let D be a circle

1
D = {ZE £t |z— zo|< r} where |zol>vr, and ' be its boundary.
r = {z€t ‘z— zolz r} with positive orientation. Assume that Kmé D

for m€ M, KKQD for KZ M and ?\nQT for n=1,2,... Then the integral

- [ x-aD! an
2ni T
is the orthogonal projection onto the subspace EU = span(xm)mggxz.

Now let A be a finite set of natural numbers. Let O”:CiK(H) be
the set of all compact operators A such that sm(A) £ 0 for m€ M. It follows

from the continuity of s-numbers that G”:is open. Let Px denote the orthogonal
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projection on the finite dimensional subspace spanned by the eigenvectors
»*
of A A corresponding to the s-numbers sm(A), m € 7. The crucial proposition

can be formulated as follows

%
Proposition 4 : The mapping 200

y 07/‘2 -» K(H) is class c, -

Proof : Let AO;ZO be a compact operator AO€C9:',,a . We shall prove that the
mapping P is infinitely many times differentiable at AO. For this let us

pick a p051t1ve number & >0 and a complex number z € € such that |s (A ) -2 |< €
for m€ W and |s (A ) - -z, ‘ >¢e for KZM. From the cont1nu1ty of s- numbers it
follows that there is a 6> 0 such that if B is an arbitrary compact operator

with HB” < & then we have also

\ 52 (A +B) -z | < ¢ for m€ %
m o o
\52 (A «B) -2z | > e for KZ€®R
K o o
Put I = %zE r |z— zol = e}. By Lemma 3 for every compact operator B
m

with ”BH < 6 the orthogonal projection P considered as an operator

A +B’
acting in associated complex Hilbert space, can be represented in the form

PR 1
A0+B - T 2ni

* *. -
[ C@Xe™amp-an™?
T o o
* *. .
where (Ao+ B )(A0+B) is meant as the operator acting in the complex Hilbert

space.

At first we shall show that the operator ((A:+ B*)(AO+B) -7\1)—1
has an expansion in a Taylor's series at Ao’ next we obtain the required

result integrating this expansion over T,

Observe that for all operators X and Y (in real or complex Hilbert
space), if X is invertible and | Y|| IIx"|| < 1, then
[ee]

x-n"1 - x'1[1-+ Z (-YX
v=1

-1)v]

Indeed, our assumption on Y implies that the series on the right-hand side
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is absolutely convergent and we can verify this equality by multiplying it

by (X+Y).

* * *
Now substitute in the above formula X = Avo - AL, Y:.A:B+~B AoafB B.

*
Since for every A& the operator (AOAO-lKI) is invertible, we get
" y * 1 x ¥ % * o o* 1
((A7+BM (A +B) -AT) ™" = (ATA =AD" [T+ Z (~(A'B+B A +B B)(A A-A1) )]
o o o o v=1 o o oo

for all B such that HA*B+B*A +B Bl max |]a"A -aD Y| < 1, i.e. for all B
(o] (0] )\E I" 0O 0

with ||B” < 6'. Rearranging the terms according to the powers of B and of B*
we can obtain the desired expansion in a Taylor's series. Finally, by inte-

gration this expansion over I' we get the 'real” Taylor's formula for PA B’
o

as an operator acting in a real Hilbert space, with a good estimate for the

~

14\

remainder. This proves that the mapping P, K(H) = K(H) is infinitely many

times differentiable at AOQ

The easiest way to see the idea of the proof of Theorem 2 is to

consider the case 4°). Therefore we begin with it

Case 4°) : we define a new norm on K(H) as follows
Nall = Tis_ (2]
where {sn(A)}:zl is the sequence of s-numbers of the operator A and Inl is

the Kuiper's norm from Theorem 1, 4°). This norm is obviously equivalent

to the usual operator norm inK(H). We shall show that this norm is infini-
tely many times differentiable away from zero. For this we take any compact
operator AO%(L

As it was observed, the norm l.i locally depends on a finite number of coor-
dinates away from zero. Hence there exist a natural number N, a convex neigh-
bourhood V of A and mappings L ¢ vV - %K(CO,F) (K=1,2,..) such that for
every A€V the K-linear form LK(A) depends only on the first N coordinates

and that for every compact operator B, with A+B& V and every natural p we
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have

B .
z LK(A; {sn(A+B)—sn(A)})4~R(A; isn(A+B)—sn(A)}),

| {s_(a+B)}] = | {s (W} « .

where R : Vxc = R is the real function satisfying lim R(A; ixn})|Hxn}H::Q
x>0

uniformly on V.

Now let us take any A€ V. To simplify the notation let us assume
that only one of the s-numbers of A has multiplicity greater than 1 and that

we have SI(A): - sm(A) > sm+1(A)> w.. It follows from the general form

of continuous K-linear symmetric forms on <, and the assumption on the

multiplicity of s-numbers of A, that

n a
|{s_(asm)}| = [fs (0} + Z =¥ a, (0] 2**(s1(A+B)-s1(A)) (1)
n K=1 o T
(s (A+B) (A))a”(m) ( (A+B) (A))a'“+1
ceee (s (A+B)-s 7. Spoq (AB)-s  (A)) T ...

a
con (s (A+B) -5 (AD N o, R(a; s (AB)-s_ (D)D),

*
where £ is extended over all sequences (ai)ﬁ_ of non-negative integers

1
o
¢ *
with a12:".2:am and Z ai = K, Z is extended over all permutations n of
1 7

the set i1,2,“.,n}.

The above formula can be rewritten in the form

M a a
Nla-Blll = llalll + = 2% b (4) [ =™ s, (A+B) (1) s (a+B) ”(m)]
K=1 «a @ i 1 m
(a.p) M+ (am) N ri(a;
S q AT ceesy (A + A; B)

where R' : VXK(H) - 1R is a mapping satisfying lim k' (A;B).||B|]|7H = o,
B0
uniformly on V.
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The case where there are more s-numbers of multiplicity greater

than 1 can be handled analogously.

Thus the complete the proof it is enough to show the following

fact
Lemma 5 : Let Aof'O be a compact operator and Si+1(Ao) be an s-number of
multiplicity m, i.e. Si+1(Ao):"°:Si+m(Ao) > Si+m+1(Ao)' Then for every
> > > ;
sequence a, = @, = ... = O the mapping
a a
*% 1
g0 =2 s (o "M s (o

b1
is infinitely many times differentiable at AO.
Proof of Lemma Let us take some sequence ay = ... = a. and define the

function _(E :R" » R by

% “n(1>_ xan(m)

© = I
@(xl..oxm) x, X
bid
furthermore for every natural v=1,2,... and every natural j=1,..,m let
us define the functions g, - hj : R" > R by
m
g (x,...x ) = Z x2¥
vy 1 m n
n=1
h‘(xl"°xm) = z X e..X
J 1<n,< w<n.<m ™ nj
1 J
It is easy to show that if x° = (xJ...x>) € R" satisfies x_#0 for n=1...m,

thél every function hj can be expressed as an infinitely many times differen-
tiable function of the g, (v=1...m) in some neighbourhood af(gl(xgugm(xo»E]Rm
Moreover the function ; can be expressed as an infinitely many times dif-

ferentiable function of gv (¢=1,2,..) and hj (j:l,u.,m) in some neighbourhood

of (hl(xo)m.}hm(xo),glixo)”o). Thus, ¢ is an infinitely many times differen-

tiable function of gv (¢#=1,2...) in some neighbourhood of (gl(xo),n,).
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This implies that to complete the proof of the differentiability
of ¢ at Ao it is sufficient to show that the mapping

~ i+m 2
gv(C) = I s (c)
n=1+1

for every natural v is class C_ at Ao. But this follows immediately from

Proposition 4. This completes the proof of the case 4°).
Case 1°) is obvious.

The proof of 2°) and 3°) starts with showing that the mapping
H ||p is class Cq for q=p-1 or q=[p] respectively. It is done using the
formula mentioned in the proof of Proposition 4. We need the exact form of

the Taylor's series for P, since the norm|| H in £ does not have the

"localization property" 0? the Kuiper's norm |o| that we have used before.
The corresponding computations and estimates are therefore more complicated,
thus we omit them.

The fact that the norm H || is not of class Cq is obvious because the space

Sp contains a subspace isometric to Epo
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