SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

T. Figiel
A short proof of Dvoretzky's theorem
Séminaire d'analyse fonctionnelle (Polytechnique) (1974-1975), exp. no 23, p. 1-5
<http://www.numdam.org/item?id=SAF_1974-1975
\qquad A22_0>

[^0]ECOLE POLYTECHNIQUE

CENTRE DE MATHERAATIQUES

17, rue Descartes
75230 Paris Cedex 05

$\underset{-}{A}$ SHORT PROOF OF DVORETZKY'S THEOREM

par T. FIGIEL

The theorem of Dvoretzky [2] states that for any $\varepsilon>0$ and any positive integer K there exists an $N=N(K, \varepsilon)<\infty$ such that every normed space $(X,\| \|)$ with dim $X>N$ contains a K-dimensional subspace E which is ε-Euclidean (i.e. there exists a Euclidean norm \mid. \mid on E such that $\|x\| \leq|x| \leq(1+\varepsilon)\|x\|$ for $x \in E)$.

Two proofs of the theorem have already been presented on this seminar (cf.[1], [4], [3]). I am going to show another one based on an idea of Szankowski's [6] but simpler in details. Only the obvious modifications (viz. considering the complex Stiefel and Grassmann manifolds) are needed to obtain a proof of the complex version of the theorem.

In the sequel let K be a fixed integer greater than 1.
We shall need the following consequence of the Dvoretzky-Rogers lemma (cf. [2], [1〕).
(D-R) For every integer $n \geq K$ and every normed space ($\mathrm{X},\| \|$) with $\operatorname{dim} X \geq 4 n^{2}$ there exists an operator $I: R^{n} \rightarrow X$ such that

$$
\frac{1}{2}\|x\|_{\ell_{\infty}^{n}} \leq\|I x\| \leq\|x\|_{\ell_{2}^{n}} \quad \text { for } x \in R^{n}
$$

Let $F=I\left(R^{n}\right)$ and let $\|x\|_{2}=\left\|I^{-1} x\right\|_{\ell_{2}^{n}}$ for $x \in F$. Since any norm on F can be approximated (uniformly on the unit ball) by smooth ones, we may assume that $\|\cdot\|$ is smooth on F. Thus for each $x \in F \backslash\{0\}$ there is a unique $T_{x} \in F^{*}$ such that

$$
T_{x_{x}}(x)=\|x\|\left\|T_{x^{\prime}}\right\|_{F}^{*}=1
$$

Clearly, T_{x} depends continuously on x, and $\|x\| T_{x}$ is simply the Gâteaux derivative of the norm $\|$.$\| at x$.

For any linear subspace $E \subseteq F$ with $\operatorname{dim} E \geq 2$, let S_{E} denote the unit sphere $\left\{x \in E:\|x\|_{2}=1\right\}$ and let Σ_{E} denote the Stiefel manifold of all ordered pairs $\langle x, y\rangle \in S_{E} \times S_{E}$ such that $y \in x^{\perp}=\left\{f \in F:\left(I^{-1} f, I^{-1}\right)_{\ell_{2}}^{n}=0\right\}$
The normalized $\left\|\|_{2}\right.$-rotation invariant measures on S_{E} and Σ_{E} will be
denoted by λ_{E} and σ_{E} respectively.

Our basic invariant characterizing the closeness of $\|\|$ to $\| \|_{2}$ on E is defined as follows

$$
v(E)=\int_{\Sigma_{E}} T_{x}(y)^{2} d \sigma_{E}(x, y)
$$

We shall check the following facts :

1) There exists a subspace $E \subseteq F$ such that $\operatorname{dim} E=K$ and $v(E) \leq v(F)$;
2) $d(E)=\int_{S_{E} \times S_{E}}(\|x\|-\|z\|)^{2} d \lambda_{E}(x) d \lambda_{E}(z) / \sup _{S_{E}}\|x\|^{2} \leq(\pi / 2)^{2} v(E)$;
3) $b=1-\inf _{S_{E}}\|x\| / \sup _{S_{E}}\|x\| \leq \operatorname{Cd}(E)^{1 /(K+1)}$, where C depends only on K.

It follows from 1 , 2 , 3 that $b \leq C_{1} v(F)^{1 /(K+1)}$, where C_{1} is another constant. Since $\varepsilon \leq b /(1-b)$, the proof will be complete, if we also establish :
4) There exists a sequence $\left(C_{n}\right)_{n=2}^{\infty}$ tending to zero such that the F yielded by ($D-R$) satisfies $v(F) \leq C_{n}$.

Proofs : 1) is an immediate consequence of the formula

$$
\begin{gathered}
v(F)=\int_{\Sigma_{F}} T_{x}(y)^{2} d \sigma_{F}(x, y) \\
=\int_{\Gamma} d \gamma(E) \int_{\Sigma_{E}} T_{x}(y)^{2} d \sigma_{E}(x, y)=\int_{\Gamma} v(E) d \gamma(E),
\end{gathered}
$$

where γ is the normalized $\|\cdot\|_{2}$-rotation invariant measure on the Grassman n manifold Γ of all K-dimensional linear subspaces of F. (The second equality is valid when $T_{x}(y)^{2}$ is replaced by any function $f(x, y)$ defined and continuous on $\Sigma_{F} ;$ it follows from the uniqueness of a normalized invariant measure on Σ_{F}).
2) For any $x, z \in S_{E}$ with $z \not f_{-}^{+} x$, let $a_{x, z}(t), 0 \leq t \leq 2 \pi$, be the arc-length parametrization of the great circle of S_{E} starting at x and passing through $z,-x,-z$ back to x. We have

$$
4\|\|x\|-\| z\left\|\left\|\leq \int_{0}^{2 \pi}\left|\frac{d}{d t}\left\|a_{x, z}(t)\right\|\right| d t \leq \sqrt{2 \pi}\left(\int_{0}^{2 \pi}\left(\frac{d}{d t}\left\|a_{x, z}(t)\right\|\right)^{2} d t\right)^{1 / 2}\right.\right.
$$

hence

$$
\begin{aligned}
& \int_{S_{E}} \times S_{E}(\|x\|-\|z\|)^{2} d \lambda(x) d \lambda(z) \leq(\pi / 8) \int_{S \times S} \int_{0}^{2 \pi}\left(\frac{\partial}{\partial t}\left\|a_{x, z}(t)\right\|^{2} d t d \lambda(x) d \lambda(z)\right. \\
& =(\pi / 8) \int_{0}^{2 \pi} d u \int_{S \times S}\left(\left.\frac{\partial}{\partial t}\left\|a_{x, z}(t)\right\|\right|_{t=u}\right)^{2} d \lambda(x) d \lambda(z) \\
& =(\pi / 2)^{2} \int_{S \times S}\left(\left.\frac{\partial}{\partial t}\left\|a_{x, z}(t)\right\|\right|_{t=0}\right)^{2} d \lambda(x) d \lambda(z) \\
& =(\pi / 2)^{2} \int_{S \times S}\left[(D\| \|)(x)\left(\left.\frac{\partial a_{x, z}(t)}{\partial t}\right|_{t=0}\right)\right]^{2} d \lambda(x) d \lambda(z \\
& =(\pi / 2)^{2} \int_{S} d \lambda_{S}(x) \int_{S} \cap_{x^{\perp}}(D\| \|)(x)(y)^{2} d \lambda_{S} \cap_{x^{\perp}}(y) \\
& =(\pi / 2)^{2} \int_{\Sigma_{E}}\|x\|^{2} T_{x}(y)^{2} d \sigma_{E}(x) \\
& \leq(\pi / 2)^{2} \sup _{S_{E}}\|x\|^{2} v(E) \text {. }
\end{aligned}
$$

3) Let us write $P(\varphi(x))$ instead of $\lambda_{E}\left(\left\{x \in S_{E}: \varphi(x)\right\}\right)$. Let $a=\sup _{x \in E}\|x\|$ and let $t \in(0,1)$ be fixed.

If $P\left(\|x\| \geq a\left(1-\frac{1}{2} b\right)\right) \geq \frac{1}{2}$, we pick an x_{o} such that $\left\|x_{0}\right\|=a(1-b)=\inf _{S_{E}}\|x\|$. (Otherwise we would take x_{o} with $\left\|x_{o}\right\|=a$, and proceed analogously).

Observe that there is an $s>0$, depending only on K, such that $P\left(\left\|x-x_{0}\right\| \geq s b^{K-1}\right)$ for $b \leq 1$. Thus we have

$$
\begin{aligned}
a^{2} d(E) & \geq\left(\frac{1}{2} a b t\right)^{2} P\left(\|x\|-\left\|x_{0}\right\| \leq \frac{1}{2} a b(1-t)\right) P\left(\|y\| \geq a\left(1-\frac{1}{2} b\right)\right) \\
& \geq\left(\frac{1}{2} a b t\right)^{2} 2 P\left(\left\|x-x_{0}\right\| \leq \frac{1}{2} b(1-t)\right) \cdot \frac{1}{2} \\
& \geq \frac{1}{4} a^{2}{ }_{b}{ }^{K+1}{ }_{s t}{ }^{2}(1-t)^{K-1}
\end{aligned}
$$

which implies the desired inequality.

To get 4) observe first that

$$
\begin{aligned}
v(F) & =\int_{S_{F}} d \lambda_{F}(x) \int_{S_{F} \cap x^{\perp}}\left(T_{x}(y)\right)^{2} d \lambda_{F \cap x^{\perp}}(y) \\
& \leq \int_{S_{F}} d \lambda_{F}(x) \frac{2}{n-1}\left(\left\|T_{x}\right\|_{2}^{*} \leq \frac{1}{n-1} \int_{S_{F}}\|x\|^{-2} d \lambda_{F}(x)\right.
\end{aligned}
$$

(recall that $\left\|T_{X}\right\|_{Z}^{*} \leq\left\|T_{X}\right\|_{F}^{*}=\|x\|^{-1}$).

$$
=\frac{1}{n-1} \int_{S_{R^{n}}}\|I x\|^{-2} d \lambda \mathbb{R}^{n}(x) \leq \frac{4}{n-1} \int_{S}{R^{n}}\|x\|_{\ell_{\infty}^{n}}^{-2} d \lambda \mathbb{R}^{n^{n}}(x)
$$

The following short reasoning was shown to the author by D. Burkholder. Let X_{1}, X_{2}, \ldots be independent normalized Gaussian variables on a probability space (Ω, Σ, P). Then one has

$$
\begin{aligned}
& \left.\frac{1}{n} \int_{S} \operatorname{Re}^{n} \max _{1 \leq i \leq n}\left|x_{i}\right|\right)^{-2} d \lambda \mathbb{R}^{n}(x)=\frac{1}{n} \int_{\Omega}\left(\max _{1 \leq i \leq n} \frac{\left|x_{i}(\omega)\right|}{\left(\sum_{i=1}^{n} x_{i}(\omega)^{2}\right)^{1 / 2}}\right)^{-2} d P(\omega) \\
& =\frac{1}{n} \int_{\Omega} \frac{\sum_{i=1}^{n} X_{i}(\omega)^{2}}{\max _{1 \leq i \leq n} X_{i}(\omega)^{2}} d P(\omega)=\int_{\Omega} \frac{X_{1}(\omega)^{2}}{\max _{1 \leq i \leq n} X_{i}(\omega)^{2}} d P(\omega)^{\text {def }}=b_{n} .
\end{aligned}
$$

The fact that/ $\mathrm{b}_{\mathrm{n}}^{\prime} \mathrm{s}$ tend to zero is a well-known consequence of the unboundedness of the $X_{i}^{\prime} s$ and the Lebesgue dominated convergence theorem. This is sufficient to establish 4) and complete the proof.

It is easy to prove that in fact $b_{n}=0\left((\log n)^{-1}\right)$ which yields an estimate $N(K, \varepsilon) \leq \exp \left(C_{2} \varepsilon^{-K-1}\right)$ for small $\varepsilon>0$. This bound can be considerably improvea by using the p-th powers instead of squares in the definition of $v(E)$ (p being a large number depending on n) and more careful estimates of the appearing integrals. The result sepms to be slightly stronger than those found in [2], [5] and [6].

REFERENCES

[1] Séminaire Maurey-Schwartz 1972-1973, Exposés XXVI et XXVII.
[2] A. Dvoretzky, Some results on convex bodies in Banach spaces, Proc. Internat. Sympos. Linear Spaces, Jerusalem (1961) 123-160.
[3] Séminaire Maurey-Schwartz 1974-1975, Exposé XII.
[4] Séminaire Maurey-Schwartz 1973-1974, Exposé XIX.
[5] V. D. Milman, New proof of the theorem of A. Dvoretzky on sections of convex bodies, Funkcional Anal. i Ego Priložen, 5 (1971), 28-37.
[6] A. Szankowski, On Dvoretzky's theorem on almost spherical sections of convex bodies, Israel J. Math. 17 (1974), 325-338.

[^0]: © Séminaire Maurey-Schwartz
 (École Polytechnique), 1974-1975, tous droits réservés.
 L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

