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In this expose I would like to present some of the recent preli-

minary results obtained by my students J. Rosinski and Z. Suchanecki (the

full version of their paper to be published elsewhere)  0 The results deal

with unconditional convergence of series in metric groups, unconditional

almost sure convergence of group valued functions and the C-sequences i.e.

the sequences in F-spaces that are summable after multiplication by all

c -multipliers. In spite of their elementary character these results to
o 

some extent complement the work on the topic done, mainly in Paris, during

last few years (cf. References). 0

I LINCONDITIONAE CONVERGENCE IN METRIC GROUPS

Let (G, d) be an abelian, metric, complete group. We may assume

(cf. n [5]) that d is invariant under translations. Usage : : Ilgll = d(g,0),
We say that the series 2.: gn’ y gn E G, is uncondit,iona.lly convergent

if it remains convergent after every permutation of its terms.The follow-

ing "uniformization" lemma is a convenient t ool .

Lemma 1 : The series 2: g , y g E G, is unconditionnally convergent if and- 
° 

n n --- - 
.. - 

- -- ---

N E:N ¥ permutation (nk) of and ¥ 

Proof : The implication ~ is obvious. o We prove ~ ~ v Assume that

a E &#x3E; 0 ¥ N j permutation nk) of such that

Now,if 

N= 1 we find a ermutation ( (1» of° [ and 
(1) (1) such thatNow! i f N= 1 we find a permutation of and M 1 _ M 2 such that

Take N~ A1 -r 1 and find a permutation

such that



XXVII.2

and let A = ma,x(n (i) : M(2) :! k:5 M(2) 1. Proceeding as above one choosesand let A 2 : 
2 

). . Proceedi n g as above one choos es

. 1 (i ) m (i) y m(i) 9 i 1 2 Denoting b h. those g whichaccordingly nk ’ 1 ’ 2 ’ 1 = , ,. eo C g Y j those g . whichk 1 1 2 1 J

are not o f the form g (i) , 
i =1121.11. a 1 m (i) !!5;k:!5;M (i) we see that theare not of the form g (i) , 
i =12... y M e see that the

nk 
1 2

nk
series

does not convergeo A contradiction.

Proposition 1 : The series Zg 2 g E G, s unconditionnally convergent
---- --- - 

. ---- n n ..-.-&#x3E;- - - ---- ...- ......- --.-.-

i f and onl i f f or each bounded sequence of integers ( i ) c N the series
-.--.--- 

--... 

-..-..... n

 i n gn is convergent. o

Proof : The implication « with is essentially due to Orlicz

(cf. [10J)" To prove ~ assume ¿gn converges unconditionally~ By Orlicz?s

theorem (cfa 10) for the series Ee g is uncon-
ditionnally convergent so that by lemma -V- permutation

(n) of M 1 s M 2
...

Assume that (in) is bounded by i . By the above statement we get that
n o

where e - n i n a.nd (i) g 
n 
. f.. i a.nd (i) :7 0 if i i i 1 a i where E n ::= sgn 1 n 

an gn :;: gn 1 
1 n 
= 1 an gn ::: 0 1 1 = 1, I’ . , ’ 

1 0 
G

That ends the proof.

r g 9 gn E G, is uncondi t ionally convergent then
.-- =- .--.-.--. - .-------- n n 

E Gy is - 

there exists a sequence of integers i too such g is
- n n n n-

unconditionally c,oyrgento
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Proof : By Lemma 1 ¥ Nr + permutation
we have

We may assume that ’ l  N2  .... ° Put n  r for ’r    N r+ 1. We shall show
that the series z i n gn satisfies the Cauchy condition for each permutation
of its term. Assume that it is not the case i.e. that 3 permutation (mk)
of IN such that 9 Eo &#x3E; 0 J Ml ;5; M2 ~ ... ° such that

Now,take s E N so that 2 e and then take r 0 such that for 
n

what contradicts (4~) .

In the case of G being a linear space and of real (instead of

integer) multipliers the picture is much different as there are examples

fin such spaces in which there exist unconditionnally convergent series

E xn such that for some bounded multipliers (a n )cR the series za n x n
diverges. Some linear metric spaces in which unconditional convergence

implies bounded multiplier convergence are found in [10], [13] and in

references quoted therein. However, from the above theorem one gets imme-

diately the following
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Corollary 1 : Let f n where $ is a (possibly bounded) Orlicz

f unction, ~L ~it. 0, and E is a Banach space. If the series Sf is

unconditionally convergent in L then there exists a sequence 
--....- 

’ 

, 

- . n

i 
n 

fee such that for- q la i , n y the series Eoc f 
n 

converges in
n n 

. 

n n - nn -.- - ...

L (unconditionally).

Proof : i Apply Theorem 1 with E) and being the usual

Orlicz F-norm. 0 Thus j i nt co, such that _7 i n f converges uncon-
ditionally in L~ ; Put J3 =a /i o Then )j3 ) ~1 and by the main result of

[13] EP n i n f n = a n fn converges in L~~ ~

~ II. ._ _ UNCONDITIONAL ALMOST SURE CONVERGENCE FOR GROUP-VALUED FUNCTIONS

Consider a sequence (f ) of measurable functions on the finite
n

measure space with values in We say that the series Zf
is convergent unconditionally almost everywhere if after every permutation

of its terms the series converges 

c 

As in Section I y the

11

following uniformization lemma will be instrumental.

Lemma 2 t The series S f is unconditionally a.e. convergent if and only

if iF c &#x3E; 0 j permutation (nk) of [N 1 oo[ AF bounded integer valued

measurable functions M 1(w) K !12(W) we have that

Proof: =0 o Firstly, let us notice that

Assume to the contrary that ’I .i p- &#x3E; 0 ¥ V permutation nk of bound-

ed measurable functions Ml (w) $; M2 «(1)) such that
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If N=1 we find a permutation (ink ) of and M 1 i) (w) S; M2 (w) such
that, by 

where M (i) = Max M(1) (w). Then put A = max[n (i) : k:5. M(i) I and f ind a permu-where M 
1) 

-max M§ ((jo). Then put Ai and find a permu-
w

tation (n (2) ) of [A -41,-[ and an integer M (2) such thattation of and an integer M such that

Proceeding by induction we find permutations nk and integers M ,
i = 1, 2, .. 0 such that the series

(where yi are those f . that are missing in the sums constructed above) does
J J

not satisfy the Cauchy condition for convergence. A contradiction.

The implication ~r:- follows immediately from the lemma I
which says that diverges on the set of positive measure then

J e&#x3E;0 -) F~ J &#x3E; 0 1 Ni  N2  .. ~ ° such that

Exactly as in Section I (Proposition 1), using Lemma 2 and

Theorem 2 of [101 one can prove (but only one implication can be proved

this way .°)

Proposition 2 : If the series Efn is unconditio-nally almost everywhere
rrr 

convergent then for each bounded sequence the series E infni s. 

-2013201320132013B201320132013-2013201320132013201320132013"’’**20132013201320132013 n .2013-20132013 n n --

convergent a,e,
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Now, one can prove, following the lines of the proof of Theorem 1 (or of

[6]), but utilizing Lemma 2 instead of Lemma 1, the following

Theorem 2 : If the series E fn is convergent uncondi ti onally a.e. then

one can f i nd a sequence of integers ( i n) , in t 00 such that ¿: i n f n converge s
uncondi onal ly a. e . e
r r i ’_

Using the above Theorem 2 and the Theorem 2 from [10] one gets
immediately Theorem 3 of [10j as a

Corol l ary 2 : I f i s a Banch space and if the seriesfn i s un-
--. - -.. 

--- - ............_ ..- . -- n 

condionally a.e. e convergent then i such that 
-.--- 

. n n n 
’

fa n 1 i n the series La n f n converges unconditionally a. e.
’ 

n n 201320132013201320132013201320132013 n n --

2 III. C-SEQUENCES AND C-SPACES .

Recall that a sequence (x ) of an F-space X is said to be a
n

C-se uence if -V- (an) E c the series E an xn converges. An F-space X is said
to be a C-space if for any C-sequence (x ) CIX the series Ex converges. QBn n

L. Schwartz [12] has proved that if in an F-space X every C-sequence con-

verges to zero then X is a C-space, and Bessaga-Pefczynski [1] have

shown that if X is not a C-space then it contains a subspace isomorphic

to c0. 0 Some examples of C-spaces are in [12] and [14] and in [2] one

can find alternative characterizations of C-spaces.

In what follows will be a real Banach space and we

shall say that E is of cot e p (2 £ p m) if the convergence a. so of the

series E E n x n ( £ n -Rademachers ) implies that Eiix e . Equivalently E

is of cotype-p AF E

(cfo o e , g a [9])’ We shall also have need of the f ol l owi ng "uni f ormi zat i on"

Lemma the proof thereof is a straightforward adaptation of the proof of

lemma 1 
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Lemma 3 : If the series E f n 9 is unbounded on a set
n n 1.."

f positive measure J.l then i and i 1 N2 ... such that
17’

The theorem proved below is, in the case E = R , y due to Kolmogorov

and Khinchine [7] (cf. also Kwapien [8]) but the proof given below differs

essentially from those of [7] and ~8 ~.

Theorem 3 : Let E be a Banch space. Then the followin two conditions

are equivalent
(a) for arbitrary finite measure space (T,3,ii) and for arbitrary

C-se uence t,he series lif n (t) p is convergent

(b) E is of cotype P.

Proof : (a) (b) Let T= [0, 1], 3-Borel c-algebra, J.l-Lebesgue measure.

Take ( x ) n c E such that E rn(t) x n is P-a.e. convergent, r n being the usual
Rademacher functions. By the contraction principle (Kahane [4J) for any

(oc ) E c , Eof r (t)x converges what implies that (r x ) is a
n o n n n 

or 
n n

C-sequence in E) . Hence the series ¿;llrn(t)xnIIP := ¿;llxnllP conver-
ges so that E is of cotype p.

(b) ~  a&#x3E; o Assume ~(T) = 1 ~ a Let E19 y E2’... be some Rademacher’s

re v, s. on certain probability space (~,P)o We first show that for arbi-

trary C-sequence the is P p-a,e
n n n

bounded on (’2 x T. Indeed, assume it is not. Then by Lemma 3 6&#x3E;0 and

N 1  N2 ° such that

By the Fubini theorem, ¥ i = 1,2, ...
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the last inequality being motivated by the fact that for fixed t

e .((ju)f.(t) j=12 ... form a sequence of independent and symmetric ran-
J J

dom vectors [3]. Therefore ¥ I j w, 1 such that

Taking and we get that

what contradicts the assumption that (f ) is a C-sequence in L 0 (T,3, la ; E) °

Now, by the Fubini theorem for ~ almost all t E T

with probability p::: 1. Then by Th. 2.4 of [4] Mp E Ll for each p &#x3E; 1.

Because E is of cotype p then by we get that

Using the above Theorem 3 one can get (as e.g. in L. Schwartz

~12~)

Corollary 3 : I f E is of p for some 25.’pco then ¥- q, 0 ~ q  00,

L q(T,0,J-L ; E) C-space.

Same results for Orlicz spaces of E valued functions analogous

to [14]. Gilles Pisier made a remark to the effect that in view of the,
rather deep, results of J. Hoffmann-j/rgensen [15] and S. Kwapien [16]
one can obtain the more general result saying that E is a C-space iff

+ q, Lq(E) is a C-space. For this actually is proven

in L15] and [16].
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