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In this exposé I would like to preseut some of the recent preli-
minary results obtained by my students J. Rosinski and Z. Suchanecki (the
full version of their paper to be published elsewhere). The results deal
with unconditional convergence of series in metric groups, unconditional
almost sure convergence of group valued functions and the C-sequences i.e.
the sequences in F-spaces that are summable after multiplication by all
¢ -multipliers., In spite of their elementary character these results to
sgme extent complement the work on the topic done, mainly in Paris, during

last few years (cf. References).

§ 1. UNCONDITIONAL CONVERGENCE IN METRIC GROUPS

Let (G,d) be an abelian, metric, complete group. We may assume
(cf. [5]) that d is invariant under translations. Usage : Hg”::d(gaO)’

g€ G. We say that the series Zgn, gne G, is unconditionally convergent

if it remains convergent after every permutation of its terms.The follow-

ing "uniformization" lemma is a convenient tool.

Lemma 1 : The series Zgn, gnéiG, is unconditionnally convergent if and

only if ¥ e>0 J NeN ¥ permutation (nk) of [N,wo[ and ¥ llesM2< o

M
2
z e, ll<e
k=M k
1
Proof : The implication ¢& 1is obvious. We prove =3 . Assume that
] e>0 ¥ N 3 permutation ﬁnk) of [N,o[ and 3 le;M2 such that
My
Lz &y ll>e
=M,
Now,if N= 1 we find a permutation (nél)) of [1,=[ and Mil):gMél) such that
(1)
M2
‘l
I 2(1) gn~(1)|‘ > €
k:M1 k
Let Al::max{nil): Mgi)ggk sMél)}o Take N::Al%»] and find a permutation
(2)y . _ (2) _ (2)
(nk ) of [A1A+1, [ and M1 gM2 such that
(2)
M2
EG Bl
k=M "k
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_ (1), (2)
and let A2--max{nk P M7 <
accordingly nél), M(l), Mél), i=1,2,... . Denoting by hj those gj which

K sméz)

}. Proceeding as above one chooses

1
. (1) (i)
are not of the form g (i) ° i=1,2,... , M1 sk;st we see that the
"k
series
(1) (2)
M2 M2
h .
S0 ) Bt
k=M k k=M k
1 1
does not converge. A contradiction.
Proposition 1 : The series Zgn, gnE(L is unconditionnally convergent

if and only if for each bounded sequence of integers (in)c:N the series

Zi}lgn is convergent.

Proof : The implication <¢= with i = X1 is essentially due to Orlicz
(cf. [10]). To prove —) assume £ g, converges unconditionally. By Orlicz's

theorem (cf. [10]) for arbitrary €98 =11, the series Zeklgn is uncon-

AEEE
ditionnally convergent so that by lemma 1 ¥ €¢>0 3 N€ N ¥ permutation

(nk) of [N,w[ ¥ M <M,

M
2
|z e

k=
Ml

o <

Assume that (in) is bounded by ioc By the above statement we get that
¥ e>0 3N %M =M

2
M M M M
2 2 2 2 (i)
. (1) (2) .
|2 dpells 1l 2 g2 2o Tl ei 2 s, 7
n=M, =M, M, n=M,

i (i +1)
o o

0
< 5 e
where & =sgn i_ and g(i); g if i =1i and g(i)::o ifi Ai, i=1 i
n n n n n n n ’ rrttiTg
That ends the proof,
Theorem 1 @ 1If the series X g, 8 € G, is unconditionally convergent then
sherien 2 ORI n

there exists a sequence of integers (in)c:N, inT o such that Zj}xgn is

unconditionally convergent.
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Proof : By Lemma 1 ¥ 1<r<e 3 N_ ¥ permutation (nk) of [Nr,m[ ¥ Ml:sM2
we have
M2 .
| = &, [ <3
k=M k
1
We may assume that N1<:N2< ve.o . Put i =r for Nrs11<Nr+1. We shall show

that the series Zj&1gn satisfies the Cauchy condition for each permutation
of its term. Assume that it is not the case i.e. that 3 permutation (mk)

of N such that 4 eo>0 3 Mlsts... such that

r+1

() I kgir imk gmkn >e, 5, r=1,2,...

Now,take s€ N so that 27% ¢ €, and then take ro such that for k:ZMr

’

o
mk> Ns' Then
Mr0+1_1 © Mr +1._1
Y i g =l £ Z i g
| i m, "'k” nlJ:S Ey m En |
r r
o o
N.smk<N. 1
=) Ml"0+1_1 -] o -s
< £ 3| z g, l< = 33 Jca™%ce
j=s k=M j=s °
r
o
N.smk<Nj+1

what contradicts (s).

In the case of G being a linear space and of real (instead of
integer) multipliers the picture is much different as there are examples
[11] such spaces in which there exist unconditionnally convergent series
X, such that for some bounded multipliers (an) CIR the series Ta x_
diverges. Some linear metric spaces in which unconditional convergence
implies bounded multiplier convergence are found in [10], [13] and in
references quoted therein. However, from the above theorem one gets imme-

diately the following
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Corollary 1 : Let fné LQ(Q,S,H; E) where & is a (possibly bounded) Orlicz

function, p20, p(£2) < », and E is a Banach space. If the series )j:fl1 is

unconditionally convergent in L% then there exists a sequence (in)C:N R

i 1o such that for ¥ (. )CR, |a | <i , the series Ya f_ converges in
n n n n’ ——=—= n n

L2 (unconditionally).

Proof : Apply Theorem 1 with G::L@(Q,g,p; E) and ||.|| being the usual
Orlicz F-norm. Thus 4 (in)C;N, inT «, such that Zin,fn converges uncon-
ditionally in Léa Put ﬁn:‘xn/in° Then IBnls 1 and by the main result of

[13] Zanhlfn::zcﬁlfn converges in Léo

§ TI. UNCONDITIONAL ALMOST SURE CONVERGENCE FOR GROUP-VALUED FUNCTIONS

Consider a sequence (fn) of measurable functions on the finite

measure space ((Q,%,n) with values in (G,

,H), We say that the series an
is convergent unconditionally almosi everywhere if afier every permutation

of its terms the series c¢onverges jp-a.e.

Notation : anF: I [Hf(w)H/(leHf(w)H)]P(dw)c As in Section I, the
Q

following uniformization lemma will be instrumental.

Lemma 2 : The series an' is unconditionally a.e. convergent if and only

if ¥ >0 4 NEN % permutation (nk) of [N,* ¥ bounded integer valued

measurable functions Ml(w)ﬁgﬂ (w) we have that

2
”k:le inkHF < e
Proof : =. Firstly, let us notice that
() |[£]|p> = implies that pfw: |[£(w) |[>¢f-} > g

Assume to the contrary that 3 €>0 ¥ N 4 permutation (nk) of [N,o[ 3 bound-

J

ed measurable functions Ml(uD st(w) such that

My

| = £ Il > =
l.k:M:l nkhF
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(1)

If N=1 we find a permutation (nk ) of [1,»[ and Mil)(w)ngél)(w) such

that, by (33%)

Mél)(w) Mil)(w)—l
£ . | £
5 < blo: I E fnél)(w)n + | k§1 fn(l)(w)H > 5]
k
K €
< p{w: 2 max r f (W] > =3}
(D “j:l ngl) >3
where M(l)::max Mél)(w). Then put A1==max{n;1): kqu(l)} and find a permu-

w
tation (néz)) of [A1+1,m[ and an integer M(z) such that

k

< p{w: 2 max s f (w) £
1SksM(z) “j=1 n;z) ) || > 2}

NI

Proceeding by induction we find permutations (nél)

(i)

) and integers M ,

i=1,2,... such that the series
e u(2)
= f(1)+q)14' = f(2)“"(P + con
- _ 2
k=1 n, k=1 n,

(where ?j are those fj that are missing in the sums constructed above) does

not satisfy the Cauchy condition for a.e. convergence. A contradiction.

The implication &=:.. follows immediately from the lemma of [10 ]
which says that if zfn(w) diverges on the set of positive measure then

3 >0 3 F, p(F) >0 3 N1<:N2< ... such that

k
max || £ f.(w >e, ¥w€F, i=1,2,...
N, <k <N, j=N,
i i+l i
Exactly as in Section I (Proposition 1), using Lemma 2 and
Theorem 2 of [10] one can prove (but only one implication can be proved

this way !)

Proposition 2 : If the series an is unconditionally almost everywhere

convergent then for each bounded sequence (in)c:N the series y7i f i
- n n-—
convergent a.e.
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Now, one can prove, following the lines of the proof of Theorem 1 (or of

[6]), but utilizing Lemma 2 instead of Lemma 1, the following

Theorem 2 : If the series z:fll is convergent unconditionally a.e. then

one can find a sequence of integers (in), inT « such that Zj&lfn converges

uncondionally a.e.

Using the above Theorem 2 and the Theorem 2 from [10] one gets
immediately Theorem 3 of [10) as a

Corollary 2 : If (G,|.]

) is a Banch space and if the series an. is un-

condionally a.e. convergent then 3 (in), i te such that ¥-(an)c:ﬂ{,

Ia |< in the series 2Cﬁ1fn converges unconditionally a.e.
n Lhe sel es

§ I11I1. C-SEQUENCES AND C-SPACES

Recall that a sequence (xn) of an F-space X is said to be a
C-sequence if ¥ (an)e co the series Z}%lxn converges. An F-space X is said
to be a C-space if for any C-sequence (xn)c:X the series th converges,
L. Schwartz [12] has proved that if in an F-space X every C-sequence con-
verges to zero then X is a C-space, and Bessaga-Pefczynski [1] have
shown that if X is not a C-space then it contains a subspace isomorphic
to c . Some examples of C-spaces are in [12] and [14] and in [2] one

can find alternative characterizations of C-spaces.

In what follows (E,||.|]) will be a real Banach space and we
shall say that E is of cotype p (2<p<w) if the convergence a.s., of the
series L& X (€n~Rademachers) implies that lennp«<w . Equivalently E

is of cotype-p iff 4 C>0 ¥ ne N ¥ xl,...,xneE

j=]

n
() z P <k | l
z |

= €. X,
1= 1=

i 7i
(cf. e.g. [9]). We shall also have need of thefollowing "uniformization"
Lemma the prcof thereof is a straightforward adaptation of the proof of

Iemma 1 from [10]e
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Lemma 3 : If the series an s anﬁLo(T,g,p; E) is unbounded on a set

of positive measure p then 3 Fe¢ ¥, p(F) >0 and 3 N1< N2< ... such that

M=

max I

f. ()| >i , ¥teF, i=1,2,...
N. <k<N. J
1 1+

1 7Y

2

The theorem proved below is, in the case E= R, due to Kolmogorov
and Khinchine [7] (cf. also Kwapien [8]) but the proof given below differs
essentially from those of [7] and [8].

Theorem 3 : Let E be a Banch space. Then the following two conditions

are equivalent

(a) for arbitrary finite measure space (T,J,u) and for arbitrary

o . .
C-sequence (fn)c:L (T,3,k; E) the series Zan(t)Hp is p-a.e. convergent
(b) E is of cotype p.

Proof : (a) = (b). Let T=[0,1], 3-Borel c-algebra, p-Lebesgue measure.
Take (xn)C:E such that Zrn(t)xn is p-a.e. convergent, r being the usual
Rademacher functions. By the contraction principle (Kahane [4]) for any
(an)e c Zan.rn(t)xn converges p-a.e. what implies that (rnxh) pis a

|

; o . ; |
C-sequence in L°(T,X,u ; E). Hence the series ZHrn(t)an = ngn conver-

ges so that E is of cotype p.

(b) = (a). Assume p(T) =1. Let ¢ be some Rademacher's

€
17 Egre -
r.v.s. on certain probability space ((i,P). We first show that for arbi-
trary C-sequence (fn)C:LO(T,g,p; E) the series an(w) fn(t) is Px p-a.e.
bounded on (x T. Indeed, assume it is not. Then by Lemma 3 J 6> 0 and
N1<:N2< ... such that

k

(Pxp){ max |z e (f (£)]|>i} =26
N.<k<N, . j=N. I J

i i+l i

By the Fubini theorem, ¥ i=1,2,

k
6 s [ P{ max | = e.(of (t)|>i}p(at)
T Njsk<N, . j=N; J J
Ni+1”1
<2 [ P{| = e (wf (t)|>i}p(at)
p i, 3 J
Ni+1—1

= 2(Px “){“. 5 ej(w)fj(t)H> i}

J:Ni
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the last inequality being motivated by the fact that for fixed t
e (w)f.(t), j=1,2, ... form a sequence of independent and symmetric ran-

dom vectors [3]. Therefore ¥ i 3 w, such that

i+1_j ) s
p{“ijz. ej(wi)fj(tﬂl>1} >3 -

Taking aj::ej(wi)/Jr for N, < j<N. ., (aj)E c,, and we get that

i+l
”{sz ajfj“>«/_i-} 2%

what contradicts the assumption that (fn) is a C-sequence in LO(T,S,p; E).
Now, by the Fubini theorem for p almost all te€T
n
M{w) = sup || Z e, (Wf (t)] <
. i i
n Jj=1

with probability P=1. Then by Th. 2.4 of (4] MpeﬁLl for each p=>1.
Because E is of cotype p then by (#*#%) we get that
n n
e iPsc ] |z e ®|Pap <o [ MP(wap
j=1 ! q i=1 Q

so that T|[f (t)|P<« for p-a 2. t€T. Q.E.D.

Using the above Theorem 3 one can get (as e.g. in L. Schwartz

(12

Corollary 3 : If E is of cotype p for some 2<p< o then ¥ q, 0<q< o,

LY(T,J,p; E) is _a_C-space.

Same results for Orlicz spaces of E valued functions analogous
to [14]. Gilles Pisier made a remark to the effect that in view of the,
rather deep, results of J. Hoffmann—qﬁ%gensen (157 and S. Kwapien [16]
one can obtain the more general result saying that E is a C-space iff
¥ q, 0sq<», LY(E) is a C-space, For 1<qg<« this actually is proven
in [15] and [16].



(1]

(2]

(3]

[4]
(5]

(6]

[7]

(8]

(o]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

XXVII.O

REFERENCES

C. Bessaga and A. Pefczynski : On bases and unconditional convergence,
Studia Math. 17 (1958), 151-164.

A. Costé : Convergence des séries dans les espaces F-normés de fonc-
tions mesurables, Bull. Acad. Polon., Sci. 19 (1971), 131-134.

K. Ito and M. Nisio : On the convergence of sums of independent
Banach space valued random variables, Osaka J. Math. 5 (1968), 35-48.

J.P. Kahane : Some random series of functions, Heath 1968.

"
S. Kakutani, Uber die Metrisation der topologischen Gruppen, Proc.
Imp. Acad. Tokyo 12 (1936), 82-84,

B.S. Kasin : On the stability of unconditional almost sure conver-
gence, Mat. Zametki 14 (1973), 645-654 (in Russian).

"
A.N. Kolmogorov and A. Khintchine : Uber Konvergenz von Reihen deren
Gileder durch den Zufall bestimmt werden, Mat. Sbornik 32 (1925),
668-677.

S. Kwapien : Complément au théoréme de Sazonov-Minlos, C. R. Acad.
Sc. Paris t. 167 (1968), 698-700.

B. Maurey : Espaces de cotype p, Séminaire Maurey-Schwartz 1972/73.

K. Musial, C. Ryll-Nardzewski et W.A. Woyczynski : Convergence
presque stire des séries aléatoires vectorielles a multiplicateurs
bornés, C. R. Acad. Sc. Paris t. 279 (1974), 225-228.

S. Rolewicz and C. Ryll-Nardzewski : On unconditional convergence
in linear metric spaces, Coll, Math. 17 (1967), 327-331.

L. Schwartz: Un théoréme de la convergence dans les Lp, O<p<o,
C. R. Acad. Sc. Paris t. 268 (1969), 704-706.

P. Turpin : Suites sommables dans certains espaces de fonctions
mesurables, C. R. Acad. Sc. Paris t. 280 (1975), 349-352.

W.A. Woyczynski : Sur la convergence des séries dans les espaces
de type (L), C. R. Acad. Sc. Paris t. 268 (1969), 1254-1257.

J. Hoffmann-Jgrgensen : Sums of independent Banch space valued
random variables, Studia Math. 52 (1974), 159-186.

S. Kwapiedn : On Banach spaces containing .o Studia Math. 52 (1974),
187-188.

Wroclaw University

and Institute of Mathematics
Polish Academy of Sciences
Grunwaldzki 2/4
50384 WROCLAW (Poland)



