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This is a report on some joint work with T. Figiel and V. Milman.

It is a preliminary version of a part of a joint paper that is now under

preparation.

The plan of this report is the following. First we present a

general result on the dimension of spherical sections. This is basically

a revised version of the proof given by V. Milman to Dvoretzky’s theorem

[8]. Then we show how this general result combined on the one hand with

duality and on the other hand with the notion of cotype leads to quite

strong and rather surprising results. We illustrate these results in some

concrete examples. All these results and examples are of the following na-

ture : if dim X = n then for some integer k(X) it is true that "most" sub-

spaces YX with dim Y = k (X ) satisfy d(Y, k(X) 2. We conclude by a results
2 . 

"

in the converse direction, namely we investigate under what condition on k

the assumption that for all subspaces Y of X of dimension kp 2 - 
p

implies that X itself is close to a Euclidean space. This result has several

applications. In particular by combining it with the results of the first

part of this paper it enables the solution of the local version of the

complemented subspaces problem.

The starting point of our approach is the isoperimetric inequality
for subsets on the surface of balls in Rn.

n-1 
n 

2 ..

Let = t = y n t7 = 1}, let Jl 1 be the unique normalized1 n 1=1 n-1

rotation invariant measure on Sn-1, and let d be the geodesic distance of

. For a subset A Sn-1 we let A = s &#x3E; 
· d(s,A) s A cap is a subset of

Sn 1 of the form B(s ,r) = (t ; The isoperimetric inequality for
_ 

o 
’ ’ 

0 
q

subsets of S is the following :

Theorem 1 : Let A be a closed subset of Sn 1 and let B be a cap in Sn-1
so for °

Theorem 1 is due to E. Schmidt [9]. We shall present a quite simple

complete proof of it in the definitive version of this paper which is now

being written. We apply Theorem 1 in the following form (cf. Levy [6]).
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Pro.position 2 : Let f : R be a continuous function and let M be its
median. Let A f = ~t, f (t) = Then 

f

Proof : Let us recall that M is the unique number for which

Observe that for every e &#x3E; 0 (A ) = (Af ) n (Af ) and that by Theorem 1 bothY 
f 

’ 
e + c - c

p ((Af) ) and ((Af) ) are larger or equal to the measure of a cap of
+ 6 - c

c -

Let now X be a Banach space of dimension n with norm and let

III · ÎÎ) be an inner product norm on X so that

By applying Proposition 2 to the function

get the following

Proposition 3 : Let M be the median of
r

and let be any m points of norm 1 in £§, where
i i 1 2 

,

Then there is an isometry U from so that
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Proof : Let Ar = (x ; )))x))) = 1 , llxll = m Since the geodesic distance d(x,y)
on the surface of the unit ball dominates III x-y III we have for every y E (Ar) 

c

an, x E Arsuch that and thus Le. M - r be !5 Ilyll s M + bc.
Let now U be any isometry from I n onto (X, III. · and let 6 be the .normalized

0 2

Haar measure on the space of all orthogonal transformations V on (X, III ·
By ( 1) and (3) we have that for every Y E ,n with Ily I = 1

2 I

Hence, there is at least one orthogonal transformation V 
o 

of (Xyjjj.jj)) so

that U=V U has the desired property.
o o

Remark : 1-1 If we take as m a number smaller than e lie 2 /4 /2 say 6e with
a small Ó, then the proof of Proposition 3 shows that "most" isometries U

from to 111) have the desired property ("most" means a set of large
measure with respect to c). ,

We apply Proposition 3 by choosing the points [y ii-I to be a

"ô net" in a subspace of ..e of a suitable dimension. (A 6 net S in a metric
2 0

space (S, p) is a set so that for every there is a y E S0 with p(xy)6.)
We need first two elementary lemmas.

Lemma 4 : Let X be a k dimensional Banach space and let 6 &#x3E; 0. Then

(x E x ; = 1} has a 6 net of cardinality (1 + 2/5) k

Proof : Let be a maximal subset of S = jx ; Ilxll = I ) consisting of
i i 1 ’

points whose mutual distances are &#x3E; 6. The maximality of implies
6 m

that this set is a 6 net of S. The sets + § are disjoint and con-

tained in (1+ õ/2)8. By comparing volumes we get that m(6/2)  ( I + 6/2)k
and this proves the lemma.

Lemma 5 : Let (X, II) be a Banach space and let ))).))) be an equivalent

inner product norm on X. Let 0 6y p  1 and let 8 o be a b net of ~x ; llixlll = ’I
so that ) lllxll- 11  p for every xES 0. Then for every x 6 X we have

where F(p ,5) is a function depending only on p and 5 (but not on X) with

lim F(p, b) = 1.
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We omit the quite routine proof.

Theorem 6 : For every r&#x3E; 0 there is a constant 11 
z 

&#x3E; o. so that the following

holds. Let (x, II) be an n-dimensional Banach space and let jj) jjj be an

inner product norm on X so that (2) holds. Let M be the median of llxll on
[x; )))x)))=l). Then for k = [q~ nM2 /b 2] there is a subspace Yc=X so that

1+T. ° 

’t r

Proof : Given T choose 6&#x3E;0 and p&#x3E;0 so that where F(p,b) is

the function appearing in Lemma 5. We claim that 1l-r = p2/8log 3/6 has the
desired property. Indeed, by Proposition 3 with e= pM /b we can, for every

n n n r

Remark : The probabilistic nature of the proof shows that if we replace

by a smaller constant we can ensure that the set of subspaces Y of X of

Qfdimension k which have the desired property form a subset measure close to 1

(with respect to the natural normalized measure on the Grassman manifold

of k-dimensional subspaces of X. This measure depends on the choice of I
and is thus not intrinsically well defined on 11).

By using duality it is possible to derive from Theorem 6 a theorem

which does not involve the term M .
r 

Theorem 7 : For every T &#x3E; 0 there is a 6 T&#x3E; 0 so that the following holds.
For every Banach space X of dimension n .

- 11 "L
The terms k T(X), k T (X ) and P appearing in (6) have the following

meaning : there is a subspace YcX and a subspace Z c: X co so that
I 

* 
k

k2 =dim Z=k T (X ) d(Y 1 )1+T and in case is

a projection from X onto Y while if k 2k 1 P is a projection from X’" onto Z.
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: By the definition of d = d(X,£) there is an inner product norm’ 

2

so that

By theorem 6 there is a subspace Y of dimension nM 2 /d 2 with
k1 -11 

T r

In we have clearly lllx*lll . . We identify

with X (in the canonical manner via the inner product induced .by ))).)))))
and denote by ])x]) 91 the norm of x as an element in 

d-1 x for every x £ X. Let be the median of on

r

fx; j))xj))= 11. By using again theorem 6 we deduce that there is a subspace
-11 2 k 2 ) 

!!:::Z of X of dimension k2 1+T. ° We have

i.

. Thus in order to conclude the proof it is enough to
r

find a suitable projection P so that

To this end we recall first the remark that if T) is chosen small
k z

enough we can ensure that not only d(Y,,z k1) :! 1+T but for a set of isometries

U of (x, III III ) of c measure &#x3E; 1/2 Thus if e.g there
’ ’ 2 1 2

is no loss of generality to assume that Y and Z are chosen so that YC Z (if

X;~ is canonically identified with X). Thus on Y we have

Let P be the orthogonal (with respect to III.III) projection from X onto Y.

Then for every x E X

and thus

and this concludes the proof.

Since for every X (cf. [3]) and since 1 we get

in particular from (6)
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For the application of Theorem 6 it is worthwhile to remark that

if 111.111 is such that b/a:5Vn in (2) (this is always possible by [3]) then

the median M can be replaced by the easier to compute average
’Y’

. More precisely we have the following

There is an absolute constant C so that whenever (2) holds with

Proof : We may assume a= 1 and b s. We prove the stronger assertion
that with this normalization K where K is an absolute

constant. By the proof of Proposition 3 we have for every integer j

and thus

We shall use this observation in order to estimate M in terms
r

of the cotype of a space and thus get another useful version of Theorem 6.

A Banach space X is said to be of cotype q, if there is a constant

yq so that

00

for every choice of 1 
in X, where (r, (t) ), 1 

are the Rademacher func-
i 1= i 1=

tions on [0,1], The largest possible number y q 
for which (11) is valid is

called the q cotype constant of X.

Theorem 9 : There is an absolute constant C so that the following holds.

If X is a Banach space of dimension n with q cotype constant y 
q 

then X has

a subspace Y with dim Y = k, 2 and k &#x3E; C , 2 2/q . 
q

a subspace Y with dim Y= k, and q 
q
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Proof : Let (XJ) 11) be a Banach space of dimension n. Let III III be the

inner product norm on X whose unit ball is the ellipsoid of maximal volume

in the unit ball of (X, II 11) . · Then clearly llxll r. lllxlll and by [3] 
for every x E X (thus we can apply Lemma 8). In order to evaluate the mean

of 11 11 we apply the Dvoretzky-Rogers lemma ~1~. This lemma shows that there

is an orthonormal basis of III) and vectors (U }=1 E X so that
i , i i=1

Hence

where X is some absolute constant. By using this estimate for M 
r 

in Theorem

6 the desired result follows.

Remark : If we insist on having d(Y ,k) 1+T (instead of 2) we get a similar
, 

g 2 g

result with C replaced by C . Before we pass to examples and applications of
z

the preceeding results we present one result which gives an upper estimate

for the dimension of almost Euclidean subspaces.

Proposition 10 : For every T there is a constant C so that if is

20132013201320132013201320132013201320132013 T oo

such that dim Y = k , 9 then ks; C’t’ log n. 

T 00

2 T

Proof : It is an obvious consequence of Theorem 6 that it is enough to

prove Proposition 10 for some i &#x3E; 0 say i = 1/7. Let T : be such that

7 llx 11/8  I 11 5 ’11,x 1,1, f o r every x E k x.=Te El, - k (yk) 2 
co 

1:5, - i :!- n where7))x))/8  for every x E 1.2. . Let xi = T ei E _ k Ct) , , 1:;;; i n where
2 IL i 2 2

is the unit vector basis of 2n. . Then llx, II :5 1 for every i and 
’

max 1 &#x3E;7/8 for every with 1: Consequently for every such y
. 1 2
1
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there is an i so that 1/2. The union of the balls in ),kwith center
1 2

xi and radius 3/2 contains the ball of radius 2 with the origin as center.

By comparing volumes we get that 2k::; n(3/2)k and this p roves the Proposition.

From Theorem 7 and Proposition 10 we get easily the following

result on convex polytopes.

Theorem 11 : There is an absolute constant C so that the following holds.

If Q is a symmetric convex polytope in Rn having the origin as interior

point and having 2s extreme points and 2t (n-1)-dimensional faces then

Proof : Let X be the Banach space (namely which has Q as its unit ball.

Then X is isometric to a subspace of tt and X’ is isometric to a subspace
s ,,

of £ 00. Thus with the notation of Theorem 7, and k 2 oo 2

for some absolute constant 7t. The result follows now by using (8).

The inequalities (8), (9) and (14) are in general the best possible.

We illustrate this by one example. Define inductively the Banach spaces

(X 1 "0 as follows. X = R (the one dimensional space) , X2 = (X n=I 1 2 1 1 1

° Then

dim X2n, = (n!)2. Let s (resp. t ) denote the number of extreme points in2n+1 n n

the unit ball of X (resp. X 1* ). Then
n n

We have log and log v for some constants C 1 and C2 .
Note that since (8) is reduced to equality in this case (up to an absolute

constant) and since (8) was obtained from (6) by replacing IIPII by its lower

estimate 1 it follows that X 2n+l contains a subspace Y2n+l so that

k = dim Y 2n+ 1 ¿ C-l n! . ~ d(Y 2n+l’ ’Lk 2 2 and there is a projection from X 1
onto of norm  C, where C is a constant independent of n.

We shall now give precise (up to a constant) estimates for the

dimension of almost Euclidean subspaces in some concrete space.
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Proposition 12 : The space 1,: has a subspace Y with dim Y = k, &#x3E; d(Y,), k) :5 2
--. -- - 

- 

p 2

where

where C is a suitable constant. These are the best possible estimates. The

space Cn p has a subspace Y with dim Y = k, &#x3E; d(Y ,2k) 2 where
p 2

Again these are the best possible estimates.

is the space of all operators T on £§ with2

Proposition 12 can be deduced in several ways from the preceeding

results. The simplest way is to deduce it from Theorem 7. We shall illustra-

te this in the case of Let X = en, Since = n 1/2 - 1/p
n2 p P PP1-4- 2/pand C 2 ),2 we get from (6) (we take T = 1) that k. (X) k (X ) 6 n .n p.

Thus in order to prove the proposition it is enough to prove that
2/p for some C. We do this first in the case P= oo. Since

and in this supremum it is approximatively enough to let x

and y range over a 5 net of the boundary of the unit ball of )n ,2 it follows

from Lemma 4 that for some constant 5i, there is a subspace Z = 2An so that
d(Z, Cn) :!! 2. An application of Proposition 10 concludes the proof for p==oo.

co 

Assume now that and that ycen with d(Y )2. Since
dC,C) = n 1/ p. there is a subspace Y so that d(Y ,Y) n and thus

P m 
" 

0000

d(Yo’1,~) ~ By Theorem 6 (observe the lll lll can always be chosen so

that h/M is less than the distance from the Euclidean space) we get thatr 
k

y Y 1 with dim Y 1 ::; k l’ (I(y ), k2 ,: 2 and k 1 ¿ Tl k n-2/p By the case p = cc we
0 1 1 21 2 

-2/p 
I

get that for some constant and this concludes the proof.

Let us observe that the assertion of Proposition 12 for Z n could
p

be deduced by considering only the cotype and using Theorem 9. In the case
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of en the use of cotype is not sufficient for proving Proposition 12 if 2~ p.
P

Theorem 9 however gives interesting information for arbitrary finite dimen-

sional subspaces of L p (0, 1) and Cp (= the operators on-Y,2with

IITllp = (trace(TT))") and not only for spaces of the formnor Cn" P p p 
’

(recall that the cotype of L P (0,1) and e P is p if p&#x3E;2 and is 2 if 

cf [10]). Let us also remark that there is a partial converse to Theorem 9.

If X is an infinite-dimensional Banach space so that for some q and C every

subspace YcX contains a subspace Z with d(Z,.e dim Z) K 2 and 
2

then X is of cotype q+c for every c &#x3E; 0. This follows from Proposition 12 and

a result of Krivine, Maurey and Pisier (cf. [7]) which asserts that if

q = inf(q; X of cotype qj then X has almost isometric copies of en for every
o o

integer n.

We pass now to an examination of the question "what happens if

all subspaces of a given dimension in a finite dimensional Banach space

are close to Euclidean ?". We recall first the definition of some constants

associated to a Banach space X. We denote by am (X) the smallest number for

which

for every choice of fxil M= E X. Similarly P (X) is the smallest number for
i i 1 m

which

We shall use the following known fact (cf. [7])

There is an absolute constant C so that

"’-’ 

for all m and X where am is obtained from the definition of amm m m

by replacing the Rademacher functions by a sequence
m i i=1

of independent normalized Gaussi an random vari abl es 
i i=l*
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Theorem 13 : Let X be a Banach space of dimension n. Then

for every m &#x3E; n(n+1)/2.

Proof : Let m &#x3E; n(n+l)/2 and let be any m elements in X. Then
------ i i=I

= 

;; 2 
is a quadratic form on 

3 
Since the dimension of theQ(x x 

2 
is a quadratic form on X . Since the dimension of the

space of quadratic forms on X is n(n+l)/2 it follows from Caratheodory’s
m

theorem that there exist a. &#x3E; 0 with z a. = 1 so that at least one a. (say
m 

~ 

I-

a ) vanishes and Q = m  ce Let a = max a. (assume say that
1 1 

_____ 

and thus by a basic property of Gaussian variables

and similarly

Since by (19) the sequences and fy ilm consist of at most
i = 1 i = 1 

- -

m-1 vectors different from 0 we get by (20), (21) and (22) 

and 6 (X) ~6 .(X) and this concludes the proof.

Theorem 14 : Let X be a Banach space of type 1 S; p!:5 2 and cotype 2 _ q ~ co.

Then there exists a constant C so that for every subspace Y c X with dim Y = n,

~ 

1 1
Proof: Since X is of cotype p, a since X is of cotype q,

’ 

11m

for some constant ‘~, and m = 1, 2, .... By ( 18) and Theorem 13

we deduce that for some constant y
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The desired result follows now from Kwapien’s theorem [4].

Theorem 15 : Let f(n) be a function of n so that log f(n)/log n &#x3E; y for all n.

Let X be a Banach space of dimension n so that every Y c X with k = dim Y  f (n)

satisfies d(Y )2. Then, for some constant C depending only on :5 C.
2 ’ ’ 2

Proof : By our assumption a f(n) (x), f3 ..(X)2. By (17), (18) and Theorem

13

for some constant X. A use of Kwapien’s theorem concludes the proof.

Remark : The assumption on f(n) in Theorem 15 cannot be weakened. Indeed,

if X =..en with p 2 then by Theorem 14 for every Y C X with k = dim Y f (n)
p n ~
..

we have
1

I
I

. Assume now that pn is chosen so thatn 
1 1

1 
i

. Then if log f(n)/log n. 0 we get that = n pn 2

Proposition 16 : There are absolute constants C and y so that the follow-

ing holds. If X is a Banach space so that Xn Y with Y and X/Y both isometric

to inner product spaces then for every Zc X with dim Z = n , 2

Proof : This follows from the estimates on an(X) given in [2]
and Theorem 13. Let us observe that the example in [2] shows that (up to an

estimate of y) this is the best possible result.

Theorem 17 : There is a function ’A - so that the following is true.

If X is a Banach space of dimension n so that on any subspace of it there

is a projection with norm X then 2

Proof : By the assumption of the theorem and (9) there is a constant 

so that every Y cz X with dim Y ~ n/2 contains a su bspace Z with dim Z = k ,

and k&#x3E;-C(,&#x26;)n 1/2 . The proof of the main result of [5] shows that

this implies that for any subspace UC X with dim U =C(X)n 1/2 y
for some function g(A). The proof is concluded by using2 

Theorem 15. 
’



XIX-XX.13

REFERENCES

[1] A. Dvoretzky and C.A. Rogers, Absolute and unconditional convergence
in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197.

[2] P. Enflo, J. Lindenstrauss and G. Pisier, On the "three space problem",
Math. Scand. 36 (1975), 199-210.

[3] F. John, Extremum problems with inequalities as subsidiary conditions,
Courant anniversary volume, New York 1948.

[4] S. Kwapien, Isomorphic characterization of inner product spaces by ortho-
gonal series with vector valued coefficients, Studia Math. 44 (1972),
583-595.

[5] J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem,
Israel J. Math. 9 (1971), 263-269.

[6] P. Lévy, Problèmes concrets d’analyse fonctionnelle, Gauthier Villars,
Paris 1951.

[7] B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles
indépendantes et propriétés géométriques des espaces de Banach,
to appear in Studia Math.

[8] V.D. Milman, A new proof of the theorem of A. Dvoretzky on sections of
convex bodies, Funct. Anal. Appl. 5 (1971), 288-295.

[9] E. Schmidt, Die Brunn-Minkowski ungleichung, Math. Nach. 1 (1948),
81-157.

[10] E. Tomczak-Jaegermann, The moduli of smoothness and convexity and the
Rademacher averages of trace classes Sp, 1 ~ p  ~, Studia Math. 1975.


