SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

Ch. Stegall
A proof of the Huff-Morris Radon-Nikodym theorem
Séminaire d'analyse fonctionnelle (Polytechnique) (1975-1976), exp. no 1, p. 1-4
<http://www.numdam.org/item?id=SAF_1975-1976
\qquad A1_0>

© Séminaire Maurey-Schwartz

(École Polytechnique), 1975-1976, tous droits réservés.
L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

plateau de palaiseau - 91120 palaiseau
Téléphone : 941.81.60 - Poste No Télex : ECOLEX 691596 F

S E M I N A I R E M A U R E Y - S C H W A R T Z 1.975

by Ch. STEGALL
(Bonn)

We take as our definition of the Radon-Nikodym property (RNP) the following :

A Banach space X has RNP if and only if for every probability space (S, Σ, μ) and every continuous, linear $T: L_{1}(S, \Sigma, \mu) \rightarrow X$ there exists a Borel measurable $\tau: S \rightarrow X, \int_{S}\|\tau(s)\| d \mu(s)<+\infty$, such that

$$
T(f)=\int_{S} f(s) \tau(s) d \mu(s)
$$

When such a τ represents an operator T we shall say T is differentiable and, of course, if no such τ exists we shall say T is non-differentiable.

Our notation is standard. We denote by (S, Σ, μ) a probability space and Σ^{+}is the subset of Σ of sets of positive measure. Our only prerequisite is the following theorem of Grothendieck [1] (using different words, of course) :

Theorem : Let X te a Banach space. Then X has RNP if and only if for every probability space (S, Σ, μ), every continuous $T: L_{1}(S, \Sigma, \mu) \rightarrow X$, and every $\delta>0$, there exists $E \in \Sigma, \mu(E)<\delta$ such that $\left\{T f:\|f\|=\left\|f \cdot X_{S \backslash E}\right\| \leq 1\right\}$ is relatively compact.

Our objective is to prove, using only the above, the following theorem of Huff and Morris [3] which contains several other theorems of a geometric nature (see [3] and its bibliography) :

Theorem : Suppose X is a Banach space that does not have RNP. Then there exists a sequence $\left\{x_{n, i}\right\}_{n=1}^{\infty} \frac{k(n)}{i=1}, \varepsilon>0$, such that $k(1)=1,\left\|x_{n, i}\right\| \leq 1$, $\left\|x_{n, i}-x_{m, j}\right\|>\varepsilon$ if $n \neq m$, and for each n, i there exists pairwise disjoint sets $\sigma_{n, i} \subseteq\{j: 1 \leq j \leq k(n+1)\}$ such that $x_{n, i}$ is in the convex huli of $\left\{x_{n+1, j}: j \in \sigma_{n, i}\right\}$.

An immediate consequence of this tneorem is the following:

Theorem : Suppose X is a Banach space that does not have RNP. Then there exist an $\varepsilon>0$, a probability space ($S, \Sigma_{,} \mu$) (which may be assumed to be $(([0,1], \mathfrak{H}, \lambda)=$ Lebesgue measure on the Borel subsets of $[0,1]$, a sequence
$\left\{\Sigma_{n}\right\}_{n=1}^{\infty}, \Sigma_{n} \subseteq \Sigma_{n+1}, \Sigma_{n}$ a finite sub-algebra of $\Sigma, f_{n}: S \rightarrow X \Sigma_{n}$ measurable
 a.e. for all $n \neq m$.

The proof of the theorem follows readily from the following two

lemmas :
$\underline{\text { Lemma } 1}: T: L_{1}(S, \Sigma, \mu) \rightarrow X$ not differentiable. Then there exists an $\varepsilon>0$ and $A \in \Sigma^{+}$such that for all $E \subseteq A, E \in \Sigma^{+}$

$$
a_{E}=\left\{T\left(\mu(F)^{-1} X_{F}\right): F \subseteq E, F \in \Sigma^{+}\right\}
$$

has no ε-net.

Proof : Suppose not. Let $\delta_{n}>0$. Then for all $A \in \Sigma^{+}$there exists an $E \subseteq A$, $E \in \Sigma^{+}$such that a_{E} has a δ_{n}-net. Thus, there exists a sequence $\left\{E_{n, i}\right\}_{i=1}^{\infty}$ of pairwise disjoint elements of Σ^{+}such that $\mu\left[\bigcup_{i=1}^{\infty} E_{n, i}\right]=1$ and $a_{E_{n, i}}$

$$
k(n)
$$

has a δ_{n} net for each (n, i). Choose $k(n)$ such that $\mu\left[\bigcup_{i=1} E_{n, i}\right]>1-\delta_{n}$ 。 Let $A_{n}=\bigcup_{i=1}^{k(n)} E_{n, i}$. It is clear that $a_{A_{n}}$ has a δ_{n}-net. For $\delta>0$, choose $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} \delta_{n}<\delta, \delta_{n}>0$. Let $A=\bigcap_{n=1}^{\infty} A_{n}$, then $\mu(A)>1$ end a_{A} has a $\delta_{n}-n e t$ for every δ_{n} i.e. a_{A} is relatively compact. Contradiction. Thus the lemma is proved.

Lemma 2 Let $T: L_{1}(S, \Sigma, \mu) \rightarrow X$ such that for all $E \in \Sigma^{+}, a_{E}$ has no ε-net. Then for all $f \in L_{1}(S, \Sigma, \mu),\|f\|=1, f \geq 0$ a.e., all $\delta>0$, and all $y_{o}=T f, y_{1}, \ldots, y_{m} \in X$, there exist $f_{1}, \ldots, f_{n} \in L_{1}(S, \Sigma, \mu),\left\|f_{i}\right\|=1, f_{i} \geq 0$ a.e., $\lambda_{i}>0, \quad \sum_{i=1}^{n} \lambda_{i}=1,\left\|y_{j}-T f_{i}\right\|>\varepsilon$ for all $1 \leq j \leq m$ an all $1 \leq i \leq n$ and $\left\|T f-\sum_{\mathbf{i}=1}^{\mathbf{n}} \lambda_{\mathbf{i}} \mathbf{T f} \mathbf{i}_{\mathbf{i}}\right\|<\delta$.
Proof : We may assume $f=\sum_{k=1}^{\ell} s_{k} \mu\left(A_{k}\right)^{-1} X_{A_{k}}$ where $\left\{A_{k}\right\}_{k=1}^{\ell}$ is a pairwise \&
disjoint colloction in $\Sigma^{+}, \sum_{k=1} s_{k}=1, s_{k}>0$. Since $a_{A_{k}}$ has no $\varepsilon-n e t$,
choose a maximal collection of disjoint elements $\left\{\mathrm{E}_{\mathrm{k}, \mathrm{p}}\right\}_{\mathrm{p}=1}^{\infty}$ in Σ^{+}, $\Sigma_{k, p} \subseteq A_{k},\left\|T\left(\mu\left(E_{k, p}\right)^{-1} X_{E_{k, p}}\right)-y_{j}\right\|>\varepsilon$ for all p and all $j, 1 \leq j \leq m$. By maximality, we have that $\mu\left[A_{k} \backslash \bigcup_{p=1}^{\infty} E_{k, p}\right]=0$.
Choose q such that $(1+\delta / 2) \mu\left(\bigcup_{p=1}^{q} E_{k, p}\right)>\mu\left(A_{k}\right)$.
Then $\| T f-\sum_{k=1}^{\ell} \sum_{p=1}^{q} s_{k} \frac{\mu\left(E_{k, p}\right)}{\sum_{p=1}^{q} \mu\left(E_{k, p}\right)} T\left(\mu\left(E_{k, p}\right)^{-1} X_{E_{k, p}} \|\right.$ is less than δ.
Proof (of theorem) : Suppose X does not have RNP. Then there exists $T: L_{1}(S, \Sigma, \mu) \rightarrow X$ and $\varepsilon>0$ satisfying Lemma 1. By Lemma $2, K=\{T f: f \geq 0$ a.e. $\|f\|=1\}$ has the following property $:$ for any choice $y_{1}, \ldots, y_{m} \in X$:

$$
K \subseteq \overline{\operatorname{co}}\left[K \backslash \sum_{j=1}^{m} B\left(y_{j}, \varepsilon\right)\right]
$$

$(B(y, \varepsilon))=\{z:\|z-y\|<\varepsilon\}$; co denotes the connex hull ; $\overline{c o}$ denotes the closed connex hull). Using a trick of Davis and Phelps [2] and an elementary computation shows that if we denote

$$
K_{1}=K+B(0, \varepsilon / 2) \quad\left(K_{1} \text { is open, convex }\right)
$$

then for any choice of $y_{1}, \ldots, y_{m} \in X$

$$
K_{1}=\operatorname{co}\left[K_{1} \backslash \bigcup_{j=1}^{m} B\left(y_{j}, \varepsilon / 2\right)\right]
$$

Given such a set K_{1} it is completely straightforward to construct the desired sequence.

I. 4

BIBLIOGRAPHIE

[1] A. Grothendieck : Produits tensoriels topologiques et espaces nucléaires, Memoirs, AMS, 16 (1955).
[2] W. J. Davis and R. R. Phelps : The Radon-Nikodym property and dentable sets in Banach spaces, Proc. AMS (to appear).
[3] R. E. Huff and P, D. Morris : Geometric characterizations of the Radon-Nikodym property, (to appear).

