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I.1

We take as our definition of the Radon-Nikodym property (RNP)

the following :

A Banach space X has RNP if and only if for every probability

space and every continuous, linear T -. there exists

a Borel measurable r 1 such that

When such a T represents an operator T we shall say T is differentiable

and, of course, if no such T exists we shall say T is non-differentiable.

Our notation is standard. We denote by (S,¿:,jl) a probability

space and Z is the subset of E of sets of positive measure.
Our only prerequisite is the following theorem of Grothendieck [1] (using
different words, of course) :

Theorem t Let X be a Banach space. Then X has RNP if and only if for

every probability space (S,2:,Jl), every continuous T : and

every 6 ; 0, there exists  6 such that (Tf i Ilf II = Ilf . II  1)’ SIE 
is relatively compact.

Our objective is to prove, using only the above, the following

theorem of Huff and Morris [3] which contains several other theorems of
a geometric nature (see [3J and its bibliography) : t

Theorem : i Suppose X is a Banach space that does not have RNP. Then there
00 k(n)

exists a sequence Ix n, ji n=.l E&#x3E; 0, such that k ( 1 ) = 1, 1,

iix if n/m, and for each n, i there exists pairwise disjoint
n,i m,j

sets i such that xn i is in the convex hull. of
n,1- n,1

°

An immediate consequence of this theorem is the following : i

Theorem &#x3E; Suppose X is a Banach space that doef not have RNP. Then there

exist a probability space (which may be assumed to be

(([Oyl]~i8~X) =- Lebesgue measure on the Borel subsets of sequence



I.2

a finite sub-algebra of z, f : s S - X F measurable
i n n

(the conditional expectation) with 11

The proof of the theorem follows readily from the following two

1 emm as :

Lemma 1 : T : i not differentiable. Then there exists an c &#x3E; 0

and A E _r+such that for all E C A, 

has no e-net.

Proof : Suppose not. Let 6 &#x3E; 0. Then for all A E E4* there exists an ECA,
ES such that a E has a 6n-net.Thus, there exists a sequence (E  , l ; - . )°’ 1
of pairwise disjoint elements of ~+ such that J

has a 6 net for each (n,i). Choose k(n) such that
n

k(n)
Let An = U E .. It is clear that 0. has a 6 n -net. For 6&#x3E;0, choose

n 
1=1 ’ n 

n

oa o0 00

f6 D such that 2: 6 5. 8n &#x3E; 0. Let A = fl An, then &#x3E; i....,,:, nd
n 

n=l 
n 

(~A has a 6 n -net for every 6 n i.e. aA is relatively compact. Contradiction.

Thus the lemma is proved.

Lemma 2 : Let T: L such that for all no e-net.

Proof : : We may assume

disjoint
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·

choose a maximal collection of disjoint elements
I -

for all p and all j, By

maximality, we have that

Choose q such that I

Proof (of theorem) : Suppose X does not have RNP. Then there exists

T : i X and c &#x3E; 0 satisfying Lemma 1. By Lemma 2, K = (Tf -. f ~ 0

a. e ° 1} has the following property : for any choice ®
I m

(B (y, c) ) = [z: i c 1; co denotes the connex hull ; co denotes the

closed connex hull). Using a trick of Davis and Phelps [2] and an elementary
computation shows that if we denote

then for any choice of Y 1’... ’Ym E X

Given such a set K1 it is completely straightforward to construct the
desired sequence.
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