
Séminaire d’analyse fonctionnelle
École Polytechnique

CH. STEGALL
A result of Haydon and its applications
Séminaire d’analyse fonctionnelle (Polytechnique) (1975-1976), exp. no 2, p. 1-7
<http://www.numdam.org/item?id=SAF_1975-1976____A2_0>

© Séminaire Maurey-Schwartz
(École Polytechnique), 1975-1976, tous droits réservés.

L’accès aux archives du séminaire d’analyse fonctionnelle implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SAF_1975-1976____A2_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


S E M I N A I R E M A U R E Y - S C H W A R T Z 1 9 ? 5 - 1 9 ? fi

A RESULT OF HAYDON AND

ITS APPLICATIONS.

by Ch. STEGALL

(Bonn)

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES
PLATEAU DE PALAISEAU - 91124 PALAISEAU

T616phone : 941.81.60 - Poste N°

T,6]ex . = ECOLEX 6915 96 F

Expos6 No II 14 Octobre 1975





II.1

We begin by recalling the following theorem of Rosenthal and

0 dell [5J 1

Theorem : h Let X be a separable Banach space. a Then X does not contain a

subspace isomorphic to ae1 (written ~l X) if and only if every element of

X is the weak (6(X 9X )) limit of a sequence in X.

If ::c Co ( ) , uncountable, then but not every element of

X is a weak sequential limit of elements of X o

Below we shall give a non-separable version of the above theorem~
due to Haydon [3J9 which requires only the following lemma e

Lemma (Rosenthal [6]) : Let X be a Banach space. o Then X 2 ae 1 if and only
OF 

if there exist a bounded non-empty subset S of X 9 x 
a’s 

9 
r real number, ’

6&#x3E;0 such that for any weak open subset U of X*y ;; 9 we have

A r .- ( 7
(If M is a subset of X 4 c (M) is the weak closed convex hull of Me )

r iL
By K we denote the unit ball of X in the weakB topology e A mea-

sure on K is always a complete, regular, Borel measure.

Theorem (Haydon [3]) 1 Let X be a Banach space, Then the following are

equivalent i

(i) X b i Ic... 

/°° 3; ; 3 
, ..(ii) every x"E X°* is universally measurable as a function on K 11;

.. s ^ 
.(iii) for every x EX, every measure p on K there exists a sequence

for all n, ~ and x 
n 

t; on K j ~ a

I1 71 
v o(iv) every x is universally measurable as a function on K and

for every measure on K,

*
where rp is the unique element of X such that
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3c# 3c3 .

(v) for every x E X , every measure p on K, every c &#x3E; 0, there exists

K c K, K weak ,F compact and convex such that is continuous on K and
o- o 

’ 

0

Proof : (v) (iii). Let p be a measure on K (which we assume to be a

probability measure throughout the proof). Choose Kn compact, convex,

1, and continuous on each K . Let R : X- C (K ) be the canon-
n n n n

ical operator ; that is, R n (X)(X 4 ) = x (x) for K . n Then we have
** ** ** * .. n 

**

Rn (x ) E C (K ) , is in the weak closure n of II)
n o n 

, , 
.. 

n llx 11 !- 
llx 

11)
which is a convex set. Thus R (x ) is in the norm closure of this set,

n 
~~. ~ .

so for any c n &#x3E; 0 there exists :

we have that that

i~ 

(ii) =~ (i). If X--D Y,1it is an old argument of Sierpinski that

any weak cluster point of a sequence equivalent to the usual basis of 1 1
is not measurable for an appropriately chosen measure p on K. (See [3].)

(i) ~ (v). For 
*4~ 

and r a real number we shall denote by

[x ** &#x3E; r the set (x 4~ EK : xi~4~ (x 4~ ) &#x3E; r I. Let 
y J.1 a measure on K ( again,

assumed to be a probability measure). Let S be the support of ii, and r, 8n
re al numbers with 6 &#x3E; 0. Note that

n

is a directed set.(The convex hull of a finite union of elements of h is an
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element of . ) Choose a subset K’ of x 3c# &#x3E; r which is the union of an in-n 
- 

creasing sequence of compact convex subsets of such that for any

convex, ’ compact subset L of  x3 &#x3E; r ’ 0. Similarly, choose
, 

n

We shall show that Suppose 1.
n- n n n 

~ 

’- 
n 

I 

n 
"

Choose , S’ compact, y and for every V weak open, 
- n n

By Rosenthal’s Lemma there exists V open, ë(VnS’)
,.. ,...

diction. Choose bn decreasing to 0. Define

Then L C rl and Mr fx rl and M) = 1. This proves the following

for ~&#x3E; 0, there exists a compact, y convex such that

p[(x ’&#x3E;r)BC]~. Repeating the argument above for -x°’* we obtain that for

every &#x3E; 0, every r, s, r s, every x E X there exists  s),
o&#x3E;oy co

C compact, convex,  s )BC]  11. Let c &#x3E; 0. Choose ¿: e e
n=l 

’~~

and positive integers K(n) such that K(n) c n &#x3E; iix By the above there exist
compact, convex C 

nmi , n =1,2, ... , such that

and

Then &#x3E; 1-c and it is a routine computation to show that x is continuous

on C.

Corollary (Haydon [3]) : Suppose X 1 
and M is a weak compact subset

of K. Then c (M) = c(M) (closure of the convex hull of M in the norm topology)

Proof : Let M be a weak compact subset of K. Then is a pro-

babi.lity measure on K such that ~(KBM)=0). Suppose x E and

By part (iv) of the theorem

if p is a probability measure and (K )0. Therefore,
- 

Invoking the Hahn-Banach theorem proves c (M) = c(M).
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APPLICATIONS

The following appears to be a well known folk theorem. D.R. Lewis

showed the author a proof several years ago. The following proof may be

the same.

Lemma : Let M be a compact Hausdorff space and )J. a probability measure

on M. Let Y be a weakly compactly generated (wcg) Banach space and T : M -Y

a scalarly measurable, bounded function. Then there is a M cM, M measurable," " 

0 o 

p(M ) = 1, and 7:(M ) is norm separable.
o o

Proof : Since Y is wcg (cf. [1]) for each separable subspace Y of Y and
--°--- 

~ 
0

each separable subspace Z of Y there exists a projection P : Y-Y with

P(Y) separable, Y0 c:P(Y), Z0CP 4 (Y i ). If T : M-4Y is scalarly measurable and
0- 0-

1 a. e. then for any projection P : t Y - Y with P (Y) separable,
P o T t M -~ Y is separably valued and scalarly measurable 9 hence P o T is strong-

ly measurable [2].

By Lusin’s theorem there exists a M 0 c M such that P is conti-
o-

nuous on M ; that is P(7:(M )) is compact. Then the set of functions
u .... 0 .... o

is a relatively compact set in the norm.

Suppose there exists

in X with P(X) separable and

Contradiction.



II.5

Claim 2 : For each e&#x3E;0, there exists M , J.l (M ) &#x3E; 1-c such that
201320132013201320132013 o o 

u

1~

subsequence y. 1. such that
1

But there exists that converges uniformly on M to a continuous
i. 0

-K

function ~8 Therefore

Therefore 11 is equicontinuous on M0. In particular, T(M0) is

relatively compact. So T is essentially separably valued and, thus, is

strongly measurable.

We state without proving, the following

Lemma : T : X- Y an operator, then the following are equivalent :

(i) for any bounded set T(B) is dentable ;
(ii) for any probability space (s,z,v), any operator 

TS is differentiable.

For convenience we shall call an operator satisfying (i) a denting

operator.

Our principal application is the following :

Theorem : Let X, Y be Banach spaces, Y Y wcg. Then any operator
~ ~ ~

T : X - Y is a dentable operator.

Proof : Let K the unit ball of X"~ with the weak* topology. Let R : X- C(K)

be the canonical operator, R(x)(x )==x~(x). Let (S,E,v) be a probability

space and U: an operator. As is well known there exists

iii : such that R U U [4]. Let ii be a measure on K and consi-

der L1(K,li) as a subspace of C(K) . The question as to whether TU is a dent-

ing operator is equivalent to whether TR*: L1(K,li) -.4 Y is denting. Consider-

ing T as a function from K into Y we have that T is scalarly measurable

and Y is wcg. So T is p-strongly measurable. Hence there exists
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an operator V : differentiable,

We shall show

Corollary 1 : Suppose X/2 I and T : X -~ Y is an absolutely summing operator.

Then T is a 1-Radonifying.

Proof : If T : X - Y is absolutely summing then there exist a compact Haus-

dorff space M, a probability measure p on K (K is the unit ball of X as
above), and operators I, R, V, J such that

is commutative, where R and J are canonical and I is an isometry.

Let U: X i~ --# L1(S,V) be any operator where L 1 (S,v) is a finite

measure space (hence wcg). Essentially, proving that T is 1-Radonifying is

equivalent to proving T U is nuclear. Regarding as a subspace of

C(K)* we have that UR is differentiable and bounded. That is, 
is Jl-strongly measurable, S IIUklldJ.L(k)  +0:&#x3E;, and UR*f = S 

K 
f(k) U(k) dp(k) for

all f E L 1(K,p) . Since U(k) is an element of L 1(K,p) it is easy to check

that h(k,s) U(k)(s) defines a unique (equivalence class) function on KxS

and that f f 
s 

Similarly it is easy to check that
K ° S

the function s- h( . ,s&#x3E; is a strongly measurable function from S to 

Define T: S- C(M) by T(S)= V(h(.,s)) ; T is strongly measurable and

f We shall show T represents the operator I T U and
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which is a contradiction. Therefore v-a,e. Thus represents
,

the operator T U or T is 1-Radonifying.

Corollary 2 : Let X, Y, Z be Banach spaces ; X 1, y Z wcg, and YCzX*.
-. 

,, I -

If T : is an operator that is an isomorphism on Y then Y has the Radon-

Nikodym property (RNP).

There are other obvious variations on Corollary 2.
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