SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

S. KAIJSER
An application of Grothendieck's inequality to a problem in harmonic analysis

Séminaire d'analyse fonctionnelle (Polytechnique) (1975-1976), exp. nº 5, p. 1-7
<http://www.numdam.org/item?id=SAF_1975-1976 \qquad A5_0>

© Séminaire Maurey-Schwartz

(École Polytechnique), 1975-1976, tous droits réservés.
L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

plateau de palaiseau - 91120 palaiseau
Téléphone: 941.81.60 - Poste ${ }^{\circ}$
Telex : ECOLEX 691596 F

AN APPLICATION OF GROTHENDIECK ${ }^{\text {S }}$ S

by S. KAIJSER
(Uppsala)

§ 1. TENSOR PRODUCTS OF C(X)-SPACES

Let $X_{i}, i=1,2$, be compact Hausdorff spaces. We shall denote then by
$C\left(X_{i}\right)$ the Banach algebra of continuous complex-valued functions on X_{i} (point-wise multiplication, uniform norm),
$S\left(X_{i}\right)$ the group of unimodular functionsin $C\left(X_{i}\right)$, i.e.
$S\left(X_{i}\right)=\left\{f \mid f \in C\left(X_{i}\right)\right.$ and for all $\left.X_{i} \in X_{i},\left|f\left(x_{i}\right)\right|=1\right\}$,
$V\left(X_{1} \times X_{2}\right)=C\left(X_{1}\right) \hat{\otimes} C\left(X_{2}\right)$ is the projective tensor product of the Banach spaces $C\left(X_{1}\right)$ and $C\left(X_{2}\right)$.

We recall the following well-known and/or easily established facts, concerning the above spaces :
(i) $\quad V=V\left(X_{1} \times X_{2}\right)$ is a semi-simple Banach algebra with Gelfand space $\mathrm{X}_{1} \times \mathrm{X}_{2}$,
(ii) the convex hull of $S\left(X_{i}\right)$ is uniformly dense in the unit ball of $C\left(X_{i}\right)$ and therefore every element $F \in V\left(X_{1} \times X_{2}\right)$ has a representation $F=\Sigma a_{k} f_{k} \otimes g_{k}$, with $\Sigma\left|a_{k}\right|<\infty, f_{k} \in S\left(X_{1}\right), g_{k} \in S\left(X_{2}\right)$.

We finally recall the following theorem, sometimes called "the fundamental theorem in the metric theory of tensor products",

Theorem G (Grothendieck [1]) : Let $X_{i}, \quad i=1,2$, be compact Hausdorff spaces and let H be a complex Hilbert space with inner product <.|.>. Let further $\varphi_{i} \in C\left(X_{i}, H\right)$ and let $\Phi \in C\left(X_{1} \times X_{2}\right)$ be defined by

$$
\Phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left\langle\varphi_{1}\left(\mathrm{x}_{1}\right) \mid \varphi_{2}\left(\mathrm{x}_{2}\right)\right\rangle
$$

Then $\Phi \in V\left(X_{1} \times X_{2}\right)$ and $\|\Phi\|_{\Lambda}=\|\Phi\|_{V\left(X_{1} \times X_{2}\right)}$ satisfies the inequality

$$
\|\Phi\|_{\Lambda} \leq K_{C} \cdot\left\|\varphi_{1}\right\|_{C\left(X_{1}, H\right)} \cdot\left\|\varphi_{2}\right\|_{C\left(X_{2}, H\right)}
$$

where K_{C} is a universal constant (the complex Grothendieck constant) for which the bound $K_{C}<1.607$ is known [2].

Remark : $C\left(X_{i}, H\right)$ is the space of H-valued continuous functions and is a Banach space if we define $\|f\|_{C\left(X_{i}, H\right)}=\max _{x \in X_{i}}\|f(x)\|_{H}$.

§ 2．A PROBLEM IN HARMONIC ANALYSIS

Let G be a compact Abelian group with dual group Γ ，and let K be a closed subset of G ．We shall say that the set K is a
（i）Kronecker set if $\left.\Gamma\right|_{K}$ is uniformly dense in $S(K)$（ $S(K)$ being as above the group of unimodular continuous func－ tions on K ）。
（ii）Helson（ α set if the convex hull of $\left.\Gamma\right|_{K}$ is uniformly dense in the ball of radius α in $C(K)$ ．

It follows from the Hahn－Banach theorem that K is a Helson（ α ）set if for every measure μ on G supported by K ，we have

$$
\sup _{\gamma \in \Gamma}\left|\int_{G}(g, \gamma) d \mu(g)\right| \geq \alpha .\|\mu\|_{M}
$$

where $\|\mu\|_{M}$ is the total variation of μ 。

We recall that $\ell^{1}(\Gamma)$ is a commutative semi－simple Banach algebra with unit，having G as its Gelfand space，so that ℓ^{1}（ $\bar{\Gamma}$ ）may be identified with a Banach algebra $A(G)$ of continuous functions on G ．If K is a closed subset of G we shall write $I(K)$ to denote the ideal in $A(G)$ of all functions vanishing on K ，and we shall write $A(K)$ to denote the quotient algebra $A(G) / I(K)$ ．It is clear from this definition that if $f \in C(K)$ ，then $f \in A(K)$ iff there exists $\tilde{f} \in A(G)$ such that $\left.\tilde{f}\right|_{K}=f$ ．
It is clear from the above definitions that K is a Helson（ α ）set if for every $f \in C(K),\|f\|<1$ ，there exists $\tilde{f} \in A(G),\|\tilde{f}\|_{A}(G)=$（by definition） $\|\hat{\widetilde{\mathbf{f}}}\|_{\ell}{ }^{1}(\Gamma)<\alpha$.

Let now $K_{i}, i=1,2$ ，be closed subsets of G ，such that K_{i} is Helson $\left(\alpha_{i}\right)$ and let $K=K_{1} \times K_{2}$ be the cartesian product which is a closed subset of $G \times G$ ．Since $A(G \times G) \approx A(G) \widehat{A}(G)$（isometrically）it follows from standard properties of the projective tensor norm that

$$
A(G \times G) / I\left(K_{1} \times K_{2}\right) \approx C\left(K_{1}\right) \hat{\otimes} C\left(K_{2}\right)
$$

in the sense that they are algebraically isomorphic，even though the isomor－ phism is not isometric。

We use now the fact that since G is abelian, the addition map $s: G \times G \rightarrow G$ (defined by $s\left(g_{1}, g_{2}\right)=g_{1}+g_{2}$) is a group homomorphism with adjoint $\hat{s}: \Gamma \rightarrow \Gamma \times \Gamma$, where $\hat{s}(\gamma)=\gamma \otimes \gamma$. (This is clear since $\left(\left(g_{1}, g_{2}\right), \hat{s}(\gamma)\right)=$ $\left.\left(s\left(g_{1}, g_{2}\right), \gamma\right)=\left(g_{1}+g_{2}, \gamma\right)=\left(g_{1}, \gamma\right)\left(g_{2}, \gamma\right)=\left(\left(g_{1}, g_{2}\right), \gamma \otimes \gamma\right).\right)$
The map \hat{S} extends by linearity to an algebra homomorphism of $\ell^{1}(\bar{\Gamma})$ into $\ell^{1}(\Gamma \times \Gamma)$, i.e. of $A(G)$ into $A(G \times G)$, and if K_{1} and K_{2} are closed subsets of G, we obtain by restricting \hat{s} to $K_{1} \times K_{2}$, an algebra homomorphism $\hat{S}_{\left(K_{1}, K_{2}\right)}$ of $A\left(K_{1}+K_{2}\right)$ into $A\left(K_{1} \times K_{2}\right)$.
Suppose now that K_{1} and K_{2} are disjoint closed subsets of G, such that the union $K_{1} \cup K_{2}$ is a Kronecker set. It was observed then by Varopoulos that not only is $\Gamma \times\left.\Gamma\right|_{K_{1}} \times K_{2}$ uniformly dense in $S\left(K_{1}\right) \times S\left(K_{2}\right)$, but in fact this is already true for $\left.\hat{\mathbf{s}}(\bar{\Gamma})\right|_{K_{1} \times K_{2}}$. This implies that the map $\hat{s}: A\left(K_{1}+K_{2}\right) \rightarrow A\left(K_{1} \times K_{2}\right)$ is an isometric algebra homomorphism of $A\left(K_{1}+K_{2}\right)$ onto $A\left(K_{1} \times K_{2}\right)$ and since as we saw above $A\left(K_{1} \times K_{2}\right) \approx A\left(K_{1}\right) \hat{\otimes} A\left(K_{2}\right) \approx$ $C\left(K_{1}\right) \hat{\otimes} C\left(K_{2}\right)$ it follows that $A\left(K_{1}+K_{2}\right)$ is isometrically and algebraically isomorphic to $C\left(K_{1}\right) \widehat{\otimes} C\left(K_{2}\right) \quad[4]$.

In the rest of this note we shall now study the following

Problem : Does there exist a number $\alpha_{o}, 0<\alpha_{0}<1$, such that whenever K_{1} and K_{2} are disjoint closed subsets of G such that $K_{1} \cup K_{2}$ is a Helson (α) , $\alpha>\alpha_{0}$, set, then $A\left(K_{1}+K_{2}\right)$ is algebraically isomorphic to $C\left(K_{1}\right) \hat{\otimes} C\left(K_{2}\right)$?

Remark : The purpose of posing the problem as a search for a number α_{o}, means that when proving that $A\left(K_{1}+K_{2}\right)$ is isomorphic to $C\left(K_{1}\right) \hat{\otimes} C\left(K_{2}\right)$ we are not allowed to use any additional assumptions on the sets K_{1} and K_{2} besides the assumption that $K_{1} \cup K_{2}$ is Helson (α) with $\alpha>\alpha_{o}$ 。

83.

Using theorem G above we shall presently show that the answer to the problem raised above is yes, by proving the following

Theorem : Let K_{1} and K_{2} be disjoint compact subsets of the compact abelian group G, such that $K_{1} \cup K_{2}$ is a Helson $(1-\beta)$ set in G, where $\beta .\left(2+2 K_{C}\right)<1$. Then $A\left(K_{1}+K_{2}\right)$ is algebraically isomorphic to $C\left(K_{1}\right) \hat{\otimes} C\left(K_{2}\right)$.

Before attempting to prove the theorem we shall see that there is an a priori lower bound for the possible values of α_{o} for which the answer to the problem could be positive, by proving the following

Proposition : There exist closed subsets K_{1} and K_{2} of the circle group T, such that $K_{1} \cup K_{2}$ is Helson ($2^{-1 / 2}$) while $A\left(K_{1}+K_{2}\right)$ is not algebraically isomorphic to $C\left(K_{1}\right) \hat{\otimes} C\left(K_{2}\right)$.

Proof : A simple necessary condition for two Banach algebras to be algebraically isomorphic is that they have the same Gelfand space. In the present case the Gelfand space of $C\left(K_{1}\right) \widehat{\otimes} C\left(K_{2}\right)$ is $K_{1} \times K_{2}$ while the Gelfand space of $A\left(K_{1}+K_{2}\right)$ is $K_{1}+K_{2}$. These spaces are connected by the function s mapping $K_{1} \times K_{2}$ onto $K_{1}+K_{2}$. Sincesis a continuous map of a compact space onto a Hausdorff space, s is bicontinuous whenever it is injective。 We shall now first show that if the map $s: K_{1} \times K_{2} \rightarrow K_{1}+K_{2}$ is not injective then $K_{1} \cup K_{2}$ cannot be Helson (α) for any $\alpha>2^{-1 / 2}$. We assume thus that $k_{1}, k_{1}^{\prime} \in K_{1}, \quad k_{2}, k_{2}^{\prime} \in K_{2}$ and that

$$
\mathbf{k}_{1}+\mathbf{k}_{2}=\mathbf{k}_{1}^{\prime}+\mathbf{k}_{2}^{\prime}
$$

We define then the measure $\mu \in M\left(K_{1} \cup K_{2}\right)$ as

$$
\delta_{k_{1}}+\delta_{k_{2}}+\delta_{k_{1}^{\prime}}-\delta_{k_{2}^{\prime}}
$$

and we see that for any $\gamma \in \Gamma$, we have

$$
\begin{aligned}
|\hat{\mu}(\gamma)| & =\left|\left(k_{1}, \gamma\right)+\left(k_{2}, \gamma\right)+\left(k_{1}^{\prime}, \gamma\right)-\left(k_{2}^{\prime}, \gamma\right)\right| \\
& =|z+w+u-z w \bar{u}|=|u(z \bar{u}+w \bar{u}+1-(z \bar{u})(w \bar{u}))| \\
& =\left|1+z^{\prime}+w^{\prime}-z^{\prime} w^{\prime}\right| \leq 8^{1 / 2},
\end{aligned}
$$

as is easily verified by direct calculation of $|\hat{\mu}(\gamma)|^{2}$. The subset of T that satisfies the condition of the proposition is obtained by choosing 4 points in the circle, satisfying the above algebraic relation over the integers, but no other relation. It is a matter of elementary calculus (though not simple calculus) to prove that such a set is then Helson($2^{-1 / 2}$).

V. 5

To prove the theorem we shall need the following

Lemma : Let X and Y be compact spaces, let $\left\{a_{i}\right\}_{i=1}^{\infty}$ be positive numbers, let $f_{i} \in C(X), g_{i} \in C(Y),\left\|f_{i}\right\|_{\infty} \leq 1,\left\|g_{i}\right\|_{\infty} \leq 1$, and let t be a positive number such that

$$
\begin{aligned}
& \Sigma \mathrm{a}_{\mathbf{i}}=1 \\
& \left\|1-\Sigma \mathrm{a}_{\mathbf{i}} \mathrm{f}_{\mathbf{i}}\right\|_{\infty} \leq \mathrm{t}, \quad\left\|1-\Sigma \mathrm{a}_{\mathbf{i}} \mathrm{g}_{\mathbf{i}}\right\|_{\infty} \leq \mathrm{t}
\end{aligned}
$$

Then

$$
\left\|1-\Sigma \mathbf{a}_{\mathbf{i}} \mathbf{f}_{\mathbf{i}} \mathrm{g}_{\mathbf{i}}\right\|_{\mathrm{A}} \leq\left(2+2 \mathrm{~K}_{\mathrm{C}}\right) \mathbf{t} .
$$

Proof : Using the identity

$$
\left(1-f_{\mathbf{i}} \mathrm{g}_{\mathbf{i}}\right)=\left(1-\mathrm{f}_{\mathbf{i}}\right)+\left(1-\mathrm{g}_{\mathbf{i}}\right)-\left(1-\mathrm{f}_{\mathbf{i}}\right)\left(1-\mathrm{g}_{\mathbf{i}}\right)
$$

we have

$$
\begin{aligned}
\left(1-\Sigma a_{i} f_{i} g_{\mathbf{i}}\right)= & \Sigma \mathrm{a}_{\mathbf{i}}\left(1-\mathrm{f}_{\mathbf{i}} \mathrm{g}_{\mathbf{i}}\right)=\left(1-\Sigma \mathrm{a}_{\mathbf{i}} \mathrm{f}_{\mathbf{i}}\right)+\left(1-\Sigma \mathrm{a}_{\mathbf{i}} \mathrm{g}_{\mathbf{i}}\right) \\
& -\Sigma \mathrm{a}_{\mathbf{i}}\left(1-\mathrm{f}_{\mathbf{i}}\right)\left(1-\mathrm{g}_{\mathbf{i}}\right)
\end{aligned}
$$

We have therefore

$$
\left\|1-\Sigma a_{i} f_{i} g_{i}\right\|_{\Lambda} \leq t+t+\left\|\Sigma a_{i}\left(1-f_{i}\right)\left(1-g_{i}\right)\right\|_{\Lambda} .
$$

Using now theorem G we have

$$
\begin{aligned}
\left\|\Sigma a_{i}\left(1-f_{i}\right)\left(1-g_{\mathbf{i}}\right)\right\|_{\Lambda} \leq & K_{C} \max _{\mathbf{X}}\left\{\left(\Sigma a_{\mathbf{i}}\left|1-f_{\mathbf{i}}\right|^{2}\right)^{1 / 2}\right\} \\
& \times \max _{\mathbf{Y}}\left\{\left(\Sigma \mathrm{a}_{\mathbf{i}}\left|1-g_{\mathbf{i}}\right|^{2}\right)^{1 / 2}\right\}
\end{aligned}
$$

Now $\Sigma \mathbf{a}_{\mathbf{i}}\left|1-\mathrm{f}_{\mathbf{i}}\right|^{2} \leq \mid 2\left(\Sigma \mathrm{a}_{\mathbf{i}}\left(1-\mathrm{f}_{\mathrm{i}}\right) \mid \leq 2 \mathrm{t}\right.$, and we get the same estimate for $\Sigma a_{i}\left|1 \stackrel{i}{-} g_{i}\right|^{2}$.
We have thus $\left\|1-\Sigma a_{i} f_{i} g_{i}\right\|_{\Lambda} \leq 2 t+K_{C}(2 t)^{1 / 2}(2 t)^{1 / 2}=\left(2+2 K_{C}\right) t$, so the lemma is proved.

To prove the theorem we now let K_{1} and K_{2} be compact subsets of G, such that $K_{1} \cup K_{2}$ is a Helson $(1-\beta)$ set, with $\beta<\left(2+2 K_{C}\right)^{-1}$. We choose now $\delta>\beta$, such that $\delta\left(2+2 K_{C}\right)<1$. To prove the theorem it suffices to find, for each $f \in C\left(K_{1}\right),|f|=1$, and $g \in C\left(K_{2}\right),|g|=1$, a function $F \in A\left(K_{1}+K_{2}\right)$, such that $\|f \otimes g-F\|_{\Lambda} \leq \delta\left(2+2 K_{C}\right)$. Towards this we define $\varphi \in C\left(K_{1} \cup K_{2}\right)$ by

$$
\left.\varphi\right|_{\mathbf{K}_{1}}=\mathbf{f},\left.\quad \varphi\right|_{\mathbf{K}_{2}}=\mathbf{g}
$$

By the assumptions on $K_{1} \cup K_{2}, \varphi$ has a representation

$$
\varphi=\Sigma b_{i} \gamma_{i}, \quad \gamma_{i} \in \Gamma, \quad \Sigma\left|b_{i}\right|=A \leq(1-\delta)^{-1}
$$

We write $b_{i}=r_{i} \cdot \exp \left(i \alpha_{i}\right)$, with $r_{i}>0$ 。We then write

$$
F=A^{-1} \Sigma \mathbf{r}_{\mathbf{i}} \exp \left(2 \mathbf{i} \alpha_{\mathbf{i}}\right) \gamma_{\mathbf{i}} \in A\left(K_{1}+K_{2}\right)
$$

Putting now $a_{i}=A^{-1} \cdot r_{i}, f_{i}=\bar{f} \cdot \exp \left(i \alpha_{i}\right) \gamma_{i}, g_{i}=\bar{g} \cdot \exp \left(i \alpha_{i}\right) \gamma_{i}$. We see that the assumptions of the lemma are satisfied, so

$$
\left\|1-\Sigma a_{i} f_{i} g_{\mathbf{i}}\right\|_{\Lambda} \leq\left(2+2 K_{C}\right) \delta
$$

and therefore also

$$
\|f \otimes g-F\|_{\Lambda}=\left\|(f \otimes g)\left(1-\Sigma a_{i} f_{i} g_{i}\right)\right\|_{\Lambda} \leq\left(2+2 K_{C}\right) \delta
$$

This proves the theorem, and using our estimate of K_{C}, we see that $A\left(K_{1}+K_{2}\right)$ is algebraically isomorphic to $C\left(K_{1}\right) \widehat{Q}\left(K_{2}\right)$ if $K_{1} \cup K_{2}$ is a Helson (α) set with $\alpha>0.81$.

For a more extensive study of the problem considered in this note, including in particular a study of "the real case" which is somewhat different, and algebras of type $A\left(K_{1}+K_{2}+K_{3}\right)$ etc。we have to refer to [3].

REFERENCES

[1] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem. Sao Paolo 8 (1956) 1-79.
[2] S. Kaijser, A note on the Grothendieck constant with an application to Harmonic Analysis, UUDM Report No 1973:10, (Uppsala University, mimeographed).
[3] S. Kaijser, Representations of tensor algebras as quotients of group algebras, Ark. f. Mat. 10 (1972) 107-141.
[4] N. Th. Varopoulos, Tensor algebras and Harmonic Analysis, Acta Math. 119, (1967) 51-112.

