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Let be an infinitesimal array of real rv’s
B. n J J . ". -

i.e. such that for E&#x3E;O (or 

.+0, where f is Prol:’i,.orov’s distance) and such that for each n6N,

xnl’* xni-I are independent. And let The General central
nl n n J 

11 lit theorem (CLT) in the line is essentially the answer to t,he fol-

lowing question: what are the possible limits of and under

what conditions does (perhaps suitably centered) conveI’[e to

a given limit law? The possible limit laws are exactly the infinite-

divisible, the probability measures which have n-th root 

respect to convolution for every nEN. In a sense the most natural

infinitely divisible laws are the so called Poisson laws: if v is

a positive finite measure, then, (Poi,-, d ) 1/n
= If the total variation distance between 

and 0 is small, then a simple Panach algebra argument shows that

k(s n is near in total variation to nj .) , 7/hat happens if

the Prokhorov’s distance between and S 0 is small, or what --! -3

the sarie, if the system is infinitesimal? It turns out that in this

case, if either or are relatively shift com-

pact, the Prokhorov’s distance between adequate shifts of the n-th

terms of both sequences tends to zero as Classically, the proof
of the general CLT consists of: (i) this fact, toeether with (ii)

necessary and sufficient conditions for convergence of Poisson

(or more generally, infinitely divisible) measures. It turns out

that one can prove the general CLT in the line (and its analocues
in Banach spaces) using only elementary results about Poisson

laws. However, the problem of the relation between and

ipois is interesting in its own right, and we will consi-

der it as part of the general CLT in Banach. The measures Pois2*.f(X .)
J ni

are called the accompanying Poisson laws for the triangular array 

In this note I will describe several results on: (a) w*-relative

compactness and convergence of Poisson measures, (b) relation between
relative compactness of row sums in triangular arrays and relative

compactness of their acconipanying Poisson laws, and (c) necessary and

sufficient conditions for convergence of row sums of infinitesimal

arrays of Panach space valued random variables.

Mainly, there are results contained in (3), and also in 1143 an(’

173. The point of Oeparture of thi- work, done with de Acosta and

Araujo, except for results contained in (14)7 is LeCam (141 and

ttof Pisier (l2).
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Notation. All the Banach spaces below will be separable except othei*

wise stated, and will be usually denoted by B. The measures willbepo-

sitive and Borel. For each r&#x3E;0, if Xn is a P-valued
rv, then We will write for nENj,

nJ nJ t; nJ 1:’ 1: nJ. nJ n

1. Poisson probability measures. The accompanying laws 
of an infinitesimal system are exponentials of measures with total

mass increasing to infinity. Thus, one needs to -tpoissonizel infinite

measures.

1.1. Definition. A -finite measure Iton,B is a Levy measure if

for every and some where

h’t ( f ,x ) -= e 
i f( x) -l-J.f(x . ) 

(ii) the function B - C defined 

is the characteristic function of a tight p.m. on B. This

probability measure will be denoted by c., -Poisu, the

x-centered Poisson .m, with Lévy measures.

If p is symmetric does not depend on -c and its ch. f .

is exp ( j(cos f - It will be denoted by Pois IA.

The function h is not continuous, but one could equivalently
define Lev measure using the function for

and for 

The only result about Poisson measures needed in the proof of

the general central limit theorem in Section 3 below, is the follow- .

ing. It explains Definition 1.1.

1.2. Theorem. For a r-finite measure  on P vdth the following
are equivalent:

(i) is a Levy measure,
(ii) for every (setwise), )Ltn finite, and every T&#x3E;0,

the seauence ic, -po’s t-A’nl converges (in the w*-topology,
to c1:-Pois ft ) ,

(iii) there exists a sequence /kfinite, such that

is relatively shift compact (for the w*-to-

Proof. (Sketch; see C33 for details). One shows that:
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proo-r of () iL: 1 ,x; 7i:-’ ..tr, tr.; nraof - of

( 1, :-. (,.t.. C:J "1 f s c, c, e (1) .-~ ’V1~’ ,-,~ (J + ".,.., C f, 

take I!+ r of fA, r- ( - A ) 0 r or,,31 sc:t A).

The second assertion follov!8 frotu t,F-&#x3E; fect tl. t (1,04 S )_)A 
A 

is The second as!7-er4l-ion fron f ti, -t (1 -L 1 W-se-
C 0 p’ f. 1 vL 

. 

.:t J ..... ’ -. v L.{ ’-’ ,L..) ; V I J. J. ’-"’ . ]. " ’- ....... -I.. {-’ .’ Q o 
~r 
....

Pnt 1-’-n finite, syrrainetric, then L appli e0 to

(Pois ~1-fl11-1)) Pois ~w* P C, p..
Now, following [1l, proof of Theorem TV.4.3, is a subsequP%1-
ce and N a neiehborhood of zf.,,ro such that }-’on ( -" 0, define

_ T c -1 c , 

n

Then, Pois is a factor c PoisJA, and son n.l.1 W.. ,i

is Pois kaJn’ for every k and from some on. So, ipois Vn’B is rela-
tively compact ([16J, Theorem III.2.2) and if ) is , a limit point, ,
then Ák is also a of for every k. , a k isthen )- is also a factor of p for every k. ,- c , A is

relatively corqpact, which implies that But then, if Pois 

Now we can prove the theorem. (i’) =;o,(ii) : As seen in the proof of

(1) , converge? when is relatively
shift compact for each r&#x3E;O. Now, if K is a compact set,

T

and since the vr*-topoJogy and the topology of uniform convergence on

compact subsets of P coincide on Er, it follows from (1) and (2)
r

above thattc r, -Poisul is reletively compact. Since ( ft n t n

for each it turns out that

obvious.  iii&#x3E; +  I&#x3E; : The proof
of ( 1) ShOV1S that f or every Pnd that the func-

tiOns f restricted to ’ are ,y*-equic,jqtiruous mhiotions f -+ J,E -’r restricted to are iv* -equi continuous. ° mhis

imPlieE  and therefore a’-so t.hat t t4n
conver-es to a tight p.m. with ch. f. D
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Let us remark that on the line the conditions in Theorem 1.2

are all equivalent to:

This allows for a modification to the function h which classically

is The situation in Banach spaces is

quite different (cf. C53):

1.3. Theorem. B is of type 2 if and only if

is a Levy measure.

B is of cotype 2 if and only if

iJ- is a Levy measure - 

Power, type and cotype 2 in the above theorem can be replaced

by p and [181).

It is easy to see that in the real line a family of ~-finite

measures ~~ yields a relatively compact family of Poisson measures
if and only if the family of finite measures

is relatively compact. This fails to be true even
in Hilbert space: if i eni is a cons of H, / )
satisfy the second condition but not the first. The next few theorems

describe the situation of this subject in Banach spaces. Roughly,
there are necessary conditions for tightness of families of Pois-
son measures (in terms of the associated Levy measures) in general,
but sufficient only in type p spaces.

1.4* Theorem. Let .1 be a family of Levy measures on B such that
is relatively shift compact. Then:

(i) is a family of relatively compact finite measures

for every r &#x3E; 0,
(ii) f2d laci 3’ then for every r and s&#x3E;0, the

family of functions w*-equicontinuous.

The proof is essentially contained in the proof of Theorem 1.2.
See 131 for details. A useful corollary is:

@. Corollary. If icz-poisaai is relatively shift compact, then it
is relatively compact.

This fact was first observed in [41- Next we give some partial
converses to Theorem 1.4 (cf. F3j).



XXIV.5

1. 6. Theoren. Let P and E be Ban3ch spaces, a continuous

linear of type p, and a family of positive measures

on R such that:

(i) for all r&#x3E;O and is relatively 
r 

2 
1

(ii) for every suD« 
1 dimensional

(iii) ther8 exists a sequence IF of finitefiiubspaces of E such
that 

Then, is -.i L6vy measure for every o( Then, /u"" is a Levy measure for every 0( and ))
is relatively compact.

Proof. By (i) and 1.5 we may assume asymmetric and 
Let and for each o( and independentot 1/r 

r r r ji r =1
B-valued rv’s such that zati t iffA,,;60 and S0other-
wise, and let F be a finite dimensional subspace of E and G=u- 1(1r).
Then, since the induced map is of type p with the same

type p constant C of u,

So by Chebyshev’s inequality, the family 
a , r 

is flat-

ly concentrated (cf. C1 . Also, if 

’o tx, r

- - - - -

as one can show with computations similar to the above. Hence,
is tight. Therefore, by l3, Theorem 2. 3 

r -1 a, r -1 . -
is ti g ht and - is Levy b Y Theorem l. 2 , again

- - r ’ - 

Remarks. (1) This theorem implies the first part of Theorem 1.3 in

one direction; hence, if conditions (i)-(iii) for uwj imply tight-
ness of the Poisson measures, B is of type p. (2) Together with

results in the next section this theorem also implies a general CLT

in type p spaces (which for instance contains the direct part of

the CLT in C121 -the Gaussian domain of normal attraction- and in

[63-the stable domains of attraction). (3) Assume that in Theorem
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1.6, u is of type 2 from R into EK, the Banach Generated by n

compact convex symmetric subset of E; then conditions (ii) and (iii)

there can be replaced by:

(ii)’ 

and still have relative compactness of the Poisson measures. The proof
is as that of 1.6 but one works with the Minkowski functional of K

instead of the distances to subspnces. This type of result has appli-
cation to the CLT in C(S), Gaussian and non-Gaussian convergence cases,
for not necessarily identically distributed rvts. (cf. 133).

Some complements to the previous results:

1.7. Theorem. Let tPn I be a sequence of Levy measures on B such that

C-c -Pais fn - w V. Then:
(i) there exists a Levy measure pL such that for

every 1: such that 

(ii) there exists a centered Gaussian measurelsuch that

The proof of this theorem is similar to that of 3.3 and so it is

postponed. A simple corollary to 1.6 and 1.7 is the following result

proved in [1-il for the symmetric case; it/is useful in the study of
stable domains of attraction in Banach spaces.

1.8. Corollary. Let B be of type p, and let be a sequence of
- n

6,-finite measures on B whi:ch integrate mine 1, nxU p) and such that:

(i) there exists p 6 -finite such that whenever p(&#x26;B )=0N ° ’ z
(ii) iim 840 1 im sup n 0.

Then I ti is Levy and, for every I 

(It is easy to see that condition (ii) implies conditions (ii)
and (iii) in 1.6, so that the Poisson p.m.~s are tight; then 1.7

together with (ii) identify the limit). Note that Theorem 1.3 for

p instead of 2 proves that: if (i) and (ii) in 1.8 imply convergen-
ce of the Poisson measures, then B is of type p.
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~. Tightness of row sums d their laws. As in Section 1

we start with the results neeneè in the CI.T, and then continue to

complete the theory as much as we can.

In the next theorem, II- il (4enotes the total variation norni.

2.1. Theorem. Let fxii be a finite set of independent B-valueà rv’s

and let S =1iXi. Then,i 1

Proof. (Partial) . We give a very simple proof of the inequality with

a larger constant. For the real proof see LeCam (13J. By Fubini’ s

This theory is basic, and is attributed to Khinchin by LeCam 

The next basic theorem is the weakest version of the classical Linde-

berg theorem. For probability measures in the line, define

d sup Then it is clear that
, b ’ I=0 £ 

d3 metrizes weak-star convergence in the set of p.m.’s on R. We

have:

2.2. Theorem. Let ixii be a finite set of independ.ent, centered, real

valued rv’s such that ess sup IIX for each i, and let d2 =EX 2
rid’; 2 Then, 

iii:s c i J.

Proof. Let Y. be independent with 
- 1 

- 

i i i i

and The first terms in the inequalities above are

by the well known composition properties of Normal and

Poisson laws; by Fubini, they are bounded by and

since the first two moments of X1 and Y. coincide, Taylor’s formula

givcs and this yields the

theorem.0 
’

These two results are useful in the general case because there

is a way of patching them together: under certain conditions (infi- 

s 9),nitesimality and shift compactness of the sums), n ** n,&#x26;
as the next proposition shows.

2.3. Proposition. Let be a triangular array of row-wise independent
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Then, for every $&#x3E;n and there exist randam variables

U ,, ll$ anr! W c such that:n nS nS

Proof. 1T’ . and T’ . independent with laws
- n.i n .1

if the denominators are different from zero, and if one of them is

zero, take the corresponding variable equal to zero. Let 1nj and

j , be independent real rv’s, independent of the previous ones,nj
Bernoulli with parameters- P11 it is easy to see

that the variables

satisfy the required conditions.

This decomposition is due to LeCam He calls it

the decoupage de Levy ~ ~ ~ 

~ 

~ 

.

. Before studying the problem of accompanying laws in all its ge-

nerality, we state without proof a theorem about necessary integra-

bility conditions for shift compactness of sums and about centering
shift compact sequences of sums. The proof, mainly based on the Livy
and converse Kolmogorov inequalities (C2J) and the tightness condition
in can be found in C3J*
2.. Theorem. Let be a triangular array of row-wise independent
- nJ)

B-valued rv· s such that is relatively shift compact. Then:

(i) if the X . are centered and uniformly bounded, thennJ 
p( il) sup n EllS n øP:oo ’ for all p&#x3E;O,

( i2) if are finite dimensional subspaces such that

for all p&#x3E;0;
(ii) if is relatively compact for some then so

j ni s

For shifts of Poisson measures we have ( [71, proof of 2.4):
2,5. Let iXnj} be, a triangular array of row-wise independent
P-v-’.lued rvis such that for S 11 0. Then if . 

’ 

.

shift tight, relatively

compact. 
J nJ no..

càmpact..
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2.6. Theorem. Let X . be an infinitesimal system of B-valued
2013- 20132013201320132013 nJ
rv s. If and 11(5 -ES c)1 are relatively

compact for some ~&#x3E;0, then

for any distance d metrizing w*-convergence of p.m.’s on B.

Proof. It is enough to prove that both sequences have the same limits

through the same subsequences. For this, it is enough to prove the

same for for
J nj nJo n n,b

every r.B’. The theorems 2.1, 2, 3 give that for 0ST:

where and Vnfi are as in 2’. 3, and d is the distance in probabi-
lity Noting that d 3 is smaller that
11 - 11 and d p r, and that by Theorem 1.4 and by infinitesimality the

last terms in the three inequalities above give zero if one takes

first lim sup and then we get

The general problem of the accompanying Poisson laws is reduced,

by 2.4, 5, 6, to a question on the relation betweenshift tightness of

row sums and their exponentials. This simplifies the proof of the

main theorem (which collects results [7] and [33):

2.. Theorem. Let ix ni I be a triangular array of row-wise independent.=.:..L. - nJ
B-valued random variables. Then:

(i) If is relatively shift compact, then
j nj J

is relatively compact for every if
n n’Ø

moreover as noo for some S&#x3E;0, then also
J nJ"

is relatively compact; and if the
J nJ nJo

system is infinitesimal, then the limit (2.1) holds.

(ii) If Co is not finitely representable in B, then there exist

symmetric infinitesimal systems ~.X in B such that

(£(S n )) is relatively compact but 
ni )I is not.

(iii) Let P be a Banach- space such that for some q &#x3E; 0 ( ~2)
and some sequence of finite dimensional subspaces Fkt,
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the spaces P/Fk are of cotype q with constants

ij satisfying the " if for 

(?(X.))E i- relatively and (I(s )J is relatively
I ’ LIJ If) 

’ n

shift compact relatively compact), we have

that is relatively If moreover
J nJ nJø .

is infinitesimal, then (2.1) is sati sfied.

Proo f . 6 ;xiill outline the main steps. To prove (i) in view of 2.4-

2.6, it is enough to see that shift tightness of the Poisson laws

implies shift tightness of the sums. We take the .proof of this from

LeCam 0, nji ’ ’ ’ ’’n’ 1£N, and N ., j :1, ...,k, nJ nJ1. n tlJ n

are indepenrent, S and then
nJ 1 nJ1 nJ

Using this representation one easily sees that Poisf k(X -j"X.), " 

i ni ni 
’

where X’ 
. 

is independent of and distributed like Xnj are the lawsm nj
of the differences of two variables with laws the original Poisson
and therefore make a relatively shift compact sequence. So, we may
assume the X . symmetric. Let a = log 2 and N~ independent
and independeht of the Xnjil with law Pois(a 8 1). and let

(hence, 1’nk are Bernoulli with expectation p=l).
Then, if tight. Define Then, if n UK n is tight. De fine 

and R’=T’-S’. By symmetry, for every compact convex symmetric set ,

n n n

K we have

Therefore, is also tight. But 

and both sums have the distribution of SI, is tight.n n

(ii) If c is finitely representable in E, it is possible to

construct an infinitesimal system of symmetric rvts such that

ess sup IIS n 11--.PO and that for every r&#x3E;o, (Pois?.JL(X e S = SUP i 
Sn i r 

t hat for ev erY r&#x3E;0 ,  PO i S 
J 
L 

xn i 
&#x3E; &#x3E;  

B%&#x3E; - 
i .

We refer to such an example.

(iii) Usinr (2.2), Fubini and that if IX ii are equidistributed and
independent of Xol then it is easy to
prove that in any Banach space,

if the X ., N. are independent and ,~C’‘r .~ = Pc~.s ~ . CorollaryJ J J 1 Y

sho»is that if F is of cotype q for some q, and the random
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variables X. are independent and symmetric,
J

where C does not depend on the X., and depends on P only through

its cotype q constant. This inequality can be desymmetrized. If

B satisfies the hypothesis stated in (iii), it is clear that this

inequality together with 2.4(i) will imply tightness of

if is relatively shift compact. But
j nj njo n

it turns out that this is enough to yield tightness of

by virtue of l. ~.( i) and 2.1.13

Contained in the previous proof is the following characterisa-

tion of spaces where c 0 is not finitely representable (C7,]):

2 8. Theorem. c is not finitely representable in B if and only if
for every finite set of symmetric B-valued rvls,

I n n

for some C400 independent of the Xi.
And also 

2.9. Corollar . Let B be a Banach space with a Schauder basis. Then

co is not finitely representable in B if and only if

(I(S n )) relatively compact .~ ni )i relatively compact

fbr triangular arrays of row-wise independent symmetric B-valued

rV’S 

2.9 can be stated for infinitesimal arrays.

2.10. Problem. Is 2.9 true without any additional assumption on B?

The solution of this problem would give possibly a complete

picture of the subject of accompanying laws in Banach spaces.

2. The eneral central limit, theorem. The general limit theorem
that we will give in this section has the disadvantage that one of

the conditions depends on the truncated sums rather than on the indi-
. 

’.

vidual variables directly, but the advantage that many known limit

theorems in Banach follow from it quite directly. All the ingredients
for the proof of these theorems have been given above except for the

following result of LeCam ~1~.~ which is basic in the converse CLT

(but is not needed for the direct part). The rroof here is as in

~3~.
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3.1. Theory. If t xjis a triangular array of row-wise independent
P-valiied rv’s is relatively shift compact, then for every

&#x3E;0 there exist a compact such that
- i E n f-

is relatively compact. 
o.J 

’

Proof. Here, as in the ’converse’ tightness theorem 2.4(i), tllc Levy
and the converse Kol,.rior-orov inequalities are the basic tools. Let
Ñ 

" " 

-

x ji be independent sy.,,,i!n etri- -,L- at ions of the -i 
and let

n N njl n J nj
K be a compact symmetric set such that Then, the L6-

vy inequality applied to the Minkowski functional of K yields

We will show that K,. =BnK satisfy the conditions of the theorem.

First we must see that

for every By (3-1) it is enough to prove this for 

Observing- that the open sets ix: If (x)l &#x3E; F-121, fEBi’ are an open cover

of we obtain that for some finite subset FCB’

Now (3-2) follows from the converse Kolmogorov inequality because

is relatively compact (it is easy to see that for every
coivex iymmetric set Q, P( Z 

j 
.Y 
nj 

.E c J/ 2P( § n e as observed in [10j) .convex symmetric set Q, Ptf i Y as observed 

If then (3.2) implies
therefore, by C161, Theorem 111.2.2, there exists

fx njet c B such that is tight. So we need only

prove that for some tx nj EI n the is

relatively compact. By Fubinits theorem there exist points x njF-
such that and ni- n J n nJ nji e If

given r EN we apply (3.1) and Fubini to obtain
r 

n n

that there existlz rjicb such that for some
n J nJ n r 

r
compact convex set Kr. Hence, if r is big enough, z . - x 

r nj nj r c,.

and

~, Corollary. If Tx I is infinitesimal and relatively shift

compact, then for every E&#x3E;0 there exists compact such that

is a relatively compact sequence.I i I nj) &#x3E; 1 6 I iS a reiativeiY CO»;Pact SeuUence .

The proof follows easily from the tightness of . and

Theorem 3.1. 3.2 is observed in [141.
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Finally we give what may be considered as a reneral CLT in Banach.

It is taken from C33 with only minor modifications in the proof.

3.3. Theorem. Let X nj be infinitesimal. is

shift convergent if and only if:

(i) there exists a 6-finite rneastlrC p.. on P with such

that whenever ~&#x3E;0 

( ii) the limit . 
, 

- 
.

,i;- 

exists for every weak-star total in B’ ( for

every feB’),
(iii) There exists a (for all) sequence fFk I of finite dimensional

subspaces of B and, all ~&#x3E; 4~

such that

for some (for all) p&#x3E;O.
And then,

(I) , is a Levy measure and there exists a centered Gaussian p.m.
y such that for every f 6 W 

(2) for every such that 
-

’

(3) for these same values of &#x26; ~ 

Proof. a) The direct part. Assume i)-iii) hold. First we will prove

that is relatively compact and then will identify the

limit. By infinitesimality, for every hence (1) and
j njE ’

2.3 implies is relatively compact if and only if
is tight, and’. both sequences have the. °

Theorem together with condition (i).give .the, tightness of n

for every S&#x3E;O, and proves also that if 0  S and 

then

Hence, part of (3) is proved. On the other hand, f£(S -ES ) is
.... , 

n,y
flatly concentrated by (ill), and (ii) easily gives (by infinitesima-
lity and ( i) ) that su pn Ef2( S n -ES )  m for ever y feW. So ’ by
[1) Theorem 2.3, -ES ) is relatively compact. Hence,n,p ~?p
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so is for any S&#x3E;O (condition (i) together with Theorem-o is 
’ n 

-

2.4 (ii)). 
’

Next we identify the limits. Given t&#x3E;0 h(?E )=0, let be

such that s0 and 

’

Buch that 0 _

where d metrizes weak-star convergence of probability mensures.

Such a sequence 46 ni exists by (i), 2.1, and the.infinitesitrality

assumption. Hence, by Proposition 2.3 and {Il6j Theorem 111.2.2,
the relative compactness of n -ES implies that the

sequences )I and li(S -ES )3 are relatively shift
" 

compact. Now Theorem 1.2 proves that

. 

n ~n

Suppose now nt -ES nf,,s nt ) converges. By the converse
n n t ’ n’n n

Kolmogorov inequality, for every ftBI and p&#x3E;0, sup nElf(S nl,s nt-n n , n*
and therefore, lim n, ,Ef2(S , ( -ES , ’ s n’ )=.’(f)"n n n ’n’ 

and, by Theorem 2.2, -ES , ) - So,
’’n’ ’ n’ " .

there exists a centered Gaussian measure l’ on B such that 

By the previous argument and (3.5) we have then

Now, for the direct part of the theorem we only need to see that

~( ~) =~~ ( f) for every f E W ( hence for every f6B’). By previous

arguments, X(s nt so that ( again
justifying limits under the integral sign by Kolmogorov inequality)

for every 

"~ ~ ’ ’

b) The converse part. If is shift convergent, then
is relatively compact for every S&#x3E;O by Corollary 3.2.

If converges then, by a diazonal Drocedure.we can find
a subsequence lmlic-inli and a cr-finite measure with such

that v )I PC IAI Bc for every with and for t%&#x3E;.
J In r w r - t - J 



XXIV.15

Hence (i) is satisfied for the sequence By infinitesii"al-ity and

2.3, 1(3 n, c .-ES n, $ ) and are relatively shift compact, hence

relatively compact by 3.2 and 2.4( ii) . In particular 2.4(i) implies

that condition (iii) is Also,. whenever g(2E,)=0,
converges by 2.1, and therefore so does 

c in !

( 2. .( ii) ) . This implies that condition (ii) is satisfied for the

sequence Imll and for every (lim,,Ef 2(SEll -ES , ) exists
. 

m ii ,. . nl ;r
for every with by the Kolmocorov converse inequality

r_ 
u 

2
pnd, as a simple computation shows, lim -ES , )’ ’ 

m 
. m, m ,

(lim inf) is an increasing function of -c Then, the direct limit

theorem implies that the limit of 

where X is determined as before. By [161, p. iic- if 

r’ ( out side th; origin) , and

from this it follows that (i) and (ii) hold in fact for the whole

sequence 

Remarks. (1) For type p’ spac es, the direct part of the theorem is

true with condition (iii) replaced by

In this case the theorem simply results from putting together the

theorems;1.6, 1.7 and 2.7(i). This result contains the direct part
of the Hoffman-Jorgensen and Pisier CLT [123 and ,of the theorems on

domains of attraction in [63 and in [181 (which can be desymmetrized).

(2) Assume B satisfies: there exist Fk e B finite dimensional

with F+, E/Fk of cotype p for some ,pO (~2) and constant

CP such that P4w. Then the converse part of the theorem is truek 
with condition (iii) replaced by condition (iii)’. Again, in this

case the theorem can also be proved putting together 1.7 and 2.7(iii).

(3) Ii B is of coiype q, another necessary condition for the CLT

can be added, namely that (Theorem 2.4(i)).
n J nJø n ø

This theorem implies the well known fact that X e CLT in cotype 2 =&#x3E;

(4) Hilbert space can be characterized as the only Banach space where

Theor em 3.3 is true with condition (iii) replaced by (iii)’. In H

this condition takes the form lim, sup condition takes the form K n njS- ’
where e a cons. (A somewhat similar approachk n=!,,-+lk t k ( pp

to the CLT in Hilbert space is given in [10]; the tlaeorenls in section

1 and 2 were proved in Hilbert space by Varadhan 1173).



XXIV.16

(5) A Corollary to the previous theorem part, is the 

Khinchin representation in Panach: if p is sn infinitely divisible

p.m. on B, then there exists 3 centered Gaussian p.m. J ~ a vector 

and a Levy measure 1-". such’ P = a * For a direct

approach similar to the above and independent of the one-dimensional

see 6. This theorem was proved first by Araujo L43 and Dettwei-

? er C8J.

(6) Theorem 1.7 can be proved similarly to the converse part of

Theorem 3.3, but the proof is simpler. It is omitted.
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