Propriétés géométriques des sous-espaces invariants par translation de L 1 (G) et C(G)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1977-1978), Talk no. 26, 9 p.
@article{SAF_1977-1978____A20_0,
     author = {Lust-Piquard, Fran\c coise},
     title = {Propri\'et\'es g\'eom\'etriques des sous-espaces invariants par translation de $L^1 (G)$ et $C (G)$},
     journal = {S\'eminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1977-1978},
     note = {talk:26},
     language = {fr},
     url = {http://www.numdam.org/item/SAF_1977-1978____A20_0}
}
Lust-Piquard, F. Propriétés géométriques des sous-espaces invariants par translation de $L^1 (G)$ et $C (G)$. Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1977-1978), Talk no. 26, 9 p. http://www.numdam.org/item/SAF_1977-1978____A20_0/

[1] C. Bessaga et A. Pełczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. vol. 17 (1958). | Zbl 0084.09805

[2] W.F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. A.M.S. vol. 67 (1949) (theorem 11.2). | MR 36455 | Zbl 0034.06404

[3] Y. Katznelson, An introduction to harmonic analysis, New-York-Wiley (1968). | MR 248482 | Zbl 0169.17902

[4] E. Odell, H.P. Rosenthal, A double dual characterization of separable Banach spaces containing l1, Israël J. Math. Vol. 20 (1975) (Lemma 1). | MR 377482 | Zbl 0312.46031

[5] A. Pełczynski, Banach spaces on which every w.u.c. operator is weakly compact, C. R. Acad. Polon. des Sciences, vol. X.12 (1962).

[6] L. Schwartz, Exposés IV, V, VI, Séminaire Maurey-Schwartz 1974-75, Ecole Polytechnique. | Numdam

[7] I. Singer, Bases in Banach spaces, Springer Verlag (1970) (chapitre II, 15.7). | MR 298399 | Zbl 0198.16601