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I - INTRODUCTION

In this seminar we will discuss infinite-dimensional topologi-

cal groups. We will do this mainly in the spirit of Hilbert’s fifth

problem-In 1900 Hilbert asked among other questions the following :

Is every topological group that is locally homeomorphic to R , a Lie
n

group ? (For definitions we refer to [7j). Around 1950 this question

was given an affirmative answer as the result of the joint efforts of

several researchers (see [6J for a presentation of the solution).

Before this result was proved it had been proved that even weak dif-

ferentiability assumptions on the group operations imply that a group

is a Lie group. In 1938 G. Birkhoff r 1-1 proved that if in a locally

Euclidean group (x,y)-xy is continuously differentiable t.hen the group

is a Lie group. Birkhoff’s proof works also for groups which are

locally Banach -the definitions of Lie group and local Lie group extend

naturally to groups which are locally Banach. Much of the elementary

theory also carries over without much extra work. As an example of the

contrary we mention here in passing a fundamental problem to which we

do not know the answer in the infinite-dimensional case.

It is a classical theorem that a local Lie group is locally

isomorphic to a Lie group. In general, though, it is not true that a

local group is locally isomorphic to a topological group.

It was proved by Malcev [5J that this is true if and only if

the general associative law holds in some neighbourhood of the unit

element, that is if for all combinations

of brackets which make both sides well defined. We do not know, however,

whether an infinite-dimensional local Lie group is locally isomorphic

to an infinite-dimensional Lie group.

Between 1938 and 1950 Birkhoff’s result was improved in

several steps for locally Euclidean groups. We mention the result of

I. Segal [8J from 1946 which says that a group for which x ~ xy is con-

tinuously differentiable for every fixed y is a Lie group. In contrast

to Birkhoff’s proof Segal’s proof works only for finite-dimensional

groups since it strongly uses local compactness, for instance via tools

like Haar measure. We show below that Segal’s result generalizes to
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the infinite-dimensional case if we assume that (x,y)- xy is uniformly
continuous in some neighbourhood of the unit element. Without this

assumption, though, it does not generalize even if we assume that

x-xy is linear in x for every y.

Before showing this we make some definitions. Birkhoff’s

paper [1] motivates the first definition.

Definition 1 : A local group is an analytical local group if

A) the local group is a neighbourhood of 0 in a Banach space

and 0 is unit element and

B) (x,y)-xy is continuously Frechet differentiable is some

neighbourhood of 0.

Definition 2 : A local group is a left differentiable local group

if

A) the local group is a neighbourhood of 0 in a Banach space

and 0 is unit element and

B) x- xy is continuously Frechet differentiable for every y

in a neighbourhood of 0.

Definition 3 : A topological group is an L-group (= left linear group) if

A) a neighbourhood of the,unit element is a neighbourhood of 0

in a Banach space and 0 is unit element, .

B) xy ; y + T y x for all x and y in some neighbourhood of 0 where
T is a linear transformation.
y

Obviously an L-group is left differentiable.

2 - L-GROUPS

: Let G be the group of continuously differentiable homeo-

morphisms of [0,1] with f(0) = 0, f(1) = 1, f’ (x) &#x3E; 0 for all x. The

group operation is (f,g) - f O g and the metric d ( f , g ) = sup ! f I (x) - g’ ( x ) ~ .
x

It is easy to check that G is a topological group. By the map f-~f - x

G is mapped onto a neighbourhood of 0 in the Banach space of continuous-

ly differentiable functions on [0,I] with h(0)= h(1)= 0 and the norm

))h)j=sup)h’(x)!. After the mapping G is an L-group since
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But G is as a topological group not isomorphic to an analytical group,

which can be seen in many ways. For instance, in every neighbourhood

of the unit element e there are sequences f , 1 g s.t. f but

-1 
" 

n n n n

fn gn does not converge to e. Moreover, arbitrarily close to e there

areelements of G without square roots. Such elements are for instance

given by f’s which are linear with different derivatives a1 resp. a2
in the intervals resp. 1+ where e depends on a and a .2 2 1 2

If f = g 0 g, g E G then G would have to be linear in the neighbourhoods

of 0 and 1, which leads to a contradiction. In an analytical local

group every element close to 0 lies on a unique local one-parameter

subgroup and so, in particular, it has a square root.

Example 2 : Let G be the group of homeomorphisms of R with f(-oo) = _00

and f(+co) = +00 and with

1) uniformly continuous derivatives

2) inf f’(x)&#x3E;0
x

3) sup 
x

The same pathologies as in Example 1 occur in this group. In this group.

the element f = x - C, C constant has a continuum number of different

square roots, in contrast to Theorem 3 below.

In another type of L-group which is not an analytical

group is given. Groups of m times continuously differentiable homeo-

morphisms of R n can be equipped with many topologies which make them
into L-groups. It might be of interest to investigate what Lie group

properties are preserved by this class of groups. We give some examples

on this. We say that a topological group does not have small subgroups

if there is a neighbourhood U of e s.t. the only subgroup of G which is

contained in U is fel. An analytical group does not have small subgroups.

The L-groups in Ex. 1 and Ex. 2 do not have small subgroups. We now

prove that an L-group where the underlying Banach space is reflexive

does not have small subgroups. We do not know the answer for L-groups on

general Banach spaces.
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Theorem 1 : An L-group, for which the underlying Banach space is

reflexive, does not have small subgroups.

Proof : Assume that [yn} is a subgroup in Put

or

Since x/0 this is a contradiction.

An analytical local group has a one-parameter subgroup in

every direction, that is, for every zE B 4 a one-parameter subgroup

x(t) of G s.t. x’(0)=z. We do not know whether this is true for L-groups.

Since in an L-group

we see that with x’(0)= z such a subgroup would satisfy the differential.

equation x’(t) = Txz. In an L-group x- Txz need not be 1st order Lipschitz
in x and we do not know whether this equation has a solution.

After this discussion of L-groups we now turn to the general-

isation of Segal’s theorem.

3. LEFT DIFFERENTIABLE GROUPS

Theorem 2 : A left differentiable local group is an analytical local

group if and only if (x,y)- xy is uniformly continuous in some neigh-
bourhood of 0.

A complete proof of this can be found in [2J. The steps are

the following. With xy = y + f (x) we first prove that (x,y)- f’(x) is
Y y

continuous in both variables simultaneously in the norm topology for

f’(x). This uses the assumption that (x,y)-xy is uniformly continuous
y 

’ °
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and so it is not true in general for L-groups. Once this is done we

know that f’(x) is close to the identity operator if x and y are suf-

I*i(-iviii ly close to 0, say Ilf’ Y (x) - III !5: s.

WWh tlliN we get

This gives

and from this inequality we obtain that x- yx is first order Lipschitz

uniformly in y. By repeating the argument a couple of times we get

that in fact x - yx is continuously Fréchet differentiable and so that

(x,y) -~ xy is continuously Fréchet differentiable.

4. GROUPS WITH LOCALLY UNIFORMLY CONTINUOUS GROUP MULTIPLICATION

In this section we remark that several results for locally

compact groups are true also for groups with locally uniformly conti-

nuous group multiplication and several results for compact groups are

true also for groups with uniformly continuous group multiplication.

For a discussion of this and for uniform structures we refer to 131
and [4]. In view of example 2 where we do not have small subgroups

but still x2 = y2, x/y arbitrarily close to e we mention the following
result,(see [2] ).

Theorem 3 : Let G be a topological group without small subgroups

s.t. (x,y)- xy is locally uniformly continuous in some uniform struc-

ture on G. Then there is a nei ghbourhood U of e s.t. if x E U, y E U
2 2

and x2 _ y , then x = y.
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5. CONSTRUCTION OF SQUARE ROOTS IN COMMUTATIVE GROUPS

In this section we will remove the differentiability assumption
on the group operation and work instead with some Lipschitz condition

or uniform continuity. There seems to be no result at all for non-commu-

tative groups in this more general situation. So even the following

problem seems to be open : is there a locally Hilbert local group where

(x,y)- xy satisfies a first order Lipschitz condition in some neighbour-
hood of 0 and for which x 3 =0 for all x ?

In such a group there would, of course, be no one-parameter

subgroup.

For commutative groups, though, there is a method for construct-

ing square roots by using n-dimensional cubes as defined below. The

construction of square roots is a first step towards the construction

of one-parameter subgroup . With some control over the position of

the square root as in Theorem 6 below we get that every element of the

group lies on a one-parameter subgroup. However the question of unique-

ness of square roots under the assumptions of Theorem 6 remains open.

The simple proof of Theorem 4 below gives the main argument in this

section.

Definitions : We say that a set of 2n-points in a metric linear space
is an n-dimensional cube if the points are indexed.by all n-vectors

with the integers 0 and 1. There are 2n such vectors. We say that a

pair of points for which the indexes differ in exactly one coordinate

is an edge. We say that a pair of points for which the indexes differ

in exactly m coordinates is an m-diagonal.

Definition : We say that a Banach space has roundness p if for all

quadruples of points we have

Definition : We say that a Banach space is p-smooth if ~ C &#x3E; 0 such

that
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for all x and y.

We have the following propositions

Proposition 1 : If in a Banach space B

for all x and y, then B has roundness p.

The proof is given in [3].

Proposition 2 : If a Banach space has roundness p, p &#x3E; 1, then it is

p-smooth. If a Banach space is p-smooth, p &#x3E; 1, then it has roundness

po for some p 0 &#x3E; 1.

Proof : The first part is trivial. For the second part, assume that

there is no such p . Then by Prop. 1 we could find a sequence of points
o

and a sequence such that

It is easy to see that for any such sequence we would have y n- 0. But for

11 Ynil sufficiently small and pn sufficiently close to 1 this contradicts

p-smoothness. 
°

Proposition 3 : In an n-dimensional cube in a space with roundness p

we have

u p

where s runs through the lengths of the edges and d Q runs througha n ? P
the lengths of the n-diagonals.

The proof is an easy induction by the dimension. We get

Corollary : In an n-dimensional cube in a space with roundness p &#x3E;1
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where s is the maximal length of an edge and d . is the minimal
max 

° ° 

length of an n-diagonal.

We do not know whether Proposition 1 generalizes to higher

dimensions, so we have the following question : if a Banach space B

has type p is it then true that 4 K such that for all n and all

n-dimensional cubes in B we have

We now turn to the construction of square roots.

Theorem 4 : If a Banach space B with roundness p is given a commuta-

tive groups structure (x,y - xy s.t. uniformly

in y as x- zBB - 0 then the set of elements of the form x2 is dense in B.

Proof : We assume that 0 is the unit element of the group. Consider a

zE B and for every n form the elements
I I n

Then Form the n-dimensional cube consisting of the 2n

products

where these 2n points are indexed in an obvious way. In this n-dimensional

cube we have by assumption 0 ( .. ) as so by the corol-
max nI/P

lary of Proposition 3 we have d . = o(I) as n-4-. But if (dl,d2) is
1 2

an n-diagonal then d 1 d 2 = z. Thus zil- 0 and the theorem is
proved.

Remark : In Theorem 4 we have given the whole Banach space a group

structure. We do not know whether the local version of this theorem

is true. The argument does not give a good control over the position

of the square root.

In the next theorem we will only assume uniform continuity

of the group multiplication. The conclusion is only that maxd(x,M) 00
where M is the set of elements of the form x2 but on the other hand
we can introduce a metric which gives us these "approximative square

roots" at about half the distance to 0.
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Theorem 5 : Let B be a Banach space with roundness p, p &#x3E; 1, and let

(x,y)-~xy be a commutative group structure on B s.t. (x,y)-~xy is

uniformly continuous and 0 is unit. Then there is a group invariant

metric d on B, d » )) II , and constants K1 and K2 such that for each
z E B there is an x E B such that

A complete proof of this can be found in ~3~. We sketch it

here. First introduce a metric d’ in B by d’ (x,y) = sup Ilxz - yzll. So

z

d’ is group invariant and II . Then choose an E &#x3E; 0 and let d(x,y)
be infimum of lengths of e-chains between x and y in the d’-metric.

An 6-chain is a sequence of points x = zo’ z1, z2 ... z = y such that

The length of the chain is With this

...... 

i 
.

definition d is group invariant and d &#x3E; )) )). Moreover 4 K such that if

d(x,y) then

To construct a square root of z, take an 6-chain 0=z ,z ,....,z =z
between 0 and z of almost minimal length. Let y . _ z . and form

J J J-
the n-dimensional cube with the points yk yk " ’ yk ’ * Since the

1 2 r

edges here have lengths  e in 11 II the shortest n-di agonal (d1’ d2)
has length K Ke:.n1/p in d which is of a smaller order of magnitude
than d(z,0) which is about en. Since d1 and d2 are near each other
their distance to 0 must be about since ... z is an

2 o I n

E-chain of almost minimal length. Repetition of this argument with z

replaced by z . d 1 2 will complete the proof.

With the stronger assumption that (x,y)-~xy is first order

Lipschitz we can get Theorem 5 for local groups.

Theorem 6 : Let U be a neighbourhood of 0 in a Banach space with

roundness p, p &#x3E; 1. Let (x,y)- xy be a local commutative group struc-

ture on U with 0 as unit, s.t. (x,y)- xy is first order Lipschitz.



X-XI.10

Then there is a group invariant metric d(x,y) on some neighbourhood U

of 0 s.t. for every Z in V, and every E &#x3E; 0, ~ x in V s. t. z = x2 and
ld(z,0) - 2d(x,0) ~ 1 s e.

The proof of this is similar to that of Theorem 5 but we

replace the minimal length of e-chain by minimal arc-length. It is

clear that the assumption roundness &#x3E; 1 can be weakened in Theorem 6;

we do not know exactly how much. Perhaps the Radon-Nikodym property

is enough.

6. AN APPLICATION TO UNIFORM HOMEOMORPHISMS BETWEEN TOPOLOGICAL LINEAR

SPACES

The existence of approximate square roots at approximatively

half the distance to 0 as is given by Theorem 5 gives us new informa-

tion if we assume that the group is the additive group of a locally

bounded topological linear space [as for instance the L P -spaces, 0pl].
In this situation Theorem 5 will enable us to construct a norm on the

topological linear space and so we get the following

Theorem 7 : If a locally bounded topological linear space is uniform-

ly homeomorphic to a Banach space with roundness &#x3E;.1, then it is a

normable space.

The complete proof of this is given in [3].

Corollary : : is not uniformly homeomorphic to L (0,1), if

We do not know whether roundness &#x3E; 1 can be replaced by uni-

form convexity or even reflexivity in Theorem 7. And we do not know

whether the Corollary is true for q= 1, or whether it is true that

L P ( o,1 ) is not uniformly homeomorphic to L q ( o,1 ) if p ~ q, 0  p  1,

0 q 1.
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