SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

A. SZANKOWSKI
 The space of all bounded operators on Hilbert space does not have the approximation property

Séminaire d'analyse fonctionnelle (Polytechnique) (1978-1979), exp. no 14 et 15, p. 1-A7
<http://www.numdam.org/item?id=SAF_1978-1979 \qquad A13_0>

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ECOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES

plateau de palaiseau - 91128 palaiseau cedex

Téléphone : 941.82.00 - Poste No
TElex : ECOLEX 691596 F

S E M I N A I R E D'A N A L Y S E F O N C T I O N N E L L E 1978-1979

THE SPACE OF ALL BOUNDED OPERATORS ON HILBERT SPACE
 DOES NOT HAVE THE APPROXIMATION PROPERTY

A. SZANKOWSKI
(Université de Copenhague)

A Banach space X is said to have the approximation property if the identity operator on X can be approximated uniformly on every compact subset of X by finite rank operators.

We prove the result stated in the title of this talk (or, rather, present the main ideas leading to the proof).

1. INTRODUCTION

Grothendieck discovered [2] that a Banach space X does not have the approximation property if and only if there exists $\beta \in X^{*} \widehat{\otimes} X$ such that

$$
\begin{equation*}
\operatorname{tr} \beta=1 \text { and }\|\beta\|_{V}=0 \tag{1}
\end{equation*}
$$

where, for $\beta=\Sigma \psi_{\alpha} \otimes \mathbf{x}_{\alpha}$ with $\Sigma\left\|\psi_{\alpha}\right\|\left\|\mathbf{x}_{\alpha}\right\|<\infty, \psi_{\alpha} \in X^{*}, \mathbf{x}_{\alpha} \in \mathrm{X}$, we set

$$
\begin{gathered}
\operatorname{tr} \beta=\beta\left(\operatorname{Id}_{\mathrm{X}}\right)=\Sigma \psi_{\alpha}\left(\mathbf{x}_{\alpha}\right) \\
\|\beta\|_{V}=\sup \left\{\Sigma \psi_{\alpha}(\mathbf{x}) \mathbf{x}^{*}\left(\mathbf{x}_{\alpha}\right): \mathbf{x}^{*} \in \mathbf{X}^{*}, \mathbf{x} \in \mathbf{X},\left\|\mathbf{x}^{*}\right\| \leq 1,\|\mathbf{x}\| \leq 1\right\}
\end{gathered}
$$

(We regard, as usual, a $\beta \in X^{*} \widehat{\otimes} X$ as a functional on $L(X, X)=$ the space of bounded linear operators from X into X where, for $T \in L(X, X)$,

$$
\beta(T)=\Sigma \psi_{\alpha}\left(\mathbf{T x}_{\alpha}\right) \quad \text { if } \quad \beta=\Sigma \psi_{\alpha} \otimes \mathbf{x}_{\alpha}
$$

Enflo solved the approximation problem [1], apparently, quite independently of the ideas of [2]. Enflo's idea, however, can be seen as a development of Grothendieck's :

The difficult part of (1) is, of course, the condition $\|\beta\|_{V}=0$. This is, in a way, an extrinsic condition, i.e. it depends on the whole space X rather then on β alone. Enflo circumvented this difficulty in the following way : suppose that $\beta_{n} \in X^{*} \otimes X, n=1,2, \ldots$ satisfy conditions :

Standard_notation : $\mathbb{C}=$ complex numbers, $T=\{z \in \mathbb{C}:|z|=1\}$ for a set A, $|A|=$ the cardinality of $A,{ }_{A}=$ the indicator function of $A .[t]=$ entier of t.
(*)

$$
\operatorname{tr} \beta_{\mathbf{n}}=1 \text { for } n=1,2, \ldots
$$

($* *$)

$$
\lim _{n} \beta_{n}(T)=0 \text { if rk } T=1
$$

($\because * *$)

$$
\sum_{n=1}^{\infty}\left\|\beta_{n+1}-\beta_{n}\right\|_{\wedge}<\infty
$$

Then $\beta=\beta_{1}+\sum_{n=1}^{\infty}\left(\beta_{n+1}-\hat{r}_{n}\right)=\lim \beta_{n}$ belongs to $X^{*} \hat{\otimes}^{\prime} X$ and satisfies (clearly) condition (1) and therefore X fails the approximation property. The crucial point of Enflo's method is that the condition ($\%$) is quite easy to control. To illustrate this, let us look at the typical situation where

$$
\beta_{n}=2^{-n} \sum_{j=2^{n}}^{2^{n+1}-1} y_{j}^{*} \otimes y_{j}
$$

with $\left\|\mathbf{y}_{\mathrm{j}}^{\boldsymbol{*} \|}\right\|_{\mathrm{j}}=\|=\mathrm{y}_{\mathrm{j}}^{*}\left(\mathrm{y}_{\mathrm{j}}\right)=1$ for all j .
Then (${ }^{*} *$) is obviously satisfied if either $y_{j}^{*} \xrightarrow{w^{*}} 0$ or $y_{j} \xrightarrow{w} 0$, which usually follows automatically from (* $_{*}{ }^{*}$) . In this way the whole problem is, practically speaking, reduced to the condition ($\%$ 若) . This condition is already "intrinsic", i.e. it can be settled by looking at a single representation $\beta_{n}-\beta_{n+1}=\sum \varphi_{a} \otimes u_{a}$.

We shall proceed from these ideas.

2. A CRITERION FOR FAILING THE APPROXIMATION PROPERTY.

It will be convenient to work with the uniform version of condition ($\because *$). This amounts to

$$
\left\|\beta_{n}\right\|_{v} \longrightarrow 0
$$

For a finite set J and $\Phi=\left(\varphi_{a}, z_{a}: a \in J\right)$ with $\varphi_{a} \in X^{*}, z_{a} \in X$, we denote
 following simple estimate of $\left\|\|_{V}\right.$. For Φ like above let

$$
\sigma(\Phi)=\max _{|\varepsilon(\mathbf{a})|=1}\left\|\sum_{a \in J} \varepsilon(\mathbf{a}) \varphi_{\mathbf{a}}\right\| \max _{\mathbf{a} \in J}\left\|_{\mathbf{a}}\right\|
$$

We have

$$
\begin{equation*}
\|\beta(\Phi)\|_{V}=\pi(\Phi) \tag{2.0}
\end{equation*}
$$

$$
\begin{aligned}
& \Sigma\left|\varphi_{\mathbf{a}}(\mathbf{x}) \mathbf{x}^{*}\left(\mathbf{z}_{\mathbf{a}}\right)\right| \leq\left\|\mathbf{x}^{*}\right\| \max \left\|\mathbf{z}_{\mathbf{a}}\right\| \Sigma\left|\varphi_{\mathbf{a}}(\mathrm{x})\right|= \\
& =\left\|x^{*}\right\| \max \left\|z_{a}\right\| \Sigma \varepsilon(a) \varphi_{a}(x)=\left\|x^{*}\right\| \max \left\|z_{a}\right\|\left(\Sigma \varepsilon(a) \varphi_{a}\right)(x) \leq \\
& \leq \max \left\|\mathbf{z}_{\mathbf{a}}\right\|\left\|\Sigma \varepsilon(\mathbf{a}) \varphi_{\mathbf{a}}\right\|\left\|\mathbf{x}_{\|}\right\| \mathbf{x}^{*}\|\leq \sigma(\Phi)\| \mathbf{x}\| \| \mathbf{x}^{*} \| .
\end{aligned}
$$

In estimating the norms $\|\| \wedge$ we shall use the following two standard lemmas. Let A be a finite set, let X and Y be Banach spaces and let $u_{a} \in X, \varphi_{a} \in Y$ for $a \in A$. The $\operatorname{set}\left(\varphi_{a}, u_{a}: a \in A\right)$ will be called sufficiently unconditional if there exist functions (changes of signs) $\varepsilon_{1}, \ldots, \varepsilon_{\ell}: A \rightarrow T$ such that

$$
\begin{equation*}
\left\|\sum_{a \in A} \overline{\varepsilon_{j}(a)} u_{a}\right\|=\left\|\sum_{a \in A} u_{a}\right\| \quad \text { for } \quad j=1, \ldots, \ell \tag{2.1}
\end{equation*}
$$

$$
\begin{array}{ll}
\left\|\sum_{a \in A} \varepsilon_{j}(a) \varphi_{a}\right\|=\left\|\sum_{a \in A} \varphi_{a}\right\| & \text { for } j=1, \ldots, \ell \\
\ell \tag{2.3}\\
\sum_{j=1}^{\ell} \varepsilon_{j}(a) \varepsilon_{j}(b)=0 & \text { for } a \neq b
\end{array}
$$

Lemma 2.1 : If $\left(\varphi_{a}, u_{a}: a \in A\right)$ is sufficiently unconditional, then

$$
\left\|\sum_{a \in A} \varphi_{a} \otimes \mathbf{u}_{\mathbf{a}}\right\|\left\|_{\wedge} s\right\| \sum_{\mathbf{a} \in \mathbf{A}} \varphi_{\mathbf{a}}\| \|_{\mathbf{a} \in \mathbf{A}} \mathbf{u}_{\mathbf{a}} \|
$$

$\underline{\text { Proof }}:$ It is an obvious application of the invariance of the trace. Let $\varepsilon_{1}, \ldots, \varepsilon_{\ell}$ be like in the definition. We have, by (2.3),

$$
\begin{aligned}
& =\sum_{\mathbf{a}, \mathbf{b}}\left(\sum_{\mathbf{j}} \varepsilon_{\mathbf{j}}(\mathrm{a}) \overline{\varepsilon_{\mathrm{j}}(\mathrm{~b})}\right) \varphi_{\mathbf{a}} \otimes \mathbf{u}_{\mathbf{b}}=\ell \sum_{\mathbf{a}} \varphi_{\mathbf{a}} \otimes \mathbf{u}_{\mathbf{a}} .
\end{aligned}
$$

Therefore, by (2.1) and (2.2),

$$
\begin{aligned}
\ell\left\|\Sigma \varphi_{\mathbf{a}} \otimes \mathbf{u}_{\mathbf{a}}\right\|_{\boldsymbol{\Lambda}} & \leq \sum\left\|_{\mathbf{j}}\right\| \bar{z} \varepsilon_{\mathbf{j}}(\mathbf{a}) \varphi_{\mathbf{a}}\| \| \Sigma \overline{\varepsilon_{\mathbf{j}}(\mathbf{a}) \mathbf{u}_{\mathbf{a}} \|=} \\
& =\ell\left\|\Sigma \varphi_{\mathbf{a}}\right\|\left\|\Sigma \mathbf{u}_{\mathbf{a}}\right\|
\end{aligned}
$$

which proves the lemma.

We have the following well known and obvious :

Lemme 2.2 : Let $A \subset C \times D$ and let $u_{c, d}, \varphi_{c, d}: c \in C, d \in D$ be such that for any $\theta: C \rightarrow T, \eta: D \rightarrow T$,

$$
\begin{aligned}
& \left\|\sum_{(c, d) \in A} \theta(c) \eta(d) u_{c, d}\right\|=\left\|\sum_{(c, d) \in A} u_{c, d^{\prime}}\right\|^{\|} \varphi_{c, d} \| \\
& \left\|\sum_{(c, d) \in A} \theta(c) \eta(d) \varphi{ }_{c, d}=\right\| \sum_{(c, d) \in A}
\end{aligned}
$$

Then $\left(\varphi_{a} ; u_{a}: a \in A\right)$ is sufficiently unconditional.

Now we can formulate our main technical proposition. We shall use the Enflo' \because pattern from $§ 1$ with $\beta_{n}=\beta\left(\Phi_{n}\right)$ where $\Phi_{n}=\left(\varphi_{a}, z_{a}: a \in J_{n}\right)$ with $\varphi_{a} \in X^{*}, z_{a} \in X$. In our proposition we combine two simple ideas :

1o) ($\left.\varphi_{a}: a \in J_{n}\right)$ and $\left(\varphi_{a}: a \in J_{n-1}\right)$ are related by a "martingale condition" : we assume that there exist $x_{n}: J_{n} \xrightarrow{\text { onto }} J_{n-1}$ such that

$$
\begin{equation*}
\varphi_{a}=\sum_{\left\{b: x_{n}(b)=a\right\}} \varphi_{b} \text { for every } a \in J_{n-1}, n=2,3, \ldots \tag{2.4}
\end{equation*}
$$

Then we have, obviously,

$$
\begin{array}{r}
\beta_{n-1}-\beta_{n}=\sum_{b \in J_{n}} \varphi_{b} \otimes{\stackrel{\circ}{z_{b}}} \quad \text { where } \\
\mathbf{z}_{b}=z_{n}(b)-z_{b} \quad \text { for } \quad b \in J_{n}, \quad n=2,3, \ldots
\end{array}
$$

20) To estimate $\left\|\sum_{b \in J_{n}} \varphi_{b} \otimes \dot{z}_{b}\right\|_{\Lambda}$, we partition J_{n} as, let us say, $J_{n}=A_{1} \cup A_{2} \cup \ldots U A_{\nu}, A_{j}$ pairwise disjoint, and estimate the norms $\| \sum_{b \in A_{j}} \varphi_{b} \otimes{\stackrel{\circ}{Z_{b}} \|_{\Lambda}}$ separately using Lemma 2.1. The main idea behind "partitioning" is that, when the sizes of A_{j} are small enough, then there is, practically speaking, no dependence between $\sum_{b \in A_{j}} \varphi_{b}$ and $\sum_{b \in A_{j}}{\stackrel{\circ}{Z_{b}}}$, and therefore, their norms can be made small simultaneously.

We summarize these remarks in the following :

Proposition 2.3 : Let $J_{n}, n=1,2, \ldots$ be finite sets, let $\Phi_{n}, X_{n}, \dot{Z}_{b}$ be as above (in particular, we assume that the "martingale condition" (2.4) is satisfied). Assume that

$$
\begin{gather*}
\operatorname{tr}\left(\Phi_{n}\right)=1 \text { for } n=1,2, \ldots \tag{2.5}\\
\sigma\left(\Phi_{n}\right) \longrightarrow 0 \text { as } n \rightarrow \infty \quad . \tag{2.6}
\end{gather*}
$$

For $n=1,2, \ldots$ let Δ_{n} be a partition of J_{n} such that
(2.7) the $\operatorname{set}\left(\varphi_{a}, \stackrel{\circ}{z}_{a}: a \in A\right)$ is sufficiently unconditional for every $A \in \Delta_{n}, n=1,2, \ldots$
(2.8)

Then X does not have the approximation property.
 (2.5) and ($* *$) follows from (2.6), by (2.0). Therefore we should only check condition ($*_{*}^{*}$). We have

$$
\beta_{\mathbf{n - 1}}-\beta_{\mathbf{n}}=\sum_{\mathbf{b} \in J_{\mathbf{n}}} \varphi_{\mathbf{b}} \otimes \stackrel{\circ}{\mathbf{z}}_{\mathbf{b}}=\sum_{A \in \Delta_{\mathbf{n}}} \sum_{\mathbf{b} \in \mathrm{A}} \varphi_{\mathbf{b}} \otimes{\stackrel{\circ}{\mathbf{z}_{b}}}
$$

By (2.7) and Lemma 2.1

$$
\left\|\sum_{\mathbf{b} \in \mathbf{A}} \varphi_{\mathbf{b}} \otimes \stackrel{\circ}{\mathbf{z}}_{\mathbf{b}}\right\| \leq\left\|\sum_{\mathbf{b} \in \mathbf{A}} \varphi_{\mathbf{b}}\right\|\left\|_{\mathbf{b} \in \mathbf{A}} \stackrel{\circ}{\mathbf{z}}_{\mathbf{b}}\right\|
$$

Therefore

$$
\left\|\beta_{n-1}-\beta_{n}\right\| \leq\left|\Delta_{n}\right| \max _{A \in \Delta_{n}}\left\|\sum_{a \in A} \varphi_{a}\right\|\left\|\sum_{a \in A}{\stackrel{\circ}{z_{a}}}_{a}\right\|
$$

and ($\because * *$) follows by (2.8).

Remark : A simple form of the "martingale condition" (2.4) (used in [9] but not in the present paper is : $J_{n}=\left\{2^{n}+1, \ldots, 2^{n+1}\right\}$ for $n=1,2, \ldots$ and $\varphi_{j}=\varphi_{2 j-1}+\varphi_{2 j}$.
3. $\mathbb{B}(H)$, NOTATION AND SIMPLE FACTS.

The inner product in any Hilbert space will be denoted $\langle\mathrm{f} \mid \mathrm{g}\rangle$; $f \perp g$ means $<f \mid g>=0$ and, for subspaces H_{1} and $H_{2}, H_{1} \perp H_{2}$ means $f \perp g$ for every $f \in H_{1}, g \in H_{2}$.

Given Hilbert spaces H_{1}, H_{2}, we denote by $\mathbb{B}\left(H_{1}, H_{2}\right)$ the space of bounded linear operators from H_{1} to H_{2}, equipped with the operator norm $\left\|\|_{\infty}\right.$.

Let H_{1}, H_{2} be Hilbert spaces, let $\mathbb{B}=\mathbb{B}\left(H_{1}, H_{2}\right)$. Let $x \in \mathbb{B}$. If rk $x<\infty$, then we can define its "inner product" with any $y \in \mathbb{B}$ by the formula

$$
\begin{equation*}
\langle y, x\rangle \stackrel{\text { def }}{=} \operatorname{tr} x^{*} y \tag{3.1}
\end{equation*}
$$

By this formula x will be identified as an element of \mathbb{B}^{*}, denoted here by x. It is well known that

$$
\|\underline{x}\|_{\mathbb{B}}{ }^{*}=\|x\|_{1} \stackrel{\text { def }}{\underline{n}} \operatorname{tr}\left(x x^{*}\right)^{1 / 2}
$$

By $R(x), \theta(x)$ we denote the range and the domain of x, respectively. We shall only use some most elementary facts about the norms $\left\|\|_{p}\right.$:
(3.2) if $r k x=1$, then $\|x\|_{1}=\|x\|_{\infty}=\langle x, x\rangle^{1 / 2}$.
(3.3) if $x=\sum_{a \in A} x_{a}$ with $R x_{a} \perp R x_{b}, ~ \theta x_{a} \perp \theta_{x_{b}}$ for $a \neq b, a, b \in A$,
then

$$
\|\mathbf{x}\|_{\infty}=\max _{\mathbf{a} \in \mathbf{A}}\left\|\mathbf{x}_{\mathbf{a}}\right\|_{\infty}
$$

(3.4) if y, z are isometries (onto) of H_{1}, H_{2}, respectively, then

$$
\|\mathbf{z x y}\|_{p}=\|\mathbf{x}\|_{p} \quad \text { for } p=1, \infty \text { and }\langle z x y, z x y\rangle=\langle x, x\rangle
$$

As a corollary of (3.4) we note
(3.5) let $x=\stackrel{x_{c, d} \text { with }}{(c, d) \in A}$

$$
R x_{c, d} \perp \mathcal{R x}_{e, f} \quad \text { if } c \notin e \quad \text { and } \mathcal{D r}_{c, d} \perp \mathcal{D x}_{e, f} \quad \text { if } d \notin f
$$

Then for every choice of signs $\theta(c) \in \mathbb{T}, \eta(d) \in T$,

$$
\|x\|_{p}=\left\|\sum_{(c, d) \in A} \theta(c) \eta(d) x_{c, d}\right\|_{p} \quad \text { for } p=1, \infty
$$

Notice that (3.5) is indeed a consequence of (3.4):
The assumptions of (3.5) say that there exist direct sum decompositions

$$
\mathrm{H}_{1}=\sum_{\mathrm{d}} \oplus \mathrm{H}_{1}^{\mathrm{d}} \quad, \quad \mathrm{H}_{2}=\sum_{\mathrm{c}} \oplus \mathrm{H}_{2}^{\mathrm{c}}
$$

so that $\mathscr{R} x_{c, d} \subset H_{2}^{c}, \mathcal{D x}_{c, d} \subset H_{1}^{d}$ for every c, d.

and Γ_{2} are isometries of H_{1}, H_{2}, respectively, and we have

$$
\Sigma \theta(c) \eta(d) x_{c, d}=\Gamma_{2} \circ \mathbf{x} \circ \Gamma_{1}
$$

An $x \in \mathbb{B}$ will be called an α-homothety if $\|x(f)\|=\alpha\|f\|$ for every $f \in H_{1}$. It will be called a partial homothety if it is a homothety on its domain (i.e. if it is the form yp where y is a homothety and p is an orthogonal projection). It is easy to see that
(3.6) if x is a partial homothety, then $\|x\|_{1}\|x\|_{\infty}=\langle x, x\rangle^{1 / 2}$.

Otherwords, a partial homothety is selfnormalizing. By (3.2), rank one operators are also selfnormalizing. Let (K, μ) be a measure space. By i_{K} we denote the identity on $L_{2}(K, \mu)$. If $S \subset K$, then 1_{S} denotes the indicator function on S and p_{S} denotes the projection in $L_{2}(K, \mu)$ defined by $p_{S} f=\mathbf{f} \cdot{ }^{1}{ }_{S}$.

Let K be a finite set, let the measure μ_{K} be defined by $\mu(\{a\})=|K|^{-1}$ for all $a \in K$. We define $L_{2}(K)=L_{2}\left(K, \mu_{K}\right)$.

Let A, B be finite sets. By $M(A, B)$ we denote the set of all
$A \times B$ matrices, i.e. of functions from $A \times B$ into \mathbb{C}. Given an $x \in \mathbb{B}\left(L_{2}(B), L_{2}(A)\right)$ we shall identify it in the usual way as an element $x \in M(A, B)$. For $a \in A, b \in B$ we define $\varepsilon_{a, b} \in M(A, B) b y$

$$
\varepsilon_{a, b}(c, d)= \begin{cases}1 & \text { if } a=c, b=d \\ 0 & \text { otherwise }\end{cases}
$$

Let $x \in M(A, B), y \in M(C, D)$. We define $x \otimes y \in M(A \times C, B \times D)$ as usual:

$$
(x \otimes y)(a, c ; b, d)=x(a, b) y(c, d)
$$

We shall need the following simple facts

$$
\begin{equation*}
\langle\mathbf{x} \otimes \mathbf{y}, \mathbf{u} \otimes \mathbf{v}\rangle=\langle\mathbf{x}, \mathbf{u}\rangle\langle\mathbf{y}, \mathbf{v}\rangle \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\|x \otimes y\|_{p}=\|x\|_{p}\|y\|_{p} \quad \text { for } p=1, \infty \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } x \text { and } y \text { are homotheties, then so is } x \otimes y \tag{3.9}
\end{equation*}
$$

(3.10) if $R x \perp R u$, then $R(y \otimes x) \perp R(z \otimes u)$ for every $y, z \quad$.

For usc in formula (7.9) we introduce the following ad hoc notation : let $G=F \times F$ where we write $\theta \in G$ as $\theta=\left(\theta^{o}, \theta^{1}\right)$ with $\theta^{o}, \theta^{1} \in F$. For $x, y \in M(F, F)$ we define $x!y \in M(G, G)$ by

$$
\begin{equation*}
(\mathbf{x} \dot{\otimes} \mathbf{y})\left(\theta^{\mathbf{o}}, \theta^{1} ; \zeta^{\mathbf{o}}, \zeta^{1}\right)=\mathbf{x}\left(\theta^{1}, \zeta^{\mathbf{o}}\right) \mathbf{y}\left(\theta^{\mathbf{o}}, \Gamma_{0}^{1}\right) \tag{3.11}
\end{equation*}
$$

Clearly, $\stackrel{!}{\otimes}$ has the properties (3.7)-(3.10).

$$
\text { If } x \in M(A, B), \text { then } x^{t} \in M(B, A) \text { denotes the transpose of } x
$$ Clearly

4. THE FORMAL PATTERN OF THE CONSTRUCTION

The construction is done in two steps :
1^{0} defining for an arbitrary $\ell<\infty \quad \Phi_{1}, \ldots, \Phi_{2} \ell$ so that the conditions (2.4)-(2.8) of Proposition 2.4 are satisfied (with estimates in (2.6), (2.8) independent of ℓ).
2^{0} passing with ℓ to ∞.
Step 1^{0} is the bulk of the construction ; step 2^{0} involves some further technical complications and we skip it in this note.

Let r_{1}, r_{2}, \ldots be some natural numbers. Let $G_{n}=\left\{1, \ldots, r_{n}\right\}$
and let $\mu_{n}=\mu_{G_{n}}$ i.e. $\mu_{n}(\{j\})=r_{n}^{-1}$ for $j=1, \ldots, r_{n}$.
Let us put $K_{n}=G_{1} \times \ldots \times G_{n}$. We shall work with the space of matrices $M\left(K_{\ell}, K_{\ell}\right)$ which is identified with $\mathbb{B}\left(L_{2}\left(K_{\ell}\right), L_{2}\left(K_{\ell}\right)\right.$) as indicated in § 3. For $\xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in K_{m}$ we define $I_{\xi} \subset K_{\ell}$ and $p_{\xi} \in \mathbb{B}\left(L_{2}\left(K_{\ell}\right), L_{2}\left(K_{\ell}\right)\right)$ by
(4.1) $I_{\xi}=\left\{\eta=\left(\eta_{1}, \eta_{2}, \ldots\right) \in K_{\ell}: \eta_{1}=\xi_{1}, \ldots, \eta_{m}=\xi_{m}\right\} \quad$ and $\quad p_{\xi}=p_{I_{\xi}}$. We define also $K^{n}=G_{n} \times G_{n+1} \times \cdots \times G_{\ell} \cdot$ We set

$$
\begin{equation*}
J_{1}=K_{1}, \quad J_{2 n}=K_{n} \times K_{n}, \quad J_{2 n+1}=K_{n} \times K_{n+1} \quad \text { for } n=1,2, \ldots \tag{4.2}
\end{equation*}
$$

Let us make the following notational convention :

$$
\begin{gathered}
\text { When we write } a=(\xi, \eta) \in J_{m} \text {, we always mean } \\
\xi=\left(\xi_{1}, \ldots, \xi_{\left[\frac{1}{2}(m)\right]}\right) \quad, \quad \eta=\left(\eta_{1}, \ldots, \eta_{\left[\frac{1}{2}(m+1)\right]}\right) \text { with } \xi_{j}, \eta_{j} \in G_{j} .
\end{gathered}
$$

We define $x_{m}: J_{m} \rightarrow J_{m-1}$ in the following way $:$ for $\xi \in K_{m}$ let $\dot{\xi}=\left(\xi_{1}, \ldots, \xi_{m-1}\right)$. For $b=(\xi, \eta) \in J_{m}$ we define

$$
u_{\mathbf{m}} \mathbf{b}=\left\{\begin{array}{lll}
(\dot{\xi}, \eta) & \text { if } & m \\
\text { is even } \\
(\xi, \dot{\eta}) & \text { if } \quad & \text { is odd }
\end{array}\right.
$$

In § 5 we shall define a matrix $z \in M\left(K_{\ell}, K_{\ell}\right)$ which is the main ingredient of the whole construction. We set then for $\xi \in K_{m}, \eta \in K_{n}$

$$
\begin{equation*}
\mathbf{z}_{\xi, \eta}=\mathbf{p}_{\xi} \mathbf{z} \mathbf{p}_{\eta} \quad, \quad \varphi_{\xi, \eta}=\underline{z}_{\xi}, \eta \tag{4.3}
\end{equation*}
$$

We see that (2.4) is evidently satisfied. Condition (2.5) is equivalent to

$$
\begin{equation*}
\langle\mathrm{z}, \mathrm{z}\rangle=1 \tag{4.4}
\end{equation*}
$$

We shall construct z so that
(4.5) all entries of z have absolute value K_{l}^{-1} which obviously implies (4.4).

To see what becomes of condition (2.6), let $\varepsilon($ a) be any numbers of absolute value 1 , for $a \in J_{n}$. Then, by (4.5), all entries of the matrix $\sum_{a \in J_{n}} \varepsilon(a) z_{a}$ have absolute value $\left|K_{\ell}\right|^{-1}$. Hence
(4.6)

$$
\sigma\left(\Phi_{n}\right) \leq\left|K_{\ell}\right|^{1 / 2} \max _{a \in J}\left\|z_{a}\right\|_{\infty}
$$

To see that this leads to a desired estimate, let us anticipate the following fact, proved in § 6
(4.7) For $\xi \in K_{m}, \eta \in K_{n}, n \geq m, z_{\xi}, \eta$ is a homothety of $L_{2}\left(I_{\eta}\right)$ onto $L_{2}\left(I_{\xi}\right)$.

In this case, the ∞-norm of z_{ξ}, η is very easy to compute :
$\left\|z_{\xi}, \eta\right\|_{\infty}=K_{\ell}^{1 / 2}\left\|z_{\xi}, \eta{ }_{\{\zeta\}}\right\|$ for any $\zeta \in I_{\eta}$ and the last norm is evidently eøual

$$
\left|K_{\ell}\right|^{-1}\left(\left|G_{m+1}\right| \ldots\left|G_{\ell}\right|\right)^{1 / 2}=\left|K_{\ell}\right|^{-1 / 2} \cdot\left|K_{m}\right|^{-1 / 2}
$$

We can thus conclude

$$
\left\|z_{a}\right\|_{\infty}=\left|k_{\ell}\right|^{-1 / 2} \cdot\left|K_{n}\right|^{-1 / 2} \quad \text { for } a \in J_{2 n}, a \in J_{2 n+1}
$$

hence, by (4.6)

$$
\begin{equation*}
\because\left(\Phi_{2 n}\right) \leq\left|K_{n}\right|^{-1 / 2}, \quad \sigma\left(\Phi_{2 n+1}\right) \leq\left|K_{n}\right|^{-1 / 2} \tag{4.8}
\end{equation*}
$$

which evidently must go to 0 .
Concerning condition (2.7), we have the following trivial

Lemma 4.1 : Condition (2.7) is satisfied provided (4.9)
(4.9) $\quad x_{n}$ is $1-1$ on every $B \in \Delta_{n}$, i.e. for $a, b \in B, a \neq b$ implies $n_{n} a \neq x_{n} b$.
$\underline{\text { Proof }: ~ W e ~ s h a l l ~ u s e ~(3.5) ~ a n d ~ L e m m a ~ 2.2 . ~ L e t ~ u s ~ t a k e ~} A=x_{n} B, C=K{ }_{\left[\frac{1}{2}(n-1)\right]}$, $D=K_{\left[\frac{1}{2} n\right]}$. We have obviously

$$
R_{z_{c, d}}=L_{2}\left(I_{c}\right) \quad, \quad \theta_{z_{c, d}}=L_{2}\left(I_{d}\right)
$$

therefore the assumptions of (3.5) are clearly satisfied for $x_{c, d}=z_{c, d}$.
 the assumptions of (3.5) are, a fortiori, satisfied for $x_{a}:=z_{n}^{n_{n}^{-1}(a)}$, $x_{a}:={\stackrel{\circ}{\chi_{n}}}_{\chi_{n}^{-1}(a)}, a \in A$. Now we can apply Lemma 2.2.
5. THE DEFINITION OF z AND $O F \Delta_{n}$ 'S.

We shall need a further detail. We assume that $G_{n}=F_{n} \times F_{n}$, i.e. every $\theta \in G_{n}$ is written as $\theta=\left(\theta^{o}, \theta^{1}\right)$ with $\theta^{o}, \theta^{1} \in F_{n}$. We require that the following "independence condition" is satisfied :
(5.0) for every $A \in \Delta_{2 n+1}$ and for every $B \in \Delta_{2 n+2}$: ξ_{n}^{1} and η_{n}^{o} are constant for $(\xi, \eta) \in A$, ξ_{n}^{o} and η_{n}^{1} are constant for $(\xi, \eta) \in B \quad$.

We define z by the formula

$$
\begin{equation*}
z(\xi, \eta)=\left|K_{\ell}\right|^{-1} \prod_{n=1}^{\ell-1} v_{n}\left(\xi_{n+1}, \xi_{n}^{1} ; \eta_{n}^{o}\right) v_{n}\left(\eta_{n+1}, \eta_{n}^{1} ; \xi_{n}^{o}\right) \cdot v\left(\xi_{\ell}, \eta_{\ell}\right) \tag{5.1}
\end{equation*}
$$

where $v_{n} \in M\left(G_{n+1} \times F, F\right)$ are certain unimodular matrices defined in $\S 7$ and $V \in M\left(G_{\ell}, G_{\ell}\right)$ can be an arbitrary symmetric, unimodular, homothetic matrix.

Let us now indicate how the Δ_{m} 's are constructed. Let $m=2 n+1$
or $2 n+2$, let $c, d \in K_{n-1}$, i.e. $c=\left(c_{1}, \ldots, c_{n-1}\right), d=\left(d_{1}, \ldots, d_{n-1}\right)$ with $c_{j}, d_{j} \in G_{j}$ and let $g \in G_{n+1}, C, D \subset G_{n}$. We define

$$
\begin{aligned}
B^{2 n+1}(c, d, g, C, D)= & \left\{(\xi, \eta) \in J_{2 n+1}: \eta_{1}=d_{1}, \ldots, \eta_{n-1}=d_{n-1}\right. \\
& \left.\xi_{1}=c_{1}, \ldots, \xi_{n-1}=c_{n-1}, \eta_{n+1}=g, \eta_{n} \in D, \xi_{n} \in C\right\}
\end{aligned}
$$

$$
\begin{align*}
B^{2 n+2}(c, d, g, C, D)= & \left\{(\xi, \eta) \in J_{2 n+2}: \xi_{1}=d_{1}, \ldots, \xi_{n-1}=d_{n-1},\right. \tag{5.2}\\
& \left.\eta_{1}=c_{1}, \ldots, \eta_{n-1}=c_{n-1}, \xi_{n+1}=g, \xi_{n} \in D, \eta_{n} \in C\right\}
\end{align*}
$$

(let us notice that there is a slight lack of symmetry between $B^{2 n+1}$ (...) and $B^{2 n+2}(\ldots):$ the second one has r_{n+1} times as many elements as the first one because the variable η_{n+1} is free in $B^{2 n+2}(\ldots)$ whence η_{n+1} is "bound" in $B^{2 n+1}(\ldots)$).
All elements of Δ_{m} will be of the form $B^{m}(c, d, g, C, D)$ for some $c, d \in K{ }_{n-1}$, $g \in G_{n+1}, C, D \subset G_{n}$. Let us notice that $B^{m}(\ldots)$ satisfy (4.9) and therefore (2.7) is automatically satisfied.

We pass now to the discussion of the main condition (2.8).
For $B \in \Delta_{m}$ let us denote

$$
\omega_{B}=\sum_{a \in B} z_{a}, \quad w_{B}=\sum_{a \in B} \stackrel{\circ}{\mathbf{z}}_{a} .
$$

Condition (2.8) can be thus formulated as

$$
\begin{equation*}
\left|\Delta_{m}\right|\left\|\omega_{B}\right\|_{1}\left\|w_{B}\right\|_{\infty} \text { is small for every } B \in \Delta_{m} \tag{5.3}
\end{equation*}
$$

For the sake of convenience we assume that
$1^{\circ}, \quad|C|$ and $|D|$ are constant for all $B^{m}(c, d, g, C, D)$ in Δ_{m}, and
$2^{o}, \quad B^{2 n+1}(c, d, g, C, D) \in \Delta_{2 n+1}$ iff $B^{2 n+2}(c, d, g, C, D) \in \Delta_{2 n+2}$.

By $1^{\circ},\left\langle\omega_{B}, \omega_{B}>\right.$ is constant for $B \in \Delta_{m}$, therefore

$$
\left.<\omega_{B}, \omega_{B}\right\rangle=\left|\Delta_{m}\right|^{-1} \text { for every } B \in \Delta_{m}
$$

Since z is a symmetric matrix, 2^{0} implies that ω_{B}, w_{B} with $B \in \Delta_{2 n+1}$ are just transposes of ω_{B}, w_{B} with $B \in \Delta_{2 n+2}$. Therefore

$$
\begin{equation*}
\max _{B \in \Delta_{2 n+1}}\left|\Delta_{2 n+1}\right|\left\|\omega_{B}\right\|_{1}\left\|w_{B}\right\|_{\infty}=\max _{B \in \Delta_{2 n+2}}\left|\Delta_{2 n+2}\right|\left\|\omega_{B}\right\|_{1}\left\|w_{B}\right\|_{\infty} \tag{5.5}
\end{equation*}
$$

which lets us to restrict attention to the case of, for example, odd m, let us say $m=2 n+1$.

5A. Let $B=B^{m}(c, d, g, C, D) \in \Delta_{m}$. For $h \in G_{n+1}$ let us denote

$$
\omega^{h}=\omega_{B}^{h}=\sum_{a \in B^{m}(c, d, h, C, D)} z_{a}
$$

thus

$$
\omega_{B}=\omega^{g} \quad \text { and } \quad w_{B}=\sum_{h \neq g} \omega^{h} .
$$

We have obviously

$$
\left\|w_{B}\right\|_{\infty} \geq \max _{h \neq g}\left\|\omega^{h}\right\|_{\infty}
$$

By (5.4) and (5.7), the following condition is necessary for (5.3) :

$$
\begin{equation*}
<\omega^{g}, \omega^{g}>^{-1}\left\|\omega^{g}\right\|_{1}\left\|\omega^{h}\right\|_{\infty} \text { is small for every } h \notin g \tag{5.8}
\end{equation*}
$$

(let us notice that this quantity has to be big if $h=g$, namely ≥ 1; here we actually have the crux of the construction $:$ making the ratio $\left\|\omega^{h}\right\|_{\infty} /\|\omega\|_{\infty}$ small for all $h \neq g$). Of course, (5.8) is useful only in case when (5.7) is not far from equality. This is settled in the following section.

6. THE ORTHOGONALITY CONDITION.

$$
\begin{aligned}
& \text { We shall define matrices } \mathbf{y}_{m} \in M\left(K^{m}, K^{m}\right) \text { by } \\
& \mathbf{y}_{m}(\xi, \eta)=\prod_{n=m}^{\ell-1} \mathbf{v}_{n}\left(\xi_{n+1}, \xi_{n}^{1} ; \eta_{n}^{o}\right) \mathbf{v}_{n}\left(\eta_{n+1}, \eta_{n}^{1} ; \xi_{n}^{o}\right) \cdot v\left(\xi_{l}, \eta_{l}\right)
\end{aligned}
$$

Thus $\mathrm{z}=\left|\mathrm{K}_{\ell}\right|^{-1} \mathrm{y}_{1}$.

In the following Lemma, we use the notation of 5 A .

$\underline{\text { Proof }}:$ We shall use (3.1). Let $h, \chi \in G_{n+1}, h \neq \chi \cdot$ Obviously $\mathscr{O}_{\omega}{ }^{h} \perp \theta_{\omega^{X}}$. The fact that also $\mathcal{R} \omega^{h}+\mathcal{R} \omega^{X}$ follows easily from (6.0) and from (5.0); here is a formal argument :
For $h \in G_{n+1}$ let us denote

$$
y^{h}=y_{n+1} p_{\{h\} \times G_{n+2} \times \cdots \times G_{\ell}}
$$

Let us notice that, by (6.0)
(6.1)

$$
R y^{h} \perp R y^{X}
$$

By (5.0), there exist $e, f \in F_{n}$ such that

$$
\xi_{\mathrm{n}}^{0}=\mathrm{e} \quad, \quad \eta_{\mathrm{n}}^{1}=\mathrm{f} \quad \text { for every }(\xi, \eta) \in \mathrm{B}
$$

We see that
(6.2)

$$
w^{h}=s^{h} \otimes\left(\Gamma \circ \mathbf{y}^{h}\right)
$$

where $s^{h} \in M\left(K_{n}, K_{n}\right)$ and $\Gamma \in M\left(G_{n+1} \times \ldots \times G_{1}, G_{n+1} \times \ldots \times G_{\ell}\right)$ are defined by (at this point it really does not matter how s^{h} looks like)

$$
\begin{align*}
& s^{h}(\xi, \eta)=\prod_{j=1}^{n-2} v_{j}\left(d_{j+1}, d_{j}^{1} ; c_{j}^{o}\right) v_{j}\left(c_{j+1}, c_{j}^{1} ; d_{j}^{o}\right) \cdot v_{n-1}\left(\xi_{n}, c_{n-1}^{1} ; d_{n-1}^{o}\right) . \\
& \cdot v_{n-1}\left(\eta_{n}, d_{n-1}^{1} ; c_{n-1}^{o}\right) \cdot v_{n}\left(h, \eta_{n}^{1} ; \xi_{n}^{o}\right) \tag{6.3}\\
& \text { if } \eta_{n} \in D, \xi_{n} \in C \text { and }\left(\xi_{1}, \ldots, \xi_{n-1}\right)=c,\left(\eta_{1}, \ldots, \eta_{n-1}\right)=d \\
& { }^{\mathbf{h}}(\xi, \eta)=0 \text { otherwise ; } \\
& I^{\prime}(\xi, \eta)=\left\{\begin{array}{l}
v_{n}\left(\xi_{n+1}, \text { e ; f) if } \xi_{n+1}=\eta_{n+1}, \ldots, \xi_{\ell}=\eta_{\ell},\right. \\
0 \text { otherwise },
\end{array}\right.
\end{align*}
$$

Since Γ is an orthogonal transformation (it is just a diagonal matrix with all terms of absolute value 1), (6.1) implies that $R\left(\Gamma \circ y^{h}\right) ~ \perp R\left(\Gamma \circ y^{X}\right)$ which, by (3.10), implies the desired conclusion $\Omega \omega^{h}+\Omega \omega^{X}$.

The "orthogonality condition" (6.0) seems to play an essential role in our construction. To clarify this condition we shall use the following description of y_{m} : let us define $\Gamma_{n} \in M\left(G_{n} \times G_{n+1}, G_{n} \times G_{n+1}\right)$ and $T \in M\left(K_{\ell}, K_{\ell}\right) b y$

$$
\begin{align*}
& \Gamma_{\mathbf{n}}(\xi, \eta)=\left\{\begin{array}{l}
v_{n}\left(\xi_{n+1}, \xi_{n}^{1} ; \eta_{n}^{0}\right) \text { if } \xi_{n+1}=\eta_{n+1}, \xi_{n}^{o}=\eta_{n}^{1} \\
0 \text { otherwise }
\end{array}\right. \tag{6.4}\\
& T(\xi, \eta)=\left\{\begin{array}{l}
V\left(\xi_{\ell}, \eta_{\ell}\right) \text { if } \xi_{j}^{o}=\eta_{j}^{1}, \xi_{j}^{1}=\eta_{j}^{o} \text { for } j<\ell \\
0 \text { otherwise }
\end{array}\right.
\end{align*}
$$

and let

$$
v_{n}=i_{K_{n-1}} \otimes I_{n}^{\prime} \otimes i_{K}^{n+2}
$$

We have
(6.6) $\quad i_{K_{m-1}} \otimes y_{m}=V_{m} \circ V_{m+1} \circ \ldots \circ V_{l-1} \circ T \circ V_{l-1}^{t} \circ \ldots \circ V_{m+1}^{t} \circ V_{m}^{t}$.

For $g \in G_{n+1}$ let us define $v_{n}^{g} \in M\left(F_{n}, F_{n}\right)$ by

$$
\mathbf{v}_{\mathbf{n}}^{g}(e, f)=v_{n}(g, e ; f)
$$

Lemma 6.2 : The matrix y_{n} is homothetic provided
(6.7) $\quad v_{m}^{g}$ is a homothetic matrix for every $g \in G_{m+1}$ for all $m \geq n$.

Proof : Since Γ_{m} is equivalent to a direct sum of v_{m}^{g}, it is a homothety, by (6.7), for all $m \geq n$. Consequently, V_{m} are homotheties for $m \geq n$. Since Tis also a homothety, so is $\mathrm{i}_{\mathrm{K}_{\mathrm{n}-1}} \otimes \mathrm{y}_{\mathrm{n}}$, by the formula (6.6) and, consequently, y_{n} is homothetic.

The following lemma has been already announced in (4.7) ; as we proved there, (6.8) implies condition (2.6).

Lemma 6.3 : If (6.7) holds for every n, then the condition (4.7) is satisfied, i.e.
(6.8) for every $\xi, \eta \in K_{n}, z_{\xi, \eta}$ is a homothety of $L_{2}\left(I_{\eta}\right)$ onto $L_{2}\left(I_{\xi}\right)$.

Proof : We have

$$
z_{\xi, \eta}=Q \cdot \varepsilon_{\xi, \eta} \otimes\left(\Gamma_{2} \circ \mathbf{y}_{\mathbf{n + 1}} \circ \Gamma_{1}\right)
$$

where Q is a constant and $\Gamma_{1}, \Gamma_{2} \in M\left(K^{n+1}, K^{n+1}\right)$ are diagonal matrices defined by

$$
\begin{aligned}
& \Gamma_{1}(\zeta, v)= \begin{cases}v_{n}\left(v_{n+1}, \eta_{n}^{1} ; \xi_{n}^{o}\right) & \text { if } \zeta=v \\
0 \text { otherwise },\end{cases} \\
& \Gamma_{2}(\zeta, v)=\left\{\begin{array}{l}
v_{n}\left(\zeta_{n+1}, \xi_{n}^{1} ; \eta_{n}^{o}\right) \text { if } \zeta=v \\
0 \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Since the matrix v_{n} is unimodular, Γ_{1} and Γ_{2} are isometries.
By lemma 6.2, y_{n+1} is a homothety, therefore $\Gamma_{2}{ }^{\circ} y_{n+1} \circ \Gamma_{1}$ is a homothety and this clearly implies (6.8).

7. THE END OF THE CONSTRUCTION AND OF THE PROOF

So far we have been mainly concerned with the formal aspects of the construction. To recapitulate :
the matrix z is given by (5.1) where

$$
\begin{equation*}
v_{n}^{g} \in M\left(F_{n}, F_{n}\right) \text { defined by } v_{n}^{g}(e, f)=v_{n}(g, e ; f) \tag{7.0}
\end{equation*}
$$

is an Hadamard matrix for every $g \in G_{n+1}$, every n (by an Hadamard matrix we mean a unimodular square matrix whose rows (columns) are mutually orthogonal) ;
the partitions Δ_{m} should satisfy the condition (5.0) plus the requirements (5.4), (5.5).

Then everything boils down to condition (5.8).
The rest of the construction is combinatorial. Let F be a finite set with $|F|=q^{2}$. A partition ∇ of F will be called regular if $|\nabla|=q$ and each element of ∇ has q elements. Let $\$$ be a standard regular partition of F, let us say we write $F=H \times H$ and $\$=\{\{h\} \times H: h \in H\}$.

Lemma 7.1 : Let q be a number of the form $2^{8 p}$, p an integer. Let $F, \$$ be like above and let G be a set with $q{ }^{8}$ elements. There exist regular partitions $\nabla_{g}, g \in G$, of F and matrices $v^{g} \in M(F, F), g \in G$ so that
(7.1) v^{g} is an Hadamard matrix for every $g \in G$,
(7.2) $\quad\left\|p_{S} v^{g} p_{A}\right\|_{1}=q$ for every $A \in \nabla_{g}$, every $g \in G$, every $S \in \$$.
(7.3) $\quad\left\|p_{S} v^{h} p_{A}\right\|_{\infty} \leq q^{\frac{15}{16}}$ for every $A \in \nabla_{g}$, every $g \in G$, every $h \notin g$, every $S \in \$$.

We postpone a (rather-simple) proof of this lemma to § 8.
Let us notice at this point that, by (7.2) and (7.3),

$$
\begin{equation*}
<p_{S} v^{g} p_{A}, p_{S} v^{g}{p_{A}}^{-1}\left\|p_{S} v^{g} p_{A}\right\|_{1}\left\|p_{S} v^{h} p_{A}\right\|_{\infty} \leq q^{-\frac{1}{16}} \tag{7.4}
\end{equation*}
$$

for every $A \in \nabla_{g}$, every $g \in G$, every $h \notin g$, every $S \in \$$, which seems to indicate that we are on a right track.

Let now q_{n} be a sequence of numbers such that q_{n} is of the
form $2^{8 p}, p$ an integer, and

$$
\begin{gather*}
q_{n} \longrightarrow \infty \text { faster than any power of } n \tag{7.5}\\
q_{n+1} \leq q_{n}^{2} .
\end{gather*}
$$

We define $F_{n}=\left\{1, \ldots, q_{n}^{2}\right\}, G_{n}=F_{n} \times F_{n}$. Let $\$_{n}$ be any regular partition of F_{n}. We apply lemma 7.1 to $q=q_{n}, F=F_{n}, G=G_{n+1}, \$=\$_{n}$; we obtain thus the regular partitions ∇_{g} of F_{n} for $g \in G_{n+1}$ and matrices $\mathbf{v}_{\mathrm{n}}^{\mathrm{g}} \in \mathrm{M}\left(\mathrm{F}_{\mathrm{n}}, \mathrm{F}_{\mathrm{n}}\right.$) so that the respective conditions (7.1), (7.2), (7.3) are satisfied.

Now we can complete the definition of Δ_{m} 's (see (5.2)). For $A \subset F_{n}$ and $e \in F_{n}$ let $C(A, e)=\left\{\theta \in G_{n}: \theta^{o} \in A, \theta^{1}=e\right\}^{m}$,
$D(A, e)=\left\{\theta \in G_{n}: \theta^{0}=e, \theta^{1} \in A\right\}$. We define for $m=2 n+1$ or $2 n+2$:

$$
\begin{gather*}
\Delta_{m}=\left\{B^{m}(c, d, g, C(S, e), D(A, f)): c, d \in K_{n-1}, g \in G_{n+1}, e, f \in F_{n}\right. \tag{7.7}\\
\text { and } \left.A \in \nabla_{g}, S \in \$\right\} \quad .
\end{gather*}
$$

With this definition of Δ_{m} (5.0), (5.4) and (5.5) are obviously satisfied.
Now we can prove (5.8). Let $m-2 n+1$, let $B \in \Delta_{m}$ be like in (7.7). We use the notation of $5 A$. We claim that for every $h \in G_{n+1}$,

$$
\begin{equation*}
\left\langle\omega^{g}, \omega^{g_{>}}-1\left\|\omega^{g_{\|}}\right\|_{1}\left\|\omega^{\mathrm{h}}\right\|_{\infty}=\right. \tag{7.8}
\end{equation*}
$$

$$
=\left\langle p_{S}{ }_{v}^{g} p_{A}, p_{S}{ }_{n}^{g} p_{A}>^{-1}\left\|p_{S}{ }_{n}^{g} p_{A}\right\|_{1}\left\|p_{S} v_{n}^{h} p_{A}\right\|_{\infty}\right.
$$

This quantity is, by (7.4), equal to $q_{n}^{-\frac{1}{16}}$. By (7.5), this implies (5.8).
To prove (7.8), we shall again use the formulas (6.2), (6.3) ; this time we pay more attention to s. We have

$$
\begin{equation*}
s^{h}=Q \cdot \varepsilon_{c, d} \otimes\left[\varepsilon_{e, f} \stackrel{!}{\otimes}\left(\Gamma_{1} \circ p_{S} v_{n}^{h} p_{A} \circ \Gamma_{2}\right)\right] \quad \text { where } \tag{7.9}
\end{equation*}
$$

Q is constant which does not depend on h,
$\stackrel{!}{\dot{\otimes}}$ is defined by (3.11) (and behaves exactly like \otimes),
$\Gamma_{1}, \Gamma_{2} \in M\left(F_{n}, F_{n}\right)$ are diagonal matrices defined by

$$
\begin{aligned}
& L_{1}(\zeta, v)=\left\{\begin{array}{l}
v_{n-1}\left((\zeta, e), c_{n-1}^{1} ; d_{n-1}^{o}\right) \text { if } \zeta=v, \\
0 \quad \text { otherwise },
\end{array}\right. \\
& L_{2}(\zeta, \nu)=\left\{\begin{array}{l}
v_{n-1}\left((f, \cup), d_{n-1}^{1} ; c_{n-1}^{o}\right) \text { if } \zeta=心 \\
0 \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

If we now put (6.2) and (7.9) together, then we get

$$
\omega^{h} \quad Q \cdot \varepsilon_{c, d} \otimes\left[\varepsilon_{e, f} \stackrel{!}{\otimes}\left(\Gamma_{1} \circ p_{S} v_{n}^{h} p_{A} \circ \Gamma_{2}\right)\right] \otimes\left(I \circ y^{h}\right)
$$

or, writing it in a schematic way

$$
\omega^{h}=Q \cdot X \otimes\left[Y \stackrel{!}{\otimes} Z^{h}\right] \otimes W^{h}
$$

We have for every $h \in G_{n+1}$,

$$
\left\|\omega^{h}\right\|_{p}=Q\|x\|_{p}\|Y\|_{p}\left\|z^{h}\right\|_{p}\left\|W^{h}\right\|_{p} \quad \text { for } p=1, \infty
$$

and

$$
\begin{aligned}
\left\langle\omega^{\mathrm{g}}, \omega^{\mathrm{g}}\right\rangle & \left.\left.=\mathrm{Q}^{2}<\mathrm{x}, \mathrm{X}\right\rangle\langle\mathrm{Y}, \mathrm{Y}\rangle<\mathrm{Z}^{\mathrm{g}}, \mathrm{Z}^{\mathrm{g}}\right\rangle\left\langle\mathrm{w}^{\mathrm{g}}, \mathrm{~W}^{\mathrm{g}}\right\rangle= \\
& \left.=\mathrm{Q}^{2}\|\mathrm{x}\|_{1}\|\mathrm{x}\|_{\infty}\|\mathrm{Y}\|_{1}\|\mathrm{Y}\|_{\infty}<\mathrm{Z}^{\mathrm{g}}, \mathrm{z}^{\mathrm{g}}\right\rangle\left\|\mathrm{w}^{\mathrm{g}}\right\|_{1}\left\|\mathrm{~W}^{\mathrm{g}}\right\|_{\infty}
\end{aligned}
$$

(the last equality follows from the fact that X, Y, W^{g} are selfnormalizing, $\mathrm{cf} .(3.6)$ and the two lines following (3.6)).

Let us also notice that for every $h \in G_{n+1}$,

$$
\left\|\Gamma \circ \mathbf{y}^{\mathbf{h}}\right\|_{\infty}=\left\|\mathbf{y}^{\mathrm{h}}\right\|_{\infty}=\|\mathbf{y}\|_{\infty}
$$

thus $\left\|W^{h}\right\|_{\infty}=\left\|W^{g}\right\|_{\infty}$. Now it is evident that

$$
<\omega^{g}, \omega^{g}>^{-1}\left\|\omega^{g}\right\|_{1}\left\|\omega^{h}\right\|_{\infty}=\left\langle Z^{g}, z^{g}\right\rangle\left\|z^{g}\right\|_{1}\left\|z^{h}\right\|_{\infty}
$$

and, since Γ_{1}, Γ_{2} are isometries (onto), (7.8) follows by (3.4).

The main ingredient here is the following combinatorial

Sublemma : There exist regular partitions $\nabla_{g}, g \in G$, of F such that if $A \in \nabla_{g}, B \in \nabla_{h}$ wi th $g, h \in G, g \notin h$, then

$$
\begin{equation*}
|A \cap B| \leq q^{7 / 8} \tag{8.0}
\end{equation*}
$$

$\underline{\text { Proof }}:$ Let K be the Abelian field of order 2^{p}, i.e. $K=G F\left(2^{p}\right)$. Since $|F|=\left(2^{p}\right)^{16}$, we can identify F, as a set, with the vector space K^{16}. Let E and E^{\prime} be two different 8 -dimensional subspaces of $F=K^{16}$. Clearly $\operatorname{dim}_{K}\left(E \cap E^{\prime}\right) \leq 7$ and therefore

$$
\begin{equation*}
\left|E \cap E^{\prime}\right| \leq 2^{7 p}=q^{7 / 8} \tag{8.1}
\end{equation*}
$$

It is a standard fact that, given a 2 P -dimensional vector space V over a field of order β, there are at least $\beta^{P^{2}}$ different P-dimensional subspaces of V. (To see this let us choose a basis for V, say $e_{1}, e_{2}, \ldots, e_{2 P}$ and to a tuple $g=\left(g_{i j}: 1 \leq i, j \leq P\right)$ with $g_{i j} \in K$ let us assign

$$
E_{g} \stackrel{\text { def }}{=} \operatorname{span}\left\{\sum_{j=1}^{P} g_{i j} e_{j}+e_{P+i}: i=1, \ldots, P\right\}
$$

It should be clear that $E_{g}=E_{h}$ only if $g=h$ and we have obviously $\beta^{P^{2}}$ different g's like above.)

In our case this means that there are at least $2^{64 p}=q^{8}$
different 8 -dimensional subspaces of $F=K^{16}$. Let us denote these by $E_{g}, g \in G$. Let ∇_{g} be the partition of F into 8-dimensional hyperplanes parallel to E_{g}. Then ∇_{g} are, obviously, regular partitions, and (8.0) follows from (8.1).

Next let us notice that there exists an Hadamard matrix $w \in M(F, F)$ such that $r k p_{S} w p_{U}=1$ for every $S, U \in \$$ and, moreover,
$\mathfrak{R}\left(p_{S} w p_{U}\right)=\mathbb{C} \cdot \alpha_{S, U}$ where $\alpha_{S, U}$ with $S, U \in \$$ are pairwise orthogonal vectors.

Otherwords, all columns of the matrix $p_{S} w p_{U}$ are of the form $z \cdot{ }^{\alpha}{ }_{S, U}$
where $z \in T$ and $\alpha_{S, U}{ }^{\perp} \alpha_{S, T}$ if $U \notin T$.
To construct such we take simply any $q \times q$ Hadamard matrix, say y and define for $e, f \in F$

$$
w(e, f)=y\left(e_{1}, f_{2}\right) y\left(e_{2}, f_{1}\right)
$$

(an $e \in F$ is written as $e=\left(e_{1}, e_{2}\right)$ with $\left.e_{1}, e_{2} \in H\right)$.
We see that, if $S, U \in \$$ with $S=\{i\} \times H, U=\{j\} \times H$ then (8.2) is satisfied with

$$
a_{S, U}(e)=\left\{\begin{array}{l}
y\left(e_{2}, j\right) \quad \text { if } e_{1}=i \\
0 \text { otherwise }
\end{array}\right.
$$

(if we take $T \in \$, T \notin U$, say $T=\{k\} \times H$, then $\alpha_{S, U}{ }^{\perp} \alpha_{S, T}$ because the $j-t h$ and the $k-t h$ columns of y are orthogonal).

We shall also need the following, entirely trivial, remark :
if \mathcal{L} and ∇ are arbitrary regular partitions of F, then there exists a permutation ρ of F which carries ∇ onto \mathcal{L}, i.e. for every $B \in \nabla, \quad \rho(B) \in \mathcal{L}$.

Now we can define v^{g}. Let $\nabla_{g}, g \in G$, be the partitions of F from the Sublemma and, for $g \in G, \rho_{g}$ be a permutation of F which carries ∇_{g} onto $\$$. We define v^{g} by

$$
v^{g}(e, f)=w\left(e, \rho_{g} f\right)
$$

i.e. v^{μ} is obtained by applying ρ_{g}^{-1} to the columns of w.

Let $S \in \$, h \in G$. Let us notice that

$$
R\left(p_{S} v^{h} p_{B}\right)=R\left(p_{S} w p_{\rho_{h} B}\right) \text { for } B \in \nabla_{h}
$$

therefore, by (8.2),

$$
\begin{equation*}
r k p_{S} v^{h} p_{B}=1 \quad \text { if } B \in \nabla_{h} \tag{8.4}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{R}\left(p_{S} v^{h} p_{B}\right) \perp \Omega\left(p_{S} v^{h} p_{C}\right) \quad \text { if } B \notin C ; B, C \in \nabla_{h} \tag{8.5}
\end{equation*}
$$

Now (7.2) follows by (8.4) and (3.2).
Let $g \in G_{n+1}, A \in \nabla_{g}$. For $B \in \nabla_{h}$, let us denote

$$
u_{B}=p_{S} v^{h} p_{A \cap B} ;
$$

We have obviously

$$
\mathrm{p}_{\mathrm{S}} \mathrm{v}^{\mathrm{h}} \mathrm{p}_{\mathrm{A}}=\sum_{\mathrm{B} \in \nabla_{\mathrm{h}}} \mathbf{u}_{\mathrm{B}}
$$

By (8.5), $R u_{B}{ }^{\perp R} u_{C}$ if $B \notin C$. Since, obviously, also $\mathcal{D} u_{B} \perp \mathscr{D} u_{C}$ if $B \neq C$, by (3.3) we have

$$
\left\|p_{S} v^{h} p_{A}\right\|_{\infty}=\max _{B \in \nabla_{h}}\left\|u_{B}\right\|_{\infty}
$$

Clearly, u_{B} has $q \cdot|A \cap B|$ non zero entries, all of them of absolute value 1. Therefore, by (3.2) and (8.4),

$$
\left\|u_{B}\right\|_{\infty}=(q \cdot|A \cap B|)^{1 / 2}
$$

If now $h \neq g$, then, by (8.0), $|A \cap B| \leq q^{7 / 8}$ for every $B \in \nabla_{h}$ and this yields (7.3).

An expanded version of the present note will appear elsewhere.

REFERENCES

[1] P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), p. 309-317.
[2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoir AMS 16 (1955).
9. PASSING WITH 1 TO ∞.

There are, essentially, two technical problems to resolve:

```
1' to give meaning to the formula (5.1) for I = m.
20}\mathrm{ to define a duality in }\mathbb{B}(H)\mathrm{ so that we can define }\mp@subsup{\varphi}{\xi,\eta}{
    in an analoguous way to (4.3).
```

A somewhat surprising fact is that, in order to settle 1°, it is more convenient to work with a space $\mathbb{B}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$ where H_{1} and H_{2} are two different Hilbert spaces. Let G_{n}, μ_{n} and K_{n} have the same meaning as in §4. Let us denote

$$
\begin{aligned}
& K=\prod_{j=1}^{\infty} G_{j}, \quad L_{2}(K)=L_{2}(K, \mu) \quad \text { where } \mu=\prod_{j=1}^{\infty} \mu_{j} ; \\
& K_{\infty}=\left\{\eta=\left(\eta_{n}\right) \in K: \eta_{n}=1 \quad \text { from some } n \text { on }\right\}
\end{aligned}
$$

Thus K_{∞} is a countable set. For any countable set N we denote by $\ell_{2}(N)$ the Hilbert space of square summable functions on N. For $\eta \in N$ we define the unit vector $e_{\eta} \in \ell_{2}(N)$ by $e_{\eta}(\xi)=\delta_{\xi, \eta}$ (the Kronecker δ). Let us identify K_{n} with the subset $\left\{(n, 1,1, \ldots): \eta \in K_{n}\right\}$ of K_{∞}; let H_{n} be the subspace of $\ell_{2}\left(K_{\infty}\right)$ spanned by $\left\{e_{n}: \eta \in K_{n}\right\}$.

To define our Z, we shall need that the matrices v^{g} from Lemma 7.1 satisfy, in addition, the following condition
(9.0) $\quad v^{g}(1, \eta)=1$ and $v^{g}(\xi, 1)=1$ for every $g \in G, \quad \xi, n \in F$. (we prove at the end of this section that this can be done).

The resulting matrices $v_{n} \in M\left(G_{n+1}, F_{n} ; F_{n}\right)$ satisfy then

$$
v_{n}(g, \xi ; n)=1 \text { if either } \xi=1 \text { or } \eta=1
$$

Under this assumption, if $\eta \in K_{\infty}$, then the infinite product

$$
z(\xi, n)=\prod_{n=1}^{\infty} v_{n}\left(\xi_{n+1}, \xi_{n}^{1} ; \eta_{n}^{0}\right) v_{n}\left(n_{n+1}, n_{n}^{1} ; \xi_{n}^{0}\right)
$$

is well defined for every $\xi \in K$, because its terms are 1 from some n on.

It is thus natural to try to interprete z as an element of $\mathbb{B} \xlongequal{\text { def }} \mathbb{B}\left(l_{2}\left(K_{\infty}\right), L_{2}(K)\right)$ where we define

$$
\left(z e_{\eta}\right)(\xi)=z(\xi, \eta)
$$

It is clear that $z e_{\eta}$ is a unimodular function in $L_{2}(K)$, thus

$$
\left\|z e_{\eta}\right\|=1 \text { for every } \eta \in K_{\infty} .
$$

We shall soon prove that
(9.1) if $\eta \neq v$, then $z e_{\eta} \perp z e_{\nu}$.

This, obviously, implies that z is an isometry, thus, indeed $z \in \mathbb{B}$. Now we define $z_{\xi, \eta}, \xi \in K_{m}, \eta \in K_{n}$ as in §4: For $\xi \in K_{m}$ let $I_{\xi} \subset K, I_{\xi}^{\infty} \subset K_{\infty}$ and the projections $P_{\xi} \in \mathbb{B}\left(L_{2}(K), L_{2}(K)\right), p_{\xi} \in \mathbb{B}\left(l_{2}\left(K_{\infty}\right), l_{2}\left(K_{\infty}\right)\right)$ be defined by

$$
\begin{aligned}
& I_{\xi}=\left\{n \in K: \eta_{1}=\xi_{1}, \ldots, \eta_{m}=\xi_{m}\right\}, I_{\xi}^{\infty}=I_{\xi} \cap K_{\infty} ; \\
& P_{\xi^{f}}=f \cdot 1_{I_{\xi}}, \quad p_{\xi} f=f \cdot 1_{I_{\xi}^{\infty}} \text { for } f \in L_{2}(K), f \in \ell_{2}\left(K_{\infty}\right),
\end{aligned}
$$

We set for $\xi \in K_{m}, n \in K_{n}$

$$
z_{\xi, \eta}=P_{\xi} z p_{\eta}
$$

To define $\varphi_{\xi, \eta}$, we introduce a duality in \mathbb{B} in the following way: let $\underset{n}{\operatorname{Lim}}$ be a Banach limit, i.e. $\underset{n}{\operatorname{Lim} \in 1_{\infty}^{*}}$ and, for $\left(t_{n}\right)_{n=1}^{\infty} \in l_{\infty}^{n}$

$$
\left|\operatorname{Lim}_{n} t_{n}\right| \leq \lim \sup \left|t_{n}\right|
$$

In particular, $\underset{n}{\operatorname{Lim}} t_{n}=\lim _{n \rightarrow \infty} t_{n}$, if the ordinary limit exists. We define for $x, y \in \mathbb{B}$

$$
\left.\underset{\underline{x}}{ }(y)=\operatorname{Lim}_{1}\left|K_{1}\right|^{-1}<y, x_{\mid H_{1}}\right\rangle=\operatorname{Lim}_{1}\left|K_{1}\right|^{-1} \sum_{n \in K_{1}}\left\langle y e_{n} \mid x_{n}\right\rangle .
$$

Just for the sake of illustration let us make the following obvious remarks:
$1(x, y) \rightarrow \underset{\equiv}{x}(y)$ is a norm one sesqui-linear form on $\mathbb{B} \times \mathbb{B}$.
$2 \quad x(y)=0$ if either x or y is compact.
$3 \quad \underset{\underline{x}}{ }(\mathrm{x})=1$ if x is an isometry (into).

For $x \in \mathbb{B}$ we denote $\|x\|_{*}=\|x\|_{\mathbb{B}}^{*}$.
We shall use the following simple estimates:
(9.2)

$$
\|x\|_{*} \leq \max _{n \in K_{\infty}}\left\|x e_{n}\right\|
$$

(9.3)

$$
\|x\|_{*} \leq \lim _{l \rightarrow \infty} K_{l}^{-1}\left\|x_{\mid \mathrm{H}_{1}}\right\|_{1}
$$

$$
\begin{equation*}
\|x\|_{\infty}=\lim _{l \rightarrow \infty}\left\|x_{\mid H_{l}}\right\|_{\infty} . \tag{9.4}
\end{equation*}
$$

We define $\varphi_{\xi, n}$ for $\xi \in K_{m}, n \in K_{n}$ by

$$
\varphi_{\xi, \eta}=\underline{\underline{z}}_{\xi, \eta}
$$

Let us now investigate the restrictions $z_{\mid H_{l}}, z_{\xi, n \mid H_{1}}$ etc. We shall show that most of the results of $\S 6$ apply to these operators as well. First let us notice that ${ }^{\mathrm{z}} \mathrm{IH}_{1}$ is in a canonical way equivalent to the matrix $z^{(1)} \in M\left(K_{l+1}, K_{1}\right)$ defined by

$$
\begin{aligned}
& z^{(1)}(\xi, \eta)=\left|K_{1}\right|^{-\frac{1}{2}} \prod_{j=1}^{l-1} v_{j}\left(\xi_{j+1}, \xi_{j}^{1} ; \eta_{j}^{0}\right) v_{j}\left(\eta_{j+1}, \eta_{j}^{1} ; \xi_{j}^{0}\right) \\
& \cdot v_{1}\left(\xi_{1+1}, \xi_{l}^{1} ; \eta_{l}^{0}\right) v_{1}\left(1, \eta_{l}^{1} ; \xi_{1}^{0}\right)
\end{aligned}
$$

(the factor $\left|K_{1}\right|^{-\frac{1}{2}}$ arises from our normalization conventions: $M\left(K_{1+1}, K_{1}\right)$ is identified with $\mathbb{B}\left(L_{2}\left(K_{1}\right), L_{2}\left(K_{1+1}\right)\right)$ while $z_{{ }_{\mid H_{1}} \in \mathbb{B}\left(\ell_{2}\left(K_{1}\right), L_{2}\left(K_{1+1}\right)\right) .}$

For $m=1,2, \ldots, 1$ we define matrices $Y_{m}^{(l)} \in M\left(G_{m} \times \ldots \times G_{1+1}\right.$, $\left.G_{m} \times \ldots \times G_{1}\right)$ by

$$
\begin{gathered}
y_{m}^{(1)}(\xi, \eta)=\prod_{j=m}^{l-1} v_{j}\left(\xi_{j+1}, \xi_{j}^{1} ; \eta_{j}^{0}\right) v_{j}\left(\eta_{j+1}, \eta_{j}^{1} ; \xi_{j}^{0}\right) \\
\cdot \\
v_{1}\left(\xi_{l+1}, \xi_{1}^{1} ; \eta_{l}^{0}\right) v_{l}\left(1, \eta_{l}^{1} ; \xi_{l}^{0}\right)
\end{gathered}
$$

in particular

$$
y_{1}^{(1)}=v_{1} \stackrel{!}{\otimes} v_{1}^{1}
$$

thus $y_{l}^{(1)}$ is a homothety. The formula (6.6) (with $T=i_{G_{m}} \ldots \times G_{l-1} \otimes y_{l}^{(1)}$ and $y_{m}=y_{m}^{(1)}$ yields now:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{m}}^{(1)} \text { is a homothety for } \mathrm{m}=1,2, \ldots, 1 \tag{9.5}
\end{equation*}
$$

This, clearly, implies (9.1).

Now we shall derive the estimates needed in Proposition 2.3 from the corresponding estimates in §4-§7. In several places we repeat the former argument almost verbatim!

Ad(2.5). This is immediate because, for $1>n, m$,

$$
\sum_{\xi \in K_{m}, \eta \in K_{n}}^{\Sigma} \sum_{\theta \in K_{1}}^{\left\langle z_{\xi, \eta} e_{\theta}\right| z_{\xi, \eta} e_{\theta}>}=\sum_{\theta \in K_{1}}\left\langle z e_{\theta}, z e_{\theta}>=\right| K_{1} \mid
$$

Therefore

$$
\sum_{(\xi, \eta) \in J_{n}} \varphi_{\xi_{, \eta}}\left(z_{\xi, \eta}\right)=\operatorname{Lim}_{l} 1=1
$$

Ad (2.6). An analogue of Lemma 6.3 is true, with an analoguous proof:

$$
z_{\xi, \eta \mid H_{l}} \text { is canonically equivalent to } z_{\xi, \eta}^{(1)} \stackrel{\text { def }}{=} p_{\xi} z_{\eta}
$$

(this time, $p_{\xi} \in M\left(K_{1+1}, K_{1+1}\right), p_{\eta} \in M\left(K_{1}, K_{1}\right)$ are defined by (4.1)). We have

$$
z_{\xi, \eta}^{(1)}=Q \varepsilon_{\xi, \eta} \otimes\left(\Gamma_{2} Y_{n+1}^{(1)} \Gamma_{1}\right)
$$

with $\Gamma_{1} \in M\left(K_{1}, K_{1}\right)$ and $\Gamma_{2} \in M\left(K_{1+1}, K_{1+1}\right)$ defined as in the proof of Lemma 6.3. We conclude, by the same argument, that $z_{\xi, \eta}^{(1)}$ is a homothety, equivalently, that $z_{\xi_{,}, \eta \mid H_{1}}$ is a homothety. This implies that $z_{\xi_{,}, \eta}$ is a homothety. Looking at $\left\|z_{\xi, \eta} e_{\theta}\right\|$ for a suitable θ we fined easily that

$$
\begin{equation*}
\left\|z_{\xi, \eta}\right\|_{\infty}=\left|K_{n}\right|^{-\frac{1}{2}} \text { if } \quad \xi \in K_{m}, \quad n \in k_{n} \tag{9.6}
\end{equation*}
$$

On the other hand, if $|\varepsilon(a)|=1$ for $a \in J_{n}$, then the matrix $x=\sum_{a \in J_{n}} \varepsilon(a) z_{a}$ is unimodular, therefore

$$
\begin{aligned}
& \left\|x e_{\eta}\right\|=1 \text { for every } \eta \in K_{\infty} \text { and, by (9.2), } \\
& \left\|\sum_{a \in J_{n}} \varepsilon(a) z a\right\|_{*} \leq 1
\end{aligned}
$$

This, together with (9.6), gives the desired estimate (4.8).

Ad (2.7). Although (3.4) is no longer true for $p=*$, it remains true if y and z are diagonal isometries. It is easy to see that this suffices for the argument of Lemma 4.1.

Ad (2.8). Let $m=2 n+1$ or $2 n+2$, let B, ω_{B}, w_{B}, and ω^{h} be like in 5A. Let

$$
\left(\omega^{h}\right)^{(l)}=\sum_{a \in B^{m}(c, a, h, C, D)}^{z_{a}^{(l)}}
$$

thus $\left(\omega^{h}\right)^{(1)}$ is canonically equivalent to $\omega^{h} \mid H_{l}$. We have (9.7) $\quad\left(\omega^{h}\right)^{(1)}=\left\{\begin{array}{l}\left|K_{1}\right|^{-\frac{1}{2}} s^{h} \otimes\left[\Gamma Y_{n+1}^{(1)}\left(\varepsilon_{h, h^{\otimes}}^{\otimes i_{G}}{ }_{n+2} \times \ldots \times G_{1}\right)\right] \text { if } m=2 n+1 \\ \left|K_{1}\right|^{-\frac{1}{2}} s^{h} \otimes\left[\left(\varepsilon_{h, h^{\otimes i}} G_{n+2} \times \ldots \times G_{l+1}\right) y_{n+1}^{(1)} \text { Г] if } m=2 n+2 .\right.\end{array}\right.$

Let us notice that the elements in the brackets are selfnormalizing (the first one is a partial homothety, the second one is the transpose of a partial homothety; we use (3.6)) and that their norms do not depend on $h \in G_{n+1}$. Therefore
$(9.8)<\left(\omega^{9}\right)$
(1), $\left(\omega^{g}\right)$
(1) $>^{-1} \|\left(\omega^{9}\right)$
(1) $\|_{1} H\left(\omega^{h}\right.$
${ }^{(1)}\left\|_{\infty}=\left\langle s^{g}, s^{g}\right\rangle^{-1}\right\| s^{g}\left\|_{1}\right\| s^{h} \|_{\infty}$.

To obtain the desired estimate, it is now enough to make two remarks, both of which follow easily from (9.7):
(9.9)

$$
\left\|w_{B}^{(l)}\right\|_{\infty}=\max _{h \neq g}\left\|\left(\omega^{h}\right)^{(l)}\right\|_{\infty}
$$

$$
(9.10)<\left(\omega^{g}\right)^{(1)},\left(\omega^{g}\right)^{(1)}>=\left|\Delta_{m}\right|^{-1}\left|K_{1}\right|
$$

To prove (9.9) we observe that the elements in the brackets in (9.7) satisfy the assumptions of (3.3), therefore, by (3.10),

$$
\left(\left(\omega^{h}\right)^{(1)}\right) \perp\left(\left(\omega^{X}\right)^{(1)}\right) \text { and }\left(\left(\omega^{h}\right)^{(1)}\right) \perp\left(\left(\omega^{X}\right)^{(1)}\right) \text { if } h \neq x \text {. }
$$

Now (9.9) follows by (3.3).
To prove (9.10) we notice that, by (9.7), <($\left.\left.\omega^{g}\right)^{(1)},\left(\omega^{g}\right)^{(1)}\right\rangle$ does not depend on B because neither $\left\langle s^{g}, s^{g}\right\rangle$ nor $\langle[\ldots],[\ldots]>$ does. But $\left(\omega^{g}\right)^{(1)}$ is nothing but $\omega_{B}^{(1)}$ and

$$
\sum_{B \in \Delta_{m}}\left\langle\omega_{B}^{(1)}, \omega_{\dot{B}}^{(1)}\right\rangle=\left\langle z^{(1)}, z^{(1)}\right\rangle=\left|K_{1}\right|
$$

Hence (9.10) follows.
In this way (9.8) becomes

$$
\left|\Delta_{m}\right|\left|K_{1}\right|^{-1}\left\|\omega_{B}^{(1)}\right\|\left\|_{1}\right\| w_{B}^{(1)} \|_{\infty}=\max _{h \neq g}\left(\left\langle s^{g}, s^{g}\right\rangle^{-1}\left\|s^{g}\right\|\left\|_{1}\right\| s^{h} \|_{\infty}\right)
$$

Now we pass with 1 to ∞ and use formulas (9.3) and (9.4). We get

$$
\left|\Delta_{m}\right|\left\|\omega_{B}\right\|_{*}\left\|w_{B}\right\|_{\infty} \leq \max _{h \neq g}\left(\left\langle s^{g}, s^{g}\right\rangle^{-1}\left\|s^{g}\right\|\left\|_{1}\right\| s^{h} \|_{\infty}\right)
$$

In §7 we have actually proved that

$$
\left\langle s^{g}, s^{g}>^{-1}\left\|s^{g}\right\|_{1}\left\|s^{h}\right\|_{\infty} \leq q_{n}^{-1 / 16} \text { for every } h \neq g\right.
$$

and by (7.5), $\Sigma q_{n}^{-1 / 16}<\infty$. This proves (2.8).

