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XIV-XV.1

A Banach space X is said to have the approximation property

if the identity operator on X can be approximated uniformly on every

compact subset of X by finite rank operators.

We prove the result stated in the title of this talk (or,

rather, present the main ideas leading t,o the proof).

1. INTRODUCTION

Grothendieck discovered [2] that a Banach space X does not
 A

have the approximation property if and only if there exists QÉ X QX

such that

where, for we set

(We regard, as usual, a PX 0X as a functional on L(X,X) = the space of

bounded linear operators from X into X where, for T E IJ(X,X),

Enflo solved the approximation problem Ell, apparently, quite indepen-

dently of the ideas of [2]. Enflo’s idea, however, can be seen as a

development of Grothendieck’s : :

The difficult part of (1) is, of course, the condition 

This is, in a way, an extrinsic condition, i.e. it depends on the whole

space X rather then on P alone. Enflo circumvented this difficulty in

the following way : suppose that j3 ~X Q9 X, n = 1,2,... satisfy condi-

tions :

Standard notation : t = complex numbers, U (z6111 : : z 11 for a set A,

)At=the cardinality of A, 1A=the indicator function
of A. [t] rentier of t.
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belongs to and satisfies (clear-

ly) condition (1) and therefore X fails the approximation property. The

crucial point of Enflo’s method is that the condition (4~*) is quite

easy to control. To illustrate this, let us look at the typical situa-

tion where

with

Then (ii) is obviously satisfied if either y. 0 or y . ---’0,
J J

which usually follows automatically from (***). In this way the whole pro-

blem is, practically speaking, reduced to the condition This con-

dition is already "intrinsic", i.e. it can be settled by looking at a

single representation P n - Pn+1 ":: -7 ya(9 ua-n n+I a a

We shall proceed from these ideas.

2. A CRITERION FOR FAILING THE APPROXIMATION PROPERTY.

It will be convenient to work with the uniform version of con-

dition This amounts to

For a finite set J and
-IC.

we denote

We shall use the

following simple estimate of 11 JL. For ~ like above let

We have
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To see it, let We have

In estimating the norms 11 II 1B we shall use the following two standard
lemmas. Let A be a finite set, let X and Y be Banach spaces and let

for a E A. The set (.p ,u : a 6 A) will be called sufficiently
a a a a 2013201320132013201320132013201320132013**

unconditional if there exist functions (changes of signs) £1 ’,... , £ae : 
such that

1-1 If a é A) is sufficiently unconditional, then

Proof : It is an obvious application of the invariance of the trace.

Let E1,...,E~ be like in the definition. We have, by (2.3),

Therefore, by (2.1) and (2.2),

which proves the lemma.

We have the following well known and obvious :
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Lemme 2. ~

for any 6 :

be such that

Then (ya,’ua: : ac A) is sufficiently unconditional. 
’

i 

a

Now we can formulate our main technical proposition. We shall

use the Enflo’ pattern from § 1 with
4!-

our proposition we combine two simple ideas :

are related by a "martingale
condition" : we assume that there exist such that

Then we have, obviously,

where

20) To estimate we partition Jn as, let us say,

pairwise disjoint, and estimate the norms

separately using Lemma 2.1. The main idea behind "partition-

ing" is that, when the sizes of Aj are small enough, then there is,

practically speaking, no dependence between
,

..., ...,

therefore, their norms can be made small simultaneously. 

We summarize these remarks in the following :

Pro osition 2. 3 : Let In’ n== 1, 2, ... be f i ni te sets, 1 et lin’ zb’ 

n n n b

be as above (in particular, we assume that the "martingale condition"

( 2. 4 ) i s sati sf i ed ) . Assume that

For n ~ 1, 2, ... let Ó n be a partition of J 
n 

such that
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is sufficiently unconditional for

I Then X does not have the approximation property.
Proof : and check (4,), (r, (. l’F) is just
- n n

(2.5) and follows from (2.6), by (2.0). Therefore we should only

check condition (~~#). We have

By (2.?) and Lemma 2.1

Therefore

and l’F**) follows by (2.8)~ 
’

Remark : A simple form of the "martingale condition" (2.4) (used in

[9] but not in the present paper is : J n = [2n + 1,...,2n+1} for n=1,2,...

3. B(H) , NOTATION AND SIMPLE FACTS.

The inner product in any Hilbert space will be denoted flg&#x3E;;

flog means flg&#x3E; = 0 and, for subspaces H I and B21 H1lo"2 means f L g for

every f6H., gEH 2" °
Given Hilbert spaces Hi, H 2 we denote by the space

of bounded linear operators from H to H21 equipped with the operator

norm )) 
Let Hi, R2 be Hilbert spaces, 

x E IB -

If rk X00, then we can define its "inner product" with any y~B by 
the

formula
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v

By this formula x will be identified as an element of IB , denoted here

by x. It is well known that

By R(x), 3(x) we denote the range and the domain of x, respectively.

We shall only use some most elementary facts about the norms 11 11p :

then

if y, z are isometries (onto) of H,, H2, respectively, then

As a corollary of (3.4) we note

Then for every choice of signs

Notice that (3.5) is indeed a consequence of (3.4) :

The assumptions of (3.5) say that there exist direct sum de-

compositions

Then, clearly, 1’1

and ~2 are isometries of Hl, H2, respectively, and we have



XIV-XV.7

An x E lB will be called an a-homothety if llx(f)11 = allfll for every f E H1 *
It will be called a partial homothety if it is a homothety on its domain

(i.e. if it is the form yp where y is a homothety and p is an orthogonal

projection). It is easy to see that

(3.6) if x is a partial homothety, then

Otherwords, a partial homothety is selfnormalizing. By (3.2), rank one

operators are also selfnormalizing. Let (K,p) be a measure space. By iK
we denote the identity on L 2(K,,i). If S c K, then is denotes the indicator
function on S and p S denotes the projection in defined by

s 

psf=f. 1s . .

"S S
Let K be a finite set, let the measure liK be defined by

JKt" 1 for all aE K. We define 

Let A, B be finite sets. By M(A,B) we denote the set of all

A x B matrices, i. e. of -functions from A x B into (E. Given an

x E lB(L2(B),L2(A)) we shall identify it in the usual way as an element

x E M( A, B ) . For a E A, b E B we define F, a,b E M(A, B) by

Let x E M(A,B), yE M(C,D). We define xgye M(A x C,B x D) as usual :

We shall need the following simple facts

if x and y are homotheties, then so is x@y.

i f 6~x 1 Ru, then for every y, z .
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For use in formula (7.9) we introduce the following ad hoc notation :

I
Clearly, 0 has the properties (3-7)-(3.10).

If xE M(A,B), then xtE M(B,A) denotes the transpose of x.
Clearly

4. THE FORMAL PATTERN OF THE CONSTRUCTION

The construction is done in two steps :

1o defining for an arbitrary Y,  1 ,..., 2 so that the conditions

(2.4)-(2.8) of Proposition 2.4 are satisfied (with estimates in (2.6),

( 2. 8 ) independent of ~ ) .

2° passing with I to 00.

Step 1o is the bulk of the construction ; step 2o involves some further
technical complications and we skip it in this note.

Let r1,r2’... be some natural numbers. Let 
i 2 

. - _1 
n n

We shall work with the space of

matrices M( Kg , Kg ) which is identified with E(L2(Kae),L2(Kae» as indicated

by

We define also We set

Let us make the following notational convention :
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in the following way

we define

if m is even ,

if m is odd .

In § 5 we shall define a matrix z E which is the main

ingredient of the whole construction. We set then for E K
m n

We see that (2.4) is evidently satisfied. Condition (2.5) is

equivalent to

We shall construct z so that

(4.5) all entries of z have absolute value which obviously

implies (4.4).

To see what becomes of condition (2.6), let 6(a) be any numbers of abso-

lute value 1, for aE Jn. Then, by (4.5), all entries of the matrix
n

E £(a) z have absolute value Hence

aEJ 
a

n

To see that this leads to a desired estimate, let us anticipate the

following fact, proved in § 6

is a homothety of

In this case, the --norm of z is very easy to compute :
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for any C E I and the last norm is evidently e(iual

We can thus conclude

hence, by (4.6)

which evidently must go to 0.

Concerning condition (2.7), we have the following trivial

Lemma 4.1 : Condition (2.7) is satisfied provided (4.9)

(4.9) n is 1-1 on every BE pn, i.e. for a,bl::B, a/b implies
n n

Proof : We shall use (3.5) and Lemma 2.2. Let us take

We have obviously

therefore the assumptions of (3.5) are clearly satisfied for

are contained in 1

the assumptions of (3.5) are, a fortiori, satisfied for

Now we can apply Lemma 2.2.

5. THE DEFINITION OF z AND OF A ’S.
n _

We shall need a further detai l. We assume that Gn= Fnx Fn’
i.e. every OEG 

n 
is written as f = 80,81) with QB0 E F - We require

n n

that the following "independence condition" is satisfied :
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We define z by the formula

where v n E M(G n+I xF,F) are certain unimodular matrices defined in § 7 and

can be an arbitrary symmetric, unimodular, homothetic matrix.
’ 

Let us now indicate how the A ’s are constructed. Let m= 2n+l
m

(let us notice that there is a slight lack of symmetry between B2n+l(...)
and B 2n+ 2 (...) : the second one has rn+1 times as many elements as the

first one because the variable T) . is free in B 2n+ 2 (... ) whence q
is "bound" in B 2n+ 1 (...)). 

~~ ~ Iln+

All elements of A will be of the form B’(c,d,g,C,D) for some c, d E K ,
m n-1

g E G , C.DdG . Let us notice that Bm ( ... ) satisfy (4.9) and there-n+1 n

fore (2.7) is automatically satisfied.

We pass now to the discussion of the main condition (2.8).

For B E A let us denote
m

Condition (2.8) can be thus formulated as

For the sake of convenience we assume that
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and IDI are constant for all and

is constant for BE Ami , therefore
m

Since z is a symmetric matrix, 2° implies that w B’ , w B with are

just transposes of wB with Therefore

which lets us to restrict attention to the case of, for example, odd m,

let us say m= 2n+1.

thus

We have obviously

By (5.4) and (5.7), the following condition is necessary for (5.3) :

is small for every h/g

(let us notice that this quantity has to be big if h = g, namely » 1 ;

here we actually have the crux of the construction : making the ratio

small for all h~ g). Of course, (5.8) is useful only in

case when (5.7) is not far from equality. This is settled in the follow-

ing section.
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6. THE ORTHOGONALITY CONDITION.

We shall define matrices

Thus

In the following Lemma, we use the notation of 5A.

Lemma 6.1 : We have provided

(6.0) Yn+l is a homothetic matrix.

h 
I ’X- Proof : We shall use 

h 
( 3.1 ) . Let , Obviously 

The fact that also Rw follows easi ly from ( 6.0) and from (5-0) ;The fact that also Rou -?00 follows easily from (6.0) and from (5.0) ;
here is a formal argument :

For h E G n+ 1 let us denote 
.

Let us notice that, by (6.0)

By (5.0), there exist such that

for every (s, 11) E B .

We see that

are defined by

(at this point it really does not matter how sn looks like)
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I otherwise ;

Since F is an orthogonal transformation (it is just a diagonal matrix

with all terms of absolute value 1), (6.1) implies that 

which, by (3.10),implies the desired conclusion 
The "orthogonality condition" (6.0) seems to play an essential

role in our construction. To clarify this condition we shall use the

following description of ym : let us define Tn E M(Gn x Gn+1 ’ Gn X Gn+1 )m n n n+1 ’ n n+1
and by

and let

We have

For let us define
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Lemma 6.2 : The matrix yn is homothetic provided

(6.7) vg is a homotheti c matrix for every g E G for all m~ n.
m m+1 

Proof : Since h is equivalent to a direct sum of vg, it is a homothety,
2013201320132013 m m

by (6.7), for all m &#x3E; n. Consequently, Vm are homotheties for m &#x3E; n. Since

Tis also a homothety, so is iK by the formula (6.6) and, conse-

quently, y n is homothetic. 
n-1

The following lemma has been already announced in (4.7) ; as

we proved there, (6.8) implies condition (2.6i.

Lemma 6.3 : -. If (6.7) holds for every n, then the condition (4.7) is

satisfied, i.e.

(6.8) for every s,llE Kn’ z is a homothety of L 2(1 onto L2(I ) .n s’! ’’ 

Proof : We have

where Q is a constant and

defined by

are diagonal matrices

Since the matrix vn is unimodular, f1 and 1’2are isometries.
By lemma 6.2, yn+l is a homothety, therefore Fey or

is a homothety and this clearly implies (6.8).
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7. THE END OF THE CONSTRUCTION AND OF THE PROOF

So far we have been mainly concerned with the formal aspects

of the construction. To recapitulate :

the matrix z is given by (5.1) where

is an Hadamard matrix for every , every n (by an Hadamard matrix

we mean a unimodular square matrix,whose rows (columns) are mutually

orthogonal) ;
the partitions ~m should satisfy the condition (5.0) plus the

requirements (5.4), (5.5).

Then everything boils down to condition (5.8).

The rest of the construction is combinatorial. Let F be a finite set

with A partition ’7of F will be called regular if ’~I = q and

each element of v has q elements. Let ~ be a standard regular partition

of F, let us say we write F = H x H hE H).

Lemma ?.1 : Let q be a number of the form 28p, p an integer. Let F,
be like above and let G be a set with q8 elements. There exist regular

partitions "7, gE G, of F and matrices vg E M( F, F ) , g( G so that
g

(7.1) vg is an Hadamard matrix for every gE G ,

for every AEV , , every g E G , every SEt .
g

for every every g E G, every h/g,
g

every S E $ . .

We postpone a (rather-simple) proof of this lemma to § 8.

Let us notice at this point that, by (7.2) and (7.3),
1

for every A E 7 , every g E G, every h / g, every S £ lll, whi ch seems to
’ 

9 
’ ’ ’

indicate that we are on a right track.

Let now q n be a sequence of numbers such that q 
n 

is of the
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form 2 , p an integer, and

(7.5) qn --+ 00 faster than any power of n ,

We define : be any regular partition

of F . We apply lemma we obtain

thus the regular partitions and matrices
-

so that the respective conditions

satisfied.

Now we can complete the definition of

We define for m = 2n+l or 2n+2 :

With this definition of A ? (5.0), (5.4) and (5.5) are obviously satisfied.

Now we can prove (5.8). Let m- 2n+l, let B E Am be like in (7.7).

We use the notation of 5A. We claim that for every ,

- 

1

This quantity is, by (7.4), equal to ;16 . - By (7.5), this implies (5.8).

To prove (7.8), we shall again use the formulas (6.2), (6.3) ;
this time we pay more attention to s . We have

Q is a constant which does not depend on h,

I
® is defined by (3.11) (and behaves exactly like (9) , ,

are diagonal matrices defined by
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otherwise ,

otherwise .

If we now put (6.2) and (7.9) together, then we get

or, writing it in a schematic way

We have for every

and

(the last equality follows from the fact that X, Y, wg are selfnorma-

lizing, cf. (3.6) and the two lines following (3.6)).

Let us also notice that for every I

thus Now it is evident that

and,since , I are isometries (onto), (7.8) follows by (3.4).
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8. PROOF OF LEMMA 7.1. 

The main ingredient here is the following combinatorial

Sublemma : There exist regular partitions 7 , g E G, of F such that1 9

Proof : Let K be the Abelian field of order 2p, i. e. K = GF(2) .
Since JFJ = (2) , we can identify F, as a set, with the vector space
16 

, 

^ 

. .. 16
K . Let E and E’ be two different 8-dimensional subspaces of F = K .

Clearly and therefore

It is a standard fact that, given a 2P-dimensional vector space V over

2 ...
a field of order , there are at least a different P-dimensional sub-

spaces of V. (To see this let us choose a basis for V, say el,e2,...,e2P
and to a tuple g = (g.. : with g.. E K let us assign

IJ IJ

It should be clear that only if g=h and we have obviously Pp 2
different g’s like above.)

In our case this means that there are at least 264p = q 8
different 8-dimensional subspaces of F= K16. Let us denote these by

E , gE G. Let V be the partition of F into 8-dimensional hyperplanes
9 9

parallel to E . Then "7 are, obviously,regular partitions, and (8.0)
9 9

follows from (8.1). 13

Next let us notice that there exists an Hadamard matrix wE M(F,F)

such that rk Ps w p U =1 for every and, moreover,

with S,U E ~ are pairwise

orthogonal vectors.

Otherwords, all columns of the matrix ps w pL, are of the form z . 
o L U
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and 

To construct such w we take simply any q x q Hadamard matrix,

say y and define for e,fE F

(an e E F is written as e = (e1,e2) wi th f~1,e2¿ H).
We see that, if S, U E ~ with S = ~ i ~ x H , U = (j) x H then (8.2) is satisfied

with

(if we take T E ~, T/tJ, say then aS,T because the j-th
and the k-th columns of y are orthogonal).

We shall also need the following, entirely trivial, remark :

(8.3) if I and Vare arbitrary regular partitions of F, then there

exists a permutation P of F which carries onto .1:, i . e. f or

every B(57, P(B) E 1.

Now we can define vg. Let B7, gE G, be the partitions of F from the
g

Sublemma and, for g E G, p be a permutati on of F whi ch carri es vv-7 onto $.

We define v g by 
9 9

We define v"’ by

i.e. vg is obtained by applying p 1 to the columns of w.
g

Let S E t, h E G . Let us notice that

therefore, by (8.2),
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Now (7.2) follows by (8.4) and (3.2).

For let us denote
h

We have obviously

By (8.5), R u B-L R ucif B/C. Since, obviously, also

by (3.3) we have

Clearly, u B has q. I A n B I non zero entries, all of them of absolute

value 1. Therefore, by ( 3. 2 ) and ( 8. 4 ) ,

If now h / g, then, by (8.0), ~ A ~ B ~ _ q.l~ ~ for every BE§ and this
yields (7.3).

An expanded version of the present note will appear elsewhere.
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9. PASSING WITH 1 TO co.

There are, essentially, two technical problems to resolve:

1 ° to give meaning to the formula (5.1) for 1 =

2° to define a duality in 7B(H) so that we can define 

in an analoguous way to ( 4 . 3 ) .

A somewhat surprising fact is that, in order to settle 1°,

it is more convenient to work with a space IB (Hi I H2 where

H1 and H2 are two different Hilbert spaces.

Let and Kn have the same meaning as in §4. Let

us denote

where

from some

Thus K 00 is a countable set. For any countable set N we

denote by ~2(N) the Hilbert space of square summable functions

on N. we define the unit vector en E £2(N) by

e ( ) 
Tj 

(the Kronecker 6). Let us identify K withn &#x3E;,n n

the n E of K ? let Hn be
n °* n

the subspace of £2(K) spanned by {e : n E Kni’ z 00 
" 

n n

To define our Z, we shall need that the matrices vg from

Lemma 7.1 satisfy, in addition, the following condition

(9.0) 1 and vg(~,1) = 1 for every g E G, ~,n E F.

(we prove at the end of this section that this can be done) .
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The resulting matrices satisfy then

if either

Under this assumption, if n E K~, then the infinite product

is well defined for every ~ E K, because its terms are 1 from

some n on.

It is thus natural to try to interprete z as an element

o f B 
def 

L (K) ) where we def ineof JB 2( )) where we define

It is clear that zen is a unimodular function in L 2(K),
thus

11 ze = 1 for every T1 E K .T1 00

We shall soon prove that

This, obviously, implies that z is an isometry, thus, indeed

Now we define

and the projections

be defined by

respectively.
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We set for

To define we introduce a duality in :B in the 
-.-

following way: let Lim be a Banach limit, i.e.

and, for

In particular, if the ordinary limit exists.

We define for

Just for the sake of illustration let us make the following obvi

ous remarks:

1 (x , y) x(y) is a norm one sesqui-linear form on bxlB.

2 x(y) = 0 if either x or y is compact.

3 x (x) - 1 if x is an isometry (into).

For x E IB we denote llxllg = .

~ 

IB

We shall use the following simple estimates:

We define
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Let us now investigate the restrictions etc.

We shall show that most of the results of §6 apply to these

operators as well. First let us notice that z H is in a cano-

nical way equivalent to the matrix C defined

by

(the factor arises from our normalization conventions: "

M(Kl+1 ,Kl) is identified whileI+I ’ 1 2 1 ’ 2 1+1

we define matrices

in particular

thus is a homothety. The formula (6.6) (with

yields now:

is a homothety for m = 1,2,...,1.

This, clearly, implies (9.1).
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Now we shall derive the estimates needed in Proposition 2.3

from the corresponding estimates in §4-§7. In several places

we repeat the former argument almost verbatim!

Ad(2.5). This is immediate because, for 1 &#x3E; n, m,

Therefore

Ad (2.6). An analogue of Lemma 6.3 is true, with an analogu-

ous proof:

is canonically equivalent to

(this time, are defined by

We have

with r1 E and 2  def ined as in the

proof of Lemma 6.3. We conclude, by the same argument, that

is a homothety, equivalently, that is a homo-

thety. This implies that is a homothety. Looking at

for a suitable 6 we fined easily that

On the other hand, if for a then the matrix

is unimodular, therefore
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for every r) E K and, by (9.2),

This, together with ( 9 . 6 ) , gives the desired estimate ( 4 . 8 ) .

Ad ( 2 . 7 ) . Although (3.4) is no longer true for p = *,

it remains true if y and z are diagonal isometries. It

is easy to see that this suffices for the argument of Lemma

4.~.

and wn be like in 5A. Let

thus is canonically equivalent to We have

Let us notice that the elements in the brackets are selfnorma-

lizing (the first one is a partial homothety, the second one

is the transpose of a partial homothety; we use (3.6)) and that

their norms do not depend on h E Gn+ . Therefore

To obtain the desired estimate, it is now enough to make two

remarks, both of which follow easily from (9.7):



A1.7

To prove (9.9) we observe that the elements in the brackets

in (9.7) satisfy the assumptions of (3.~), therefore, by

(3.10),

and

Now (9.9) follows by (3.3).

To prove (9.10) we notice that , by

does not depend on B because neither

does. But is nothing but and

Hence (9.10) follows.

In this way (9.8) becomes

Now we pass with 1 to oo and use formulas (9.3) and (9.4).

We get

In §7 we have actually proved that

and by ( 7 . 5 ) , Thi s proves (2.8)


