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A Banach space X is said to have the approximation property

if the identity operator on X can be approximated uniformly on every
compact subset of X by finite rank operators.
We prove the result stated in the title of this talk (or,

rather, present the main ideas leading to the proof).

1. INTRODUCTION

Grothendieck discovered [ 2] that a Banach space X does not
have the approximation property if and only if there exists B¢ X'”@\)X
such that

(1) tr B =1 and [l =0
where, for B=x y ®x with = ||y || {|x [[ <=, v € X, x, € X, we set
tr g = B(Idy) = £ v (x )
lell, = supl{z v ()x (x) : x €X, xeX, |x||=1, [x]|<1} .

3*
(We regard, as usual,a B€ X @x as a functional on L(X,X) = the space of

bounded linear operators from X into X where, for T¢€ L(X,X),
= ) i = .
B(T) = £ y (Tx ) if B =2y ®x )

Enflo solved the approximation problem [1], apparently, quite indepen-
dently of the ideas of [2]. Enflo's idea, however, can be seen as a
development of Grothendieck's

The difficult part of (1) is, of course, the condition HBHV: 0.
This is, in a way, an extrinsic condition, i.e. it depends on the whole

space X rather then on § alone. Enflo circumvented this difficulty in

3

the following way : suppose that BnGX ®X, n=1,2,... satisfy condi-
tions :

Standard notation : & = complex numbers, M= {z€ T : [zl =1} for a set A,

[Al = the cardinality of A, 1, = the indicator function

A
of A. [t] = entier of t.
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(%) tr B =1 for n=1,2,...
(%) lim Bn(T) =0 if rk T=1
n

[e o]
(33%) 5 HB -B H < ®

ne1 n+1 n'a

[ee} "A
Then B=B,+ % (B - )=1im B_ belongs to X ®X and satisfies (clear-
1 n=1 n+1 n n

ly) condition (1) and therefore X fails the approximation property. The
crucial point of Enflo's method is that the condition (¥#%) is quite
easy to control. To illustrate this, let us look at the typical situa-

tion where

j=2

. * | o _ i
with Hyjj lyjH..yj(yj)- 1 for all j. .

Then (#%) is obviously satisfied if either y§ — >0 or y, o0,
which usually follows automatically from (%%%). In this way the whole pro-
blem is, practically speaking, reduced to the condition (#¥%¥#). This con-
dition is already "intrinsic'", i.e. it can be settled by looking at a
n+1 "~ =2 @ ébu '

We shall proceed from these 1deas.

single representation Bn- B

2. A CRITERION FOR FAILING THE APPROXIMATION PROPERTY,

It will be convenient to work with the uniform version of con-

dition (#%). This amounts to

1B,ll, —0 -

For a finite set J and ¢ = (¢ ,za: a€dJ) with @ € X R zaE X, we denote
B(¢)= = @ ®za€X ®X and tr ¢ = tr B(Q)—ZQP (z ). We shall use the

acd
following simple estimate of H ]v. For ¢ like above let
o(¢) = max || 7 e(a)? || max |z |
le(a)l=1 acd acd
We have

(2.0) [BCD|, = ~(2)
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To see it, let x €X , x€ X. Put e(a):<@a(x)l$a(x)| . We have

b) Iwa(X)x*(za)l < HX*“ max HzaH 3 |@a(x)| =

= HX*H max HzaH z ela) ¢_(x) = HX*H max HzaH (z e(a) @a)(x) <
< max [z, [z eCare || Ixl] [X7) = oto) I <71
In estimating the norms H ”A we shall use the following two standard

lemmas. Let A be a finite set, let X and Y be Banach spaces and let

uaE X, @aE Y for a€ A. The set (@a,ua: a€ A) will be called sufficiently

unconditional if there exist functions (changes of signs) Eprme s €yt A-T

such that

(2.1) Iz @ ull=12 ul for j=1,...,4 |,
acA J a acA a

(2.2) | = e(a) e |l =] = @ for j=1,...,4
aca Y a aca @
L

(2.3) by sj(a)Ej(b) =0 for afZb .

j=1

Lemma 2.1 : If (@a,ua: a€ A) is sufficiently unconditional, then
'z e @ull <s|z elfz ul .
a€A n a€A acA

Proof : It is an obvious application of the invariance of the trace.

Let Egrere1gy be like in the definition. We have, by (2.3),

S[(2 e.(a)? )@ (ze(a)u )] =% £ e.(a) e.(b)? ®u
j a J a a J a j a,b J J a b

= ¥ (ge.(a) €. (b)) Qu, =4 T ¢ ®u .
PR | J a b a a
a,b j a

Therefore, by (2.1) and (2.2),
2z e, ®ull, < 3‘3 12 e are || |z e T || =
SEEERACTR

which proves the lemma.

We have the following well known and obvious
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@ t:c€C, d€ D be such that

Lemme 2.2 : Let AcCxD and let u ’
bl c,d c,d

for any 6: C-T, TN: DT,

ll}i::::: o(c) T(a) u_

1

||: uc’d!l ’

(c,d)GA (Cyd)EA
HL_: 8(e) (d) (DC dzl« = ||: : ¢ dH .
(c,d)ea ’ (c,d)ea ©*

Then (@a,‘ua: a€ A) is sufficiently unconditional.

Now we can formulate our main technical proposition. We shall
use the Enflo's~ pattern from § 1 with B_=pB(% ) where ¢ = (¢ ,2 :acd )

% n n n a’"a n
with QPaE X , zaE X. In our proposition we combine two simple ideas :

10) (® :a€dJ ) and (¢ :acJ ) are related by a "martingale
a n a n-1 onto

condition" : we assume that there exist un: Jn ——-)Jn_1 such that
(2.4) ¢ = @ for every a€ J , n=2,3,...
& {b:n _(b)=a} b n-1
n
Then we have, obviously,
Puc1 = Pp = 2 9@z where
bed
. n
2, = Znn(b)—zb for b¢ Jn y N=2,3,...
20) To estimate ” s @ ®% !| , we partition J_ as, let us say,
bed b b'A n
n

Jn=A1UA2U UA\; , Aj pairwise disjoint, and estimate the norms

| = ¢ 69; “ separately using Lemma 2.1. The main idea behind "partition-
b bl'A
beA |
ing" is that, when the sizes of Aj are small enough, then there is,
practically speaking, no dependence between Y ¥ and Y% z , and
b b
beA . bEA .
J J
therefore, their norms can be made small simultaneously.
We summarize these remarks in the following

Proposition 2.3 : Let Jn' n=1,2,... be finite sets, let Qn’ o Zb

be as above (in particular, we assume that the "martingale condition"

(2.4) is satisfied). Assume that
(2.5) tr (‘Pn) =1 for n=1,2,...
(2.6) G(‘Pn)-—-—>0 as n-=c

For n=1,2,... let An be a partition of Jn such that
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(2.7) the set (@a,za: a€ A) is sufficiently unconditional for
every A€ An’ n=1,2,...

(2.8) o lal max |z z[l||z @<= .
n=1 A€ a€A a aea 2

Then X does not have the approximation property.

Proof : We take B_-= B(@n) and check (%), (%), (%), (%) is just
(2.5) and (*¥) follows from (2.6), by (2.0). Therefore we should only

check condition (¥¥%). We have

By (2.7) and Lemma 2.1
|z oozl == ol llz zl
bea ° P lbeA b leA b

Therefore I8 B Il = lal max [[ £ @ Il = Al
n-1 n n AEAn acA a acA a

and (#%#) follows by (2.8).

Remark : A simple form of the "martingale condition" (2.4) (used in
[9] but not in the present paper is : J = {2“4—1,...,2n+1} for n=1,2,...

and @j=(92j—14-¢23

3. B(H) , NOTATION AND SIMPLE FACTS.

The inner product in any Hilbert space will be denoted <f|g>;
f L g means <f|g>: 0 and, for subspaces H] and H2’ Hi-'--H2 means f1 g for
every f¢€ Hl’ ge Hz.

Given Hilbert spaces Hi’ H2, we denote by B(Hl,H2) the space
of bounded linear operators from H1 to H2, equipped with the operator

norm H Hw-

Let H , H, be Hilbert spaces, 1et]B:ﬁB(H1,H2) . Let xe B.

If rk x<o, then we can define its "inner product" with any ycIB by the

formula

(3.1) <y, x> 2§£ tr xwy
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#*
By this formula x will be identified as an element of B , denoted here

by x. It is well known that

I

Ixll w = IIxl, tr(xx ) /2
B

By R(x), B(x) we denote the range and the domain of x, respectively.

We shall only use some most elementary facts about the norms ” “p :
(3.2) if rk x=1, then [|x|| = x| = <x,x>1/2,
(3.3) if x= . x_ with Rx le: ﬁx Lé& for aZb , a,b€A,
acA
then Hme = max Hxauco .
acA
(3.4) if y, z are isometries (onto) of H], H2, respectively, then
”zxy”p = ”x”p for p= 1, and <zxy,zxy> = <x,X>

As a corollary of (3.4) we note

AN—
(3.5) let x= [ ____. x_ 4 with

(c,d)EA !

L i L ' i .

Rxc,d Rxe’f if c/4e and ﬁxc,d ﬁxe,f if d4f

Then for every choice of signs 6(c)€ T, TM(d) €T,

el = I 6@ 5yl Tor p=te

Notice that (3.5) is indeed a consequence of (3.4) :
The assumptions of (3.5) say that there exist direct sum de-

compositions

z

d c
so that Rx cHS, OHx CHd
) c,d 2 c,d 1

Let r1 ¥ N(d) Id 4 12:~x g(c) Id . + Then, clearly, U

d H1 c H

and F2 are isometries of Hl’ H2,

for every c,d.

1

2

respectively, and we have
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z 6(c) m(a) Xe.d = 120)”?1 .

An x&€ B will be called an a-homothety if Hx(f)H =oc“f“ for every f¢ Hl .
It will be called a partial homothety if it is a homothety on its domain

(i.e. if it is the form yp where y is a homothety and p is an orthogonal

projection). It is easy to see that

(3.6) if x is a partial homothety, then Hx”1 “waz <x,x>1/2 .

Otherwords, a partial homothety is selfnormalizing. By (3.2), rank one

operators are also selfnormalizing. Let (K,u) be a measure space. By i

we denote the identity on L2(K,u).‘ If SCK, then 1

K
denotes the indicator

function on S and pS denotes the projection in Lz(?(,u) defined by
psfz f. ls .

Let K be a finite set, let the measure uK be defined by
w({a}) = Ik1™! for all a€ K. We define L, (K) =L2(K,uK).

Let A, B be finite sets. By M(A,B) we denote the set of all
Ax B matrices, i.e. of functions from A xB into €. Given an
X € lB(Lz(B),Lz(A)) we shall identify it in the usual way as an element
x € M(A,B). For a€ A, b€ B we define sa,be M(A,B) by

1 if a=c¢c, b=d ,
(c,d) =

O otherwise .
Let x€ M(A,B), y€ M(C,D). We define x® y€ M(AxC,Bx D) as usual :
(x®y)(a,c3 b,d) = x(a,b) y(c,d) .

We shall need the following simple facts

(3.7) XQy,u® v> = <x,u><y,v> ,
(3.8) Hx®y||p = Hpr Hy”p for p=1,o .
(3.9) if x and y are homotheties, then so is x®y-

(3.10) if Rx L Ru, then R(y®x) Lt R(z®u) for every y, z
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For usc in formula (7.9) we introduce the following ad hoc notation :
let G= Fx F where we write 0€ G as 0 = (90,61) with 90, 616 F. For

!
X,y € M(F,F) we define x% y€¢& M(G,G) by

1

{
(3.11) (xoy) (6% 015 ¢%ch = x(61,c%y6%,ch)

|
Clearly, ® has the properties (3.7)-{(3.10).

If x€ M(A,B), then xte M(B,A) denotes the transpose of x.

Clearly

(3.12) th“p = Hx“p s <xt,yt> = <x,y> for all x,y,p -

4. THE FORMAL PATTERN OF THE CONSTRUCTION

The construction is done in two steps

1° defining for an arbitrary £< ¢1,-..,¢2£ so that the conditions

(2.4)-(2.8) of Proposition 2.4 are satisfied (with estimates in (2.6),
(2.8) independent of £).

2° passing with £ to .

Step 1° is the bulk of the construction y step 2° involves some further
technical complications and we skip it in this note.
be some natural numbers. Let an {1,...,rn}

Let LR YRR

. . -1 .
and let u = an i.e. un({J}): r = for j=1,...,r_ .
Let us put Kn::G1><...><Gn. We shall work with the space of
matrices M(Kz,KZ) which is identified withﬁB(L2(Kz),L2(Kz)) as indicated
in § 3. For €= (g1,...,§m)exm we define I € ]B(L2(Kz),L2(Kz))

by

cKz and p

g g

(4.1) Ig={'ﬂ:(T]l,T]2,...)€K2:T]l—.-g],...,‘ﬂm=§m} and pg:pIF .

We define also Kn=(} x G X aee sz. We set
n n

+1

— — — - 9
(4.2) Jo=K, , J, =K xK J2n+1_KnxKn+1 for n=1,2,...

Let us make the following notational convention
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When we write a= (£,T) € Jm , we always mean

€ = (517"'s§ ) L) T]= (Tll,---,Tl

) with €.,7.€ G,
[%(m)] | J

[%(m+1)]

We define n : J -J in the following way : for §€K
m m m-1 m

let € = (§1,...,§m_1). For b= (g,7) € Jm we define
(€,m) if m 1is even ,
(e,) if m 1is odd .

In § 5 we shall define a matrix z€ M(K,,K,) which is the main
ingredient of the whole construction. We set then for §¢ Km, mne Kn

(4.3) z @ =z

§,Tl - p‘éZp'ﬂ ’ g,ﬂ N —§,ﬂ .

We see that (2.4) is evidently satisfied. Condition (2.5) is

equivalent to
(4.4) <z,z2> =1 .

We shall construct z so that
(4.5) all entries of z have absolute value Kzl which obviously

implies (4.4).

To see what becomes of condition (2.6), let e€(a) be any numbers of abso-
lute value 1, for ac€ Jn' Then, by (4.5), all entries of the matrix

v e(a) z, have absolute value |K2i"1. Hence
aEJn

(4.6) o2 ) < K 1"2 max |2l -
acs  °

To see that this leads to a desired estimate, let us anticipate the

following fact, proved in § 6

(4.7) For £€K , MEK , nzm, z is a homothety of L2(I ) onto L2(I

€51 M

In this case, the «-norm of z is very easy to compute :

€,7

g

)
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M 1{{}“ for any C ¢ In and the last norm is evidently ecual
9 ©

L PR A P L e [

We can thus conclude

“Zan = |K£,-1/2' ,Knl_]/2 for act J2n v ac J2n+1 ?

hence, by (4.6)

1/2 -1/2

(4.8) J(an) < lKnl , 0(Q2n+1) < IKnl

which evidently must go to O.

Concerning condition (2.7), we have the following trivial
Lemma 4.1 : Condition (2.7) is satisfied provided (4.9)

(4.9) " is 1-1 on every BE€ pys i-e. for a,b€ B, aZb implies

mnaf Knb .

Proof : We shall use (3.5) and Lemma 2.2. Let us take A= %nB, C=K ’ .
fé(n-l)]
D=K 1 . We have obviously
[5 n]
2 = D =
R?c,d L2(Ic) , Zc,d L2(Id) ’
therefore the assumptions of (3.5) are clearly satisfied for X. d= 2%¢.4 "
° ° ’ ’
For a¢ B, Rz , Rz are contained in Rz and bz , Az in bz , therefore
a a %na a a Kna
the assumptions of (3.5) are, a fortiori, satisfied for X =2 4 ,
n
] N (a)
xa:: z _4 sy a€ A. Now we can apply Lemma 2.2.
" (a)

5. THE DEFINITION OF z AND OF An'§.

We shall need a further detail. We assume that Gn: Fn><Fn,
i.e. every 66 G is written as 6= (90,91) with 90,916 F - We require

that the following '"independence condition" is satisfied
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(5.0) for every A€ A2n+1
1

§n and ﬂﬁ are constant for (E,T)€ A ,

and for every B¢ A2n+2

o 1

§n and nn are constant for (E,M)€B .

We define z by the formula

4-1
(5.1)  =(5,M = Ik, |7 J]; v (e Lelinv (ol vig, )

where vne M(Gn x F,F) are certain unimodular matrices defined in § 7 and

+1

VE M(GL’Gz) can be an arbitrary symmetric, unimodular, homothetic matrix.
Let us now indicate how the Am's are constructed. Let m= 2n+1

or 2n+2, let c,d€K _,, _1), d= (d1,...,dn_1) with

c.,d.€ G, and let g€ G C,DcG . We define
J J n

i.e. c=(c y-e0ycC
1’ ’“n

n+1’

2n+1
B (c,d,g,C,D) = {(g,ﬂ)é J2n+1 : ﬂ1= d1,---,ﬂn_1= dn—l’
§1=c1""‘)§n_1=cn_19 T‘n+1=gs T‘nED, gnéc}
(5.2)
B2"*2(¢.d,g,C,D) = (E,EJ : E,.=d E .=4d
1C18y V0B = ’ 2n+2 * 517 %90t 05n1 7 %o 0

My=cqoresMy 1= €1 Spug =8 5,60, T € ?}

(let us notice that there is a slight lack of symmetry between B2n+1(...)

and B2n+2(...) times as many elements as the

2n+2(

: the second one has r
n+1

first one because the variable ﬂn+ is free in B

...) whence 7
1 n+
2ol 1))y,

1
is "bound" in B

-1?

All elements of AL will be of the form Bm(c,d,g,C,D) for some c,d€ Kn
C,DcG_ - Let us notice that B"(...) satisfy (4.9) and there-

g€ Gn+1’
fore (2.7) is automatically satisfied.

We pass now to the discussion of the main condition (2.8).

For BE€ Am let us denote

Condition (2.8) can be thus formulated as
(5.3) IAmI HwBH1 HwBHoo is small for every Bea .

For the sake of convenience we assume that
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1°, Icl and ID| are constant for all Bm(c,d,g,C,D) in B and

o 2n+1 . 2n+2
27, B (c,d,g,C,D) € Boniq iff B (c,d,g,C,D) ¢ By \o -

By 10, <wB,wB> is constant for BE Am’ therefore

-1
. < > - ! o1 .
(5.4) <wg.wy lAml for every B¢ A
. . s . o . . .
Since z is a symmetric matrix, 2 implies that wB, wp with B¢ A2n+1 are
. Therefore

just transposes of wpy W with B¢ Bon

B +2

(5.5) max A Hw max

a0l loglly lwglle,
BeA 2n+2 Bll1 "B

ons1! lwglly lwglly, =
2n+1 2n+2

which lets us to restrict attention to the case of, for example, odd m,

let us say m= 2n+1.

5A. Let B::Bm(c,d,g,C,D)G B+ For h€ Gn let us denote

+1
L]
(5.86) o = wg = 2_Tr________a z
a¢B (c,d,h,C,D)
thus
wB - w8 and wg = z wh .
hfg

We have obviously

h
(5.7) lIwglle o o™, -

By (5.4) and (5.7), the following condition is necessary for (5.3) :
g ,&.-1,8 h .
(5.8) <w®,w°> " o H1 lw7||_ is small for every hfg

(let us notice that this quantity has to be big if h=g, namely > 1 ;
here we actually have the crux of the construction : making the ratio
Hwhww/ ng”m small for all h#£ g). Of course, (5.8) is useful only in
case when (5.7) is not far from equality. This is settled in the follow-

ing section.
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6. THE ORTHOGONALITY CONDITION.

We shall define matrices y ¢ M(k", k™) by

4-1
1 o 1, _o
Y () = ,E] vo(E L E STV (T T g0 Vg, )
-1
Thus z = |K£| Yy

In the following Lemma, we use the notation of 5A.

Lemma 6.1 : We have Hw H = max Hwh” provided
e B'leo ®
h7g
(6.0) y is a homothetic matrix.
n+1
Proof : We shall use (3.1). Let h,xeGn+1, h £ x. Obviously @whlﬁwx.

The fact that also R L Rw® follows easily from (6.0) and from (5.0) ;
here is a formal argument :

For h€ G let us denote
n+1

h
Y = Yna p{h}xGn X+« o XG,

+2

Let us notice that, by (6.0)
(6.1) RyD LR oyX .

By (5.0), there exist e,f¢ Fn such that

go = e , ﬂi = f for every (£,M)E€B .

We see that
h
(6.2) ol = e (e yM)

h .
where s € M(Kn,Kn) and '€ M(Gn XeeoxG o, G,

+1 n+1
(at this point it really does not matter how s looks like)

x...sz) are defined by
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h n-2 1 o 1 o] 1 o
s (E,1) = }jE vj(dj+1’dj; Cj)vj(cj+1’cj; dj)' Vn_1(§n’°n-1; dn—1)
1 o 1 o]
. H . . £
(6.3) Vn—1(nn’dn—1’ Cn-i) vn(h’nn’ °n)
if nne D, §nec and (§1,...,§n_1)=c, (n1,...,nn_1):d
h, _ .
s (E,M) = O otherwise ;
vn(§n+1,e; f) if Eiiq ™ Mnaqr o 280 =Ty
I'(g,m) =

0O otherwise .

Since ' is an orthogonal transformation (it is just a diagonal matrix
with all terms of absolute value 1), (6.1) implies that R([ ° yh)L R(I o yX)
which, by (3.10),implies the desired conclusion Ruﬁllﬁiwx.

The "orthogonality condition" (6.0) seems to play an essential
role in our construction. To clarify this condition we shall use the
following description of y : let us define I' € M(G_x G , G xG )

m n n n+1 n n+1
and TE¢ M(Kﬁ,Kﬂ) by

1 o . o 1
Vn(gn+l’§n’ nn) if gn+1"nn+1’ gn"nn
(6.4) I‘n(g,n) = :
O otherwise
V(g,,My) if e%=nt, €121 for j< 4
~3J J J J
T(§,ﬂ) =
O otherwise
and let
(6.5) Vn = i ®In®i P
n-1 K
We have
. , t t t
(6.6) 1Km_1®ym_vm Vier oo Vg o TV Lo, Voo oV -
. g
For g¢€ Gn+1 let us define LS M(Fn,Fn) by

vo(e,f) = vn(g,e; f)
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Lemma 6.2 : The matrix Yn is homothetic provided

(6.7) vi is ahomothetic matrix for every gE(%“4rfor all m> n.
Proof : Since Fm is equivalent to a direct sum of vi, it is a homothety,
by (6.7), for all m>n. Consequently, Vm are homotheties for m=>n. Since

Tis also a homothety, so is iK g)yn, by the formula (6.6) and, conse-
quently, Yn is homothetic. n-1

The following lemma has been already announced in (4.7) ; as

we proved there, (6.8) implies condition (2.6).

|[Lemma 6.3 : If (6.7) holds for every n, then the condition (4.7) is

satisfied, i.e.

(6.8) for every §,M€K , =z is a homothety of L2(I

) onto L2(I )

€57 Ul 3

Proof : We have

= . I' oy oI
“g,n = 4 %g,n® Ua Vaua o Ty

where Q is a constant and Tl,fze M(Kn+1,Kn+1

defined by

) are diagonal matrices

1 o .
vn('on+1’nn’ gn) if (=2

)

1

0O otherwise ,

1 .
Vn(gn+1’gn; ng) if C=v

"

I (E,v)

O otherwise .

Since the matrix v is unimodular, F1 and fz are isometries.

By lemma 6.2, Y e is a homothety, therefore P2° yn+1° Fl

is a homothety and this clearly implies (6.8).
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7. THE END OF THE CONSTRUCTION AND OF THE PROOF

So far we have been mainly concerned with the formal aspects
of the construction. To recapitulate

the matrix z is given by (5.1) where
(7.0) vie M(F_,F ) defined by vg(e,f) = v (gesf)

is an Hadamard matrix for every gc G every n (by an Hadamard matrix

n+1’
we mean a unimodular square matrix whose rows (columns) are mutually

orthogonal) ;

the partitions Am should satisfy the condition (5.0) plus the
requirements (5.4), (5.5).

Then everything boils down to condition (5.8).
The rest of the construction is combinatorial. Let F be a finite set
with IFl = q%. A partition ¥ of F will be called regular if |¥|=q and
each element of v has q elements. Let $ be a standard regular partition

of F, let us say we write F=HxH and $={{h} xH: h€ HJ.

Lemma 7.1 : Let q be a number of the form 28p’ p an integer. Let F, $
be like above and let G be a set with q8 elements. There exist regular

partitions <§, g€ G, of F and matrices vEe M(F,F), g€ G so that

(7.1) v€ is an Hadamard matrix for every g€ G
(7.2) ”ps vE pA“1 = q for every A€ Vé , every g€ G, every S€ $ .
15 .
h 16
(7.3) HpS v pAHoo < q for every A€\’7g, every g€ G, every hf g,

every S¢ $ .

We postpone a (rather-simple) proof of this lemma to § 8.
Let us notice at this point that, by (7.2) and (7.3),
L
g g -1 g h 16
(7-4) <ps v pA’pS v pA> ||pS v pA”l Hps v pAHoo = q ’
for every AEEV%, every g€ G, every hf g, every S¢ $, which seems to

indicate that we are on a right track.

Let now 9, be a sequence of numbers such that q, is of the
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form 28p, p an integer, and

(7.5) q, —> = faster than any power of n ,

(7-6) Upeq = qi

We define F_= {1,...,qi}, G =F xF . let $n be any regular partition

of Fn. We apply lemma 7.1 to q = q.s F= Fn’ G= Gn+1’ $ - $n 5 we obtain
thus the regular partitions CE of Fn for gc¢ Gn+1 and matrices
vgé M(Fn,Fn) so that the respective conditions (7.1), (7.2), (7.3) are
satisfied.

Now we can complete the definition of A 's (see (5.2)). For
AC:Fn and e€ Fn let C(A,e) ={g¢€ Gn : 0%¢ A, elz e},

D(A,e) = {eGEGn : 60: e, 916 A}. We define for m= 2n+1 or 2n+2 :

(7.7) & = {B"(c,d,g,C(S,e),D(A,f)) : c,d€ K BEG e, fEF_

-1? +1°

and AEVg, ses$l .

With this definition of A , (5.0), (5.4) and (5.5) are obviously satisfied.
Now we can prove (5.8). Let m-= 2n+1, let B€ Am be like in (7.7).

We use the notation of 5A. We claim that for every hE’Gn+1,
-1 h
(7.8) <8, 8> ”ng1 o™l =
-1 h
= <Pg v PpoPs Vg P> lIpg vp pylly llpg vyl
1
T 16

This quantity is, by (7.4), equal to Q. . By (7.5), this implies (5.8).

To prove (7.8), we shall again use the formulas (6.2), (6.3) ;

this time we pay more attention to sh. We have

h

! h
- Q. I o R
(7.9) s = Q ec,dg)[ee,f® (! 1°Pg vV, Py Fz)] where

Q is a constant which does not depend on h,

!
® is defined by (3.11) (and behaves exactly like ®)

k]

Fl,fze M(Fn,Fn) are diagonal matrices defined by
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(]

v ((Che),el 5a% ) ircav

-1 “n-1
1‘1((,,«)):
0O otherwise |,
v ((f,0),d0 5% ) if Can
n-1 ’ ’n-1° "n-1 - !
L (C,V) =

0O otherwise

If we now put (6.2) and (7.9) together, then we get

h Lo
rSoLEe,f@(l1 p

h . - h
W Q'Sc,d s Vo Pa 12)]®(l°y)

or, writing it in a schematic way

|
ol = Q. X8 [YezM ow"

We have for every h¢€ Gn+1’
h h h
™[l = @ Xl Wi, llz70, (W3l for p=1,=

and

<0808 = Q% <x,x> <v,Y> <z8, 78> <w& we>

Q2 [Ix|, Xl Yl vl <2®,28> |[w8|, ||jw8),

1 |

(the last equality follows from the fact that X, Y, w8 are selfnorma-
lizing, cf. (3.6) and the two lines following (3.6)).

Let us also notice that for every hc¢ Gn+1 ,

h h
Iy, = Iyl = vl
thus [[W"||_=||WE||_. Now it is evident that
-1 h, . h
<wB, w871 () oM - <2828 ||28], |1Z2",

and,since T1, I'_ are isometries (onto), (7.8) follows by (3.4).

2
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8. PROOF OF LEMMA 7.1.

The main ingredient here is the following combinatorial

Sublemma : There exist regular partitions Vg, g€ G, of F such that
if AEVg, BG\’/'h with g,h€ G, g# h, then

7/8

(8.0) lAnBl < q .

Proof : Let K be the Abelian field of order 2p, i.e. K= GF(2p).
Since |F| = (2p)16, we can identify F, as a set, with the vector space
K16. Let E and E' be two different 8-dimensional subspaces of F= K16.

Clearly dimK(Er]E')s'7 and therefore

(8.1) lENE'| < 2P - q7/8 .

It is a standard fact that, given a 2P-dimensional vector space V over
2

a field of order B, there are at least BP different P-dimensional sub-

spaces of V. (To see this let us choose a basis for V, say € 1859 s€5p

and to a tuple g-= (gij:ilsi, j<P) with gije K let us assign

P
g def an{ ¥ g.. e.+e
g — °P PP & IR Rl

L)

i=1,...,P} .
It should be clear that Eg= Eh only if g=h and we have obviously §
different g's like above.)

In our case this means that there are at least 264p= q8

different 8-dimensional subspaces of F= K16. Let us denote these by
Eg’ g€ G. Let V% be the partition of F into 8-dimensional hyperplanes
parallel to Eg' Then V% are, obviously,regular partitions, and (8.0)

follows from (8.1). @O

Next let us notice that there exists an Hadamard matrix wé& M(F,F)

such that rk Pg W Py = 1 for every S,U€ $ and, moreover,

(8.2) R(pS\MpU) = C.ag ; wherea with S,U€ $ are pairwise
9,

S,U
orthogonal vectors.

Otherwords, all columns of the matrix Pg W p. are of the form 2z . ag
k]
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where z¢ M and o if UAT.

L
s.u” %s,T
To construct such w we take simply any q x ¢ Hadamard matrix,

say y and define for e,f¢c F
w(e,f) = y(el,fz)y(eZ,fl)

(an e€F is written as e = (e1,92) with 91,e26 H).
We see that, if S,Uc¢ $ with S={i}xH, U={j}xH then (8.2) is satisfied

with

y(e213) lf e1:1

0O otherwise

(if we take T€ $, TAU, say T={k} xH, then ag ytag p because the j-th
9 9

and the k-th columns of y are orthogonal).
We shall also need the following, entirely trivial, remark :

(8.3) if £ and ¥ are arbitrary regular partitions of F, then there
exists a permutation P of F which carries < onto £, i.e. for

every Bcw, p(B)c £.

Now we can define v8. Let Vg, g€ G, be the partitions of F from the

Sublemma and, for g€ G, pg be a permutation of F which carries Vg onto $.
g

We define v© by
g -
vo(e,f) = w(e,pgf) ,
i.e. vF is obtained by applying 9;1 to the columns of w.
Let S¢ $, heG . Let us notice that

R (pg vP pp) = R(pg w p, o) for BEV,
h

therefore, by (8.2),

h . .
(8.4) rk Pg vV Pp = 1 if Bt\7h .

] h h .
(8.5) R(psv pB)-'-R(pSv pC) if BZC; B,CEVh .



XIV-XV.21

Now (7.2) follows by (8.4) and (3.2).

Let g€ Gn+1’ AEVg . For Bévh, let us denote
— Vh .
g = Pg PanB 3
We have obviously
h
Pa V P = S u .
S A B

By (8.5), RuBLRu
by (3.3) we have

c if BZC. Since, obviously, also ﬁuB'—ﬁuCif B£C,

lpe v" p,ll. = max |jugll -
S Ao B'e
Be
h
Clearly, up has q - [AnBI| non zero entries, all of them of absolute
value 1. Therefore, by (3.2) and (8.4),

lugl, = (a- lanBDY2 .

If now h # g, then, by (8.0), |AnBI gq7/8 for every BEK{1 and this
yields (7.3).

An expanded version of the present note will appear elsewhere.
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9. PASSING WITH 1 TO .

There are, essentially, two technical problems to resolve:

C

1 to give meaning to the formula (5.1) for 1 = oo,

2° to define a duality in 1B (H) so that we can define wg n
14

in an analoguous way to (4.3).

A somewhat surprising fact is that, in order to settle 10,
it is more convenient to work with a space ZB(H1,H2) where
H1 and H2 are two different Hilbert spaces.

Let G, , u and K = have the same meaning as in §4. Let

n
us denote
0 [e'e]
K = -E Gj , LZ(K) = LZ(K,u) where u o= .g Wy i
=1 =1
K = {n = (nn) €K :n = 1 from some n on } .

Thus K_ 1is a countable set. For any countable set N we
denote by 22(N) the Hilbert space of square summable functions
on N. For n € N we define the unit vector en € QZ(N) by
e () =6 n (the Kronecker §). Let us identify Kn with
the subset {(n,1,1,...) ¢t n € Kn} of K, ; let H_  be
the subspace of ,(K) spanned by {en :n € Kn}.

To define our 2, we shall need that the matrices v9  from

Lemma 7.1 satisfy, in addition, the following condition
(9.0) vg(1,n) = 1 and vg(£,1) =1 for everyvy g € G, E&,n € F.

(we prove at the end of this section that this can be done).
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o

The resulting matrices v_ € M(G F Fn) satisfy then

n n+1’ “n?

vy(g,€in) =1 if either ¢ =1 or n = 1.

Under this assumption, if n € K _r then the infinite product
[oo]
_ 1.0 1..0

Z(Ern) = n£1 Vn(£n+1l Enrnn)vn(nnH, nn'En)
is well defined for every ¢ € K, because its terms are 1 from
some n on.

It is thus natural to try to interprete =z as an element

of B gﬁ ]B(SLZ(IgO), L2(K)) where we define

(zen) () = z(g,n).

It is clear that zen is a unimodular function in LZ(K)’

thus

oo

IlzenH =1 for every n € K_ .
We shall soon prove that
(9.1) if n # v, then zen L ze

This, obviously, implies that =z is an isometry, thus, indeed

z € IB. Now we define =z £ € Km' n € Kn as in §4:

E/n’

[oe] . .
For ¢ € Km let Ig c K, IE < K and the projections

PE EZB(LZ(K),LZ(K)), pg EZB(Qz(KQ,Qz(Kw)) be defined by

(o]

I£={UEK=n1=€1:---rnm=£m}, I€=I£ﬂK°°;

ng = f~1Ig ’ pgf = f-1Ioo for f € L2(K), f € QZ(KW),
3

respectively.
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We set for § € Km ;, n € K

To define @E n’ we introduce a duality in 1B in the
r

*
following way: let Lim be a Banach limit, i.e. Lim € 1
n n
and, for (tn)n=1 €1,

IL;m tnl < lim supltnl.

In particular, Lim tn = lim tn , 1f the ordinary limit exists.
n n-—o
We define for x,y € B

x(y) = Lim [K;| <y,x > = Liml|K, | X <ye_ |xe_ > .
= 1 1 lH1 ] 1 n€K1 n n

Just for the sake of illustration let us make the following obvi-

ous remarks:

1 (x,y) » x(y) 1is a norm one sesqui-linear form on IBxDB.
2 x(y) = 0 if either x or y is compact.
3 §(x) =1 1if x 1is an isometry (into).
For x € B we denote |IxIl,=IIxIl
B

We shall use the following simple estimates:

(9.2) HxIl, < max |Ixe_ ||
n€k_
: -1
(9.3) Hxll, < lim Ky dlx o 1y
10 1
(9.4) %1, = Lim x4 1.
1o 1

We define @E n for § € Km » N €K by

n
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Let us now investigate the restrictions etc.

‘im0 il
We shall show that most of the results of §6 apply to these

operators as well. First let us notice that ZIH is in & cano-
1
nical way equivalent to the matrix z(l) € M(K1+1’ Kl) defined
by
1-1
(1) - - 1.0 1..0
Z (Ern) = lKll j£1 Vj(Ej+1,Ej’nj)vj(nj+1,nj:£j)

1 0 17 .0
Vl(El+1,El;nl)vl(1,nl'€l)

=L
(the factor |K;| * arises from our normalization conventions:
M(K;,4sK;) 1is identified with :B(Lz(Kl),Lz(Kl+1)) while
Z'Hl € B(L,(Ky)s Ly(Ry ).

For m=1,2,...,1 we define matrices yél) € M(Gmx"'XG1+1 ’

Gmx...xGl) by

1-1
(1) _ 1_ 0 1. 0
ym (E,n) = I Vj(£j+1l€jlnj)vj(nj+1lﬂjlgj)

J=m

1.0 1.0
Vl(€l+1:Elynl)vl(1:nl:il) ’
in particular
l -
y{ ) = vl ® vl R

thus y{l) is a homothety. The formula (6.6) (with

- 1 (1) .
T = 16 x...xG ® Y{ ) and Ym = Yp yields now:
m 1-1
(1) .
(9.5) Ym is a homothety for m = 1,2,...,1.

This, clearly, implies (9.1).
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Now we shall derive the estimates needed in Proposition 2.3
from the corresponding estimates in §4-§7. In several places

we repeat the former argument almost verbatim!

Ad(2.5). This is immediate because, for 1 > n, m,
pX z <z e |z e > = X <ze ,ze > = |K,|
E:n © E/n 6 ¢] 5 1
gEKm,nGKn eeKl GEKl
Therefore DI ) (z ) = Lim 1 = 1.
(Ern)GJn E/m E/n 1
Ad (2.6). An analogue of Lemma 6.3 is true, with an analcgu-

ous proof:

zg,anl is canonically equivalent to zé}% def ngPn

(this time, PE € M(K € M(Kl,Kl) are defined by

1+1%141) 7 P

(4.1)). We have
(L) _ (1)
with F1 € M(Kl’Kl) and P2 € M(K1+1,Kl+1) defined as in the

proof of Lemma 6.3. We conclude, by the same argument, that

z(l) is a homothety, equivalently, that =z is a homo-
g’n glanl
thety. This implies that zg n is a homothety. Looking at
14
IIZE neeH for a suitable 6 we fined easily that
14
9.6 | | = 1K.1"% if £ €K K
(9.6) Iza,n o= 1K I i € m* N E€K .
On the other hand, if |e(a)!l =1 for a € J, r then the matrix
X = X e(a)za is unimodular, therefore
aed

n
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||xen||= 1 for every n € K_ and, by (9.2),
Iz e(a)zall, <1
a€Jn

This, together with (9.6), gives the desired estimate (4.8).

Ad (2.7). Although (3.4) is no longer true for p = *,
it remains true if y and =z are diagonal isometries. It

is easy to see that this suffices for the argument of Lemma

4.1.
Ad (2.8). Let m = 2n+1 or 2n+2, let B, wgr Wg
and wh be like in 5A. Let
(wh)(l) = I z;l)
aeB™(c,d,h,C,D)
h, (1) . , . h
thus (w) is canonically equivalent to g |H, ° We have
1
-5 _h (1) . - -
IKlI s ®[r Yn+1 (eh,thG x...xG )] if m=2n+1
hy (1)_ n+2 1
1K s @[(eh,h®1G 4G ) Yo Il if m=2n+2

n+2” ¥ 14

Let us notice that the elements in the brackets are selfnorma-
lizing (the first one is a partial homothety, the second one
is the transpose of a partial homothety; we use (3.6)) and that

their norms do not depend on h € Gn+1' Therefore

9.8) <) M, w9 TS W™ P = <s%, s s s

To obtain the desired estimate, it is now enough to make two

remarks, both of which follow easily from (9.7):
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(9.9) pwiP = max ™ Y,
h+g
(9.10)  <wH M WH W a1 T ik

To prove (9.9) we observe that the elements in the brackets
in (9.7) satisfy the assumptions of (3.3), therefore, by

(3.10),

(WHY 1w ana WM L o W

) ) 1f h % .

Now (9.9) follows by (3.3).

To prove (9.10) we notice that, by (9.7), <(wg)(l),(wg)(l)>
g .9

does not depend on B Dbecause neither <«s”,s?7> nor <[...],[.-.]>
does. But (wg)(l) is nothing but wél) and
> <wél), wfl)> = <z(l),z(l)> = IK1| .
BEA °
m
Hence (9.10) follows.
In this way (9.8) becomes
- -1 h
g 1R ogPi nwgti = max (<s9,5% 70 s M)

h+g
Now we pass with 1 to o and use formulas (9.3) and (9.4).

We get

- h
o] gl gl < max (<s%, 5% is% is™i )
hxg ®

In §7 we have actually proved that

-1/16

n for every h £ g

- h
<s%, 5% s s, < q

-1/16 <

and by (7.5), Iq,

This proves (2.8).



