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The work discussed here is due jointly to G. Schechtman and

myself. To formulate our main result, let me first introduce some

definitions and notation. Given Banach spaces X and Y, X4Y means :

X is isomorphic (linearly homeomorphic) to a subspace of Y. Given a

class li of Banach spaces and a Banach space B, we say that B is univers-

al for h if E4B all As usual, Lp denotes (or Lp of

any atomless separable probability space). "Subspace" means "closed

infinite dimensional linear subspace" unless otherwise stated.

Our principal discovery is as follows :

Main Theorem : Let p/ 2, and let K denote the class of
- p

all subspaces X of LP such that Let B be a separable Banach space

universal for . Then Lpc, B.
20132013201320132013201320132013201320132013 P -

We shall just outline the essential steps in the proof.

Full details and additional information may be found in [6].

An immediate consequence of the Theorem is that K 
p 

contains

no element universal for K itself. It then follows easily by transfini-

te induction that there exists a family 
1 

of subspaces of L
a 

so that for CR and (w denotes the first uncountable
1 a 3 p a I 

"

ordinal). In reality, we prove the theorem by first constructing such

a family (or rather, just that for each a, there exists a fl&#x3E;a with

The family that we obtain does have certain additional specialfl a 

p
properties ; for example, for the spaces RP all have uncondi-

ex.

tional bases ; for p= 1, the spaces all have the Radon-Nikodym property.

However we do not know if, for the spaces are all complemented

in Lp ; nor do we know if the word "complemented" can be inserted

before "subspaces" in the statement of the Main Theorem.

There are two essential desiderata to be satisfied in carrying

out the construction of the RP,s. The first is to guarantee that L pc74 Rp
ex. Q

all a. The second is to guarantee that if B separable is such that

then LPc..... B.
a 1

To insure the first desideratum, we obtain the following

result, of independent interest :
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Theorem 1 : and let X be a Banach space wi th an uncondi-

tional Schauder decomposition (X.) (that is, for each x X, there exits
.J

a unique sequence (x . ) with x . E X . for all j, such that ¿ x. -= x, the
J J J 

t 

r 
J

series unconditionally converge ). Assume that Lp is isomorphic to a

completemented subspace of X. Then one of the following holds :

(1) there exists an i such that Lp is isomorphic to a complemented

subspace of X. ;
1

(2) a block basic sequence of the Xi’s is equivalent to the Haar
. IL

basis of Lp and has closed linear span complemented in X.

(A sequence (b.) in X is called a block basic sequence of the
1

Xi’ s if there exist x . E X . and integers n1  n2  ... with
I J J 1 J

We do not know if Theorem 1 holds for p= 1. To employ Theorem 1 in our

proof of the Main Theorem, we also make crucial use of the result
p

established in [3] : I f and Y(--Lp i s such that LPGY, then

there exists a Z c Y with Z isomorphic to Lp and complemented in LP.

To insure the second desideratum, we employ natural ideas

concerning partially ordered sets. The ideas have their origin in the

classical discussion of analytic sets, and were recently introduced in

Banach space theory by J. Bourgain [11-

Before proceeding to these ideas, however, we wish to define

the spaces RP. We obtain them by alternating the construction of in-
a

dependent sums and disjoint sums of spaces of random variables.

By a "space of random variables" we mean a linear subspace

of L°(P) for some probability space (2,,Y,P) ; "Lo(P)" denotes the

space of-all (equivalence classes of) real-valued measurable functions

defined on O. Given a random variable x defined on it, distx denotes the

probability measure defined on the Borelsubsetc of the reals by

x(w)E E)). Given spaces of random variables X, Y

oh possibly different probability spaces, we say X and Y are distri-

butionally isomorphic if there exists a linear bijection T: X -Y so

that dist Tx ; dist x for all x E X. It is important for the inductive

definition of the Rp’s that they are "distributionally presented" ;
a

i.e. the isometric Banach space structure i t sel f is not sufficient to
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define the family.

Now suppose (O,J,P) is an atomless probability space and B

is a subspace of We denote by space of random variables

’~ on (2 such that there exist sets E. E,8 and spaces B. of random varia-

bles wi th P(E.)=7 2PIE. as
I 1 i 1 1

a probability measure on4nE. with b( t ) = 0, tiE. all b E B. ) so that
III

Bi is distributionally isomorphic to B for i = 1, 2 ; and Y = Bl + B2 .
Phrased another way, consider the product probability space fi x [0, 1 J ;
for b defined on 0, f defined on let bg f denote the function :

Then 
p 

is a space of random variables di stri buti onnal ly isomorphic
B p 

Pto the subspace Z of defined by

for arbitrary reals)

We now define independent sums of sequences of spaces of

random variables in L . Let B ,B ,... subspaces of Lr(Q). (E B.) 
d1 2"" 

i=1 
1 Ind, p

denotes a space of random variables Y on 2 such that there exist inde-

pendent o-subalgebras a,, CL... of 4 and for each i a subspace Bi of

with B. distributionally isomorphic to B. and Y equal to the
i i 1

closed linear span in LP(2) of -Bil-B 21’’" Phrased another way, consider

the infinite product probability space Cl ( denotes the set of posi-
tive integers) endowed with the countable product of P with itself

in . Fix i, b. E B., and define b. by b. (w) = b. (w.) for all ou 2 IN,
i i i i i 1

Let B. = i b. 6 B. ). Then (E is a space of random variables

distributionnally isomorphic to the closed linear span of the B.’s in
1

It is worth pointing out that dP = 0 for all i and

bE B , i then (Z B. )1 d has a natural unconditional Schauder decompo-

sition, B ,B,... in our above discussion. If however 1E B. IL for all i,I 2 1

the independent sum is not even a direct sum. In this case, we simply

let j;b6 +[1J (here"i 1 Ind,p 1 Ind.p ’
LI] denotes the space of constant functions on j).
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With these somewhat pedantic preliminaries out of the way,

we can quickly construct our family of spaces (Rp).
a

Definition 1 : Let Let Let a be an ordinal with
-- 0 ----

suppose Rp has been de f i ned f or all y  oc . If a i s a
? - -

successor ordinal, i . e. a = ’y + 1 for some Y, letBRP= . If a is

a limit ordinal, let Rp = ( -7 R ) . 

..r.-._ a Y Y p -

--- a 
y  a 

y Ind,p

Now it follows easily from Theorem 1 and the known result

following it, that LPc,4 Rp ( for 1  p  00, p/ 2) . Indeed, suppose proved
a

true for all y  a, a fixed. Then a cannot be a successor ordinal,

since e. g. a = y + 1, LP4 RP by Theorem 1, possibi lity 1. Hence
a y

a must be a limit ordinal. It easily follows that then if 
a

( ; so again by Theorem 1, possibility 2, some

yc£ 
y 

block basic sequence (b.) of the (RP)o,s is equivalent to the Haar
i y

basis of L p But (b.) is a sequence of independent mean-zero random
1

variables ; it follows easily from the techniques of and [7] that

(in fact For the case it is

. 

1 
.. 

P 1 
1 

.

easily proved by induction that Ra has the RNP for all a ; hence since

Llfails the RNP, all a. 

a

cx

As mentioned above, the spaces Rp have unconditional bases
a

for all 1  p  co. In fact, we prove in [6] that for each a, there exists

a martingale difference sequence (da) with Rp equal to the closed
. a . p 

J ex. 
..

linear span of (d i) in L . As we shall see later, this yields the, 

J

following improvement of the Main Theorem : Let 1  p  co, p 2 and

Lp : Y has an uncondi t i onal basi s and YI. If B i s separa-
p -

ble and universal for Ku , then LPc:... B. 
..w __ -

p -

The result is definitely false for p= 1 ; in fact, it is

known (see [83) that Ku has a universal element. Thus, for a suffi-

ciently large, R1 has no unconditional basis. Since the s all
ex. ex.

have the RNP, we obtain the following replacement :

denote the class of all subspaces of Li with the RNP,
and let B be a separable Banach space universal for ~. Then 

In previous unpublished work, M. Talagrand has obtained

that the class of all separable spaces with the RNP has no universal

element .
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As mentioned in the introduction, we do not know (for 

p/2) if the spaces Rp are all complemented in Lp, or if they are all
a

isomorphic to complemented subspaces of Lp ; that is, are they all

~ p -spaces ? (An affirmative answer would of course give a positive

solution to the open problem : are there uncountably many isomorphi-

cally distinct C-p spaces,för For the fact that there

~ 
are infinitely many such see [7].)

This question is equivalent to one involving a family of

finite dimensional spaces, without any appearance of transfinite cons-

tructions. Let us recall that a subspace X of a Banach space Y is

said to be K-complemented if there exists a surjective projection

P: Y-X with For BCL, n a positive integer, we let ( ® B)
i=l

denote the distributionally- defined sum of n disjoint copies of B
2 n

(thus (EÐ B) = already defined), and similarly B)Ind
i=1 p P i=l 

n

denotes the distributionally-defined sum of n independent copies of B.

Now fixing n, we define a sequence of finite-dimensional spaces of

random variables by

(i.e. Bn is the "natural" representation of Yp in LP)I n 
.

and if j is a positive integer, Bn already defined, then’ 

2j-1

The question : Are the Rp’s all complemented in Lp ? , is then equi-
a

valent to : Is there a K so that Bn is K -complemented in Lp for
201320132013201320132013201320132013 p m - p 20132013-201320132013201320132013201320132013 -

all n, m ? It can be shown that Bn is K complemented ; i.e. with
20132013 m p,m 

" 

constant independent of n.

We now proceed to the second desideratum. For B a separable

Banach space and we define an ordinal number, h (B), with
0h (B)oD, called the local L -mdex of B. This index is similar

p 2013201320132013 2013201320132013201320132013

to one defined by Bourgain in [I].
00

For a discussion of the local L -index and its connection with the

classical theory of analytic sets, see our expository paper [5].
The main features of the index are summarized as follows :
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Theorem 2 : Let X, Y, and B be separable Banach spaces, a 

(a) if 
- 

and only if 

We then demonstrate that h for , all p.
p a 1

The Main Theorem follows immediately from our previous discussion, the

above, and Theorem 2.

’ 

We now briefly sketch the definition of the local L -index.

Let B be a separable Banach space,

define a partial order in as follows

we set u  v provided

so that

for all c E IRn provided lul n. For ease in notation, we set B 1 =B ;
evidently the elements u of B of rank 1, i.e. lvl= n, simply correspond

to the 2 -tuples of B isometrically equivalent to the usual ;,p -basis.. 

_ 

2~
We identify the elements of B of rank 0 with the elements of B of norm

one. The following is now easily established :

Proposition 3 : if (and only if) there exist elements

° in B with u for all n.

An equivalent formulation : if the every non-empty

subset of BÔ has a maximal element with respect to  . We now start

"erasing" the maximal elements from ]ff5.

Definition 2 : Let 0  b  I and fix p, Let It’ 0 (B)= ]~6. Suppose

a&#x3E;0 and H (B) defined for all ya. If a=y + 1 for some y, let
6 y 6 

2013 

5 
---

(uEH (B): there exists a with u  v). If a is a limit

ordinal, lB&#x3E;.. 
"

201320132013201320132013 y ;
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Now assume Since Proposition 3 implies that the

H5(B)ls strictly decrease if non-empty, there must exist an a with
a

Definition 3 : Let h (5,B) equal the least ordinal 5 with H &#x26;(B)= ’0
-n - n

and set

It is easily proved that 56 implies h P (Ô,B) ~h P (6,B). It

follows from the boundedness principle (see [2 j and the discussion in
n_ W rrr W

51 &#x3E; that and hence (assuming of course ) .

We now simply define h (B) = w if LR B ; Theorem 2 may now be readily

established.

Rather than appealing to a general principle to establish

h (5,B)CD , it is possible to give a direct proof based on simple

though fundamental ideas concerning partial orderings. A relation 

on a non-empty set X is said to be well-founded provided there do not

exist x 1’x2"" in X with x  xn+1 for all n. We define the classes
- 1 2 - - n n+I

H a (X) (= by Ho(X) = X ; Ha+1(X) _ £x E · there exists

y E H (X) with x yj, H (X) = n I-IQ(X) for a a limit ordinal.
a a 

Assuming  is well-founded, there exists a least ordinal a, denoted

h(X), with we then have the following simple but crucial

permanence property :

Proposition 4 : Let  and  be well-founded relations on X and Y

respectively and let 1" : X- Y be an order-preserving map. That is, if

u  v, then Then h(X)Sh(Y). In fact, for all ordinal oc,

(X) ) c H (y).
a a

To establish the boundedness of h P (b,B), it suffices to

exhibit an order preserving map T between B6 and a countable set M
endowed with a well-founded partial D . Let B 

0 
be a countable dense

subset of B, ~ and M n the subset of Bon so that uC Mn provided

NI a follows : if u, then u  v provided, if then

and
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- 

X,

"

- We verify, assuming that Z is a well founded relation

on M. For each k, xéDk’
u E -fi -6 with )u)=:k, choose v(x)E B0with We then

check that the thus defined belongs to M k ’s . Defining ru=v,

we verify that T : B - M is order preserving, thus obtaining 

by Proposition 4.

We conclude by sketching the argument that h (R") &#x3E;a+ 1.
We employ the simpler notation H (R) for 1 P). It p a seen,We employ the simpler notation H a (Rp) a for H a (R a It is easily seen,

o.a.aa 
j?

for any Banach space B, any a, that H (recall

that we identify the rank 0 elements of B with B itself).

Theorem 5 : Let lp, 1EH (Rp).
- I ’ - a 0(

Of course this shows that

We prove the result by transfinite induction. The successor-ordinal

case follows easily by the following general concatenat,ion lemma :

Lemma 6 : Let B be a separable Banach space, 1  p  , y  w1.’ n &#x3E; 0,
.’ ..’ 

- Dand u E H (B) (with respect to p) with n -. Define u in 
- y - . -

by u(O,x) = 0 and u( 1,x) = all x E D . Then u E H 
- ...- 201320132013~ x .~._ y p

The point of this is that if 0, then lul = 1 ; hence

-....- - u’(0)+ u(l) _, 
..

u has a (unique) predecessor, namely v u(o) 1 + u(1) ; and thus
P

in our situation, if u = 1, also v = 1.

Now suppose a is a limit ordinal, a &#x3E; 0, and it has been shown

that 1E H (Rp) all Q  a. To show that 1 E H (R), i t su f f i ces to show
p 3 a a

that 1 E H (Rp) Now there exi sts an into-isometry
p a 

’° ’ ’

T : with TI = 1 - The map T : R- R defined by for
~ OL ~3 x

all k, u E Rp with lul=k, x E D , is then order-preserving and T 1 == 1.
p k

So by Proposi t i on 4 and the i nducti on hypothesis : ’ " 

P 4 1’ 

completing the proof.
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