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After the works of L. Schwartz, G. K8the, A. Grothendieck,

and I. Gelfand and G. Shilov at the beginning of the fifties, the

spaces of holomorphic functions of different types became an important

class of linear topological spaces. In [1] we have seen how these

spaces motivated the construction of new linear topological invariants.

1. Let G be a domain of holomorphy in . What is the connection

between the geometry of this domain and the linear topological type of

the space H(G) ?

If G is a bounded Reinhardt domain in C n then H(G) is isomor-

phic to H (.P) and such an isomorphism T : can be chosen [2]

easily :

where

The analysis of KOthe spaces of Taylor coefficients of func-

tions in shows (P. Djakov C 3~ , V. Zaharyuta [4]) that these

spaces are isomorphic for m,n~ 1 if the sum m+ n is the same, and

because of the diametral dimension they are not isomorphic for diffe-

rent m + n. We discussed above, expos6 II, the more difficult case

of general unbounded Reinhardt domains and we get a continuum of pair-

wise spaces H(G ) for this class of domains.
Y

At last we mention that for strongly pseudoconvex domain G,

I.e.

the space H(G) is isomorphic to also but this case need the more

complicated 5-technique beside of the general methods of Hilbert scales

and linear topological invariants (see details in Mityagin-Henkin [5]).
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2. Recently we considered [6] the case of an algebraic variety

and proved that the space H(V) is isomorphic to H((E k ), k = dim V

(see [7] also), and that the ideal

is a complemented subspace in 

More general consideration is possible. Let

finite set of polynomials, and

be the ideal of this system in , and I(Q) be the ideal of this

system in the algebra of all polynomials.

We introduce an ordering in Z by the following way :

and for some k, and for any ideal I in the algebra of all

polynomials put

where the brackets denote the linear hull of corresponding vectors.

Theorem LD ( on linear decomposition) : (1(Q )), 
+

then there exists continuous lineat operators 0 j p,

L . : su ch that
J

(c) for some vector

where

and
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and deg P denotes the degree of the polynomial P.

The proof of this theorem contains some tricks and it is not

simple (see [6]) but it is completely elementary, i.e. it involves

the estimates of Taylor coefficients of F and LF and we define the

operators L., 1 by linearity (L. after the appropriate
J J J

individual decomposition

of all monomials. The special inductive construction gives polynomials

with the desired estimates.
J

3. Now we discuss some consequences of Theorem LD-

If f is a holomorphic function on V, i.e. fE H(V), then by

Oka-Cartan theorem

This choice is not unique or linear but the image LF is the same by

(a) and (b) for any extension F so the mapping

be a linear extension operator E: 

Corollary : : For any algebraic variety V c t n there exists a linear

extension operator E : By other words, the ideal J(V)
V

is a complemented subspace in H(Cn ).

For contrast recall that for arbitrary closed submanifold

(subvariety) M in ~n such a linear extension operator could not exist.

For example, if or ~ is any biholomorphic em-

bedding of the unit polydisc to tn there does not exist ([5], Sect. 5)

a linear extension operator E: 
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The property (c) of Theorem states in particular that the

operators L., are continuous in the wide class of spaces of
J

entire functions with estimates of their growth for For example,

it is true for the space of entire functions of the order P&#x3E;0 and mini-

mal type

so the statement of Theorem LD holds in this case also.

Moreover it is true for the spaces H(t.0) ; more exactly,
by (c) the operators L., are continuous in Banach spaces

J

and for any FE H(2tl1n) the decomposition

holds on the polydisc yt9 for 
We could repeat the argument above to get a linear extension

operator

where

but we need an analogue of Oka-Cartan theorem with the estimates

(a global functions F in (1) has to be of the same exponential growth).
This analogue can be proved.

4. However the proof is not elementary. As usually after HUrman-

der’s monography [8J it uses 6-technique, and the local analysis of

algebraic singularities also.

Theorem EP : Let where t? t 2 (V). Then there does exist

such a bounded function GE H(tJ9) that
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where C and ~2 do not depend on t and g but on V.

Theorems EP and LD together give an extension (and linear

extension operator also l) of Hp-functions. Indeed, for

By Theorem EP for some 

5. The proof of Theorem EP contains four steps.

1 step. Local_extension.

Lemma 1 : For any point z E V there exists a pair of polydiscs 

and such that for any one can choose such

a bounded that

and

The parameters r 6 = r6(z), 6 = 1, 2-, do not depend on å fun’ct’ion h but they

depend on z and can be chosen sufficiently large, i.e. -

This statement gives the possibility to get a finite covering

[U.} of a neighborhood of V n 3t.ltn and a system h . E H ( U . ) of functions
i i 1

such that
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so

vani shes on ( Ui (1 U . ) (1 V for any pai r ( i , j ) .
i j

Ste 2. Divi si on. 

Any functi on h=h.. has to be represented as
J

if we want to use the ;-cohomology technique. This is possible (see

[8J, Prop. 7.6.5) but now we have to get good estimates of the norms

of g’s in (3), and the size of U from below. The inequality (7.6.5)

in [8J gives such estimates for norms of g’s but we have to repeat

carefully its proof to get "large" neighborhood. U. More precisely,

Lemma 5.2 : One can choose such B, ~ 4’ ~5 &#x3E; 0 that for any vE V if

and in this polydisc

then there exists such a system ..8n ) that
n 0 5

and

Of course, (4) has the same form as (a) of Theorem LD but

we could not use "global" operators L 1t of Theorem LD -they

are good for large polydiscs only. However, instead of

HHrmander technique we can repeat our proof of Theorem LD in the local

version to get the parametrized family L(v) of operators for Lemma 5.2

such that 
"

and the statement of Lemma 5.2 is true.
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Step 3. S-equation and estimates of 5-solution.
The accurate estimates of the size of polydiscs v+ r 6(v) n,

E= 1,...,5 on Steps 1, 2 give a finite covering of 3tBn and the decom-

position of the identity such that

00

so any vector-valued C -function of the form

where g corresponds by ( 3 ) to the functions h (or their restric-
tions for smaller polydiscs) of Step 1, has the estimate

The next lemma is well-known and elementary.

Lemma 5. 3 : : Let t E COO be (p,q)-form on 2ti9 and a~ = 0. Then there

does exist such a (p,q - 1)-form BP that

Ste 4.

Cohomology techniqne as usually gives the possibility to

get a global extension G in Theorem EP with good (of polynomial growth)
estimates of constants.

This is the scheme of the proof of the following statement.

Theorem LDE : The operator E : of Corollary is a linear

continuous extension operator in the spaces of functions of exponential

growth, i.e. if f E H(V ) and

than

For applications to the theory of partial differential equa-

tions (with constant coefficients) other classes of spaces of holomorphic
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functions are more essential. In our statement the estimates of growth

are isotropic but sometimes the classes with different estimates

respect to the real and imaginary part of z are important. For example,

the Fourier transformation of Schwartz space 5 is the space

and Gelfand-Shilov spaces are

I guess than in these cases for some algebraic varieties

(or even manifolds) a linear extension does not exist.
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