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in this seminar we report on joint work with Te d Odell [5J concerning

the isomorphic classification of complemented subspaces of L, 1  p / 2  00.

There are now known to exist uncountably many mutually non-isomorphic

complemented subspaces of Lp for each 1  p / 2  00 [1]. However, there

probably are only finitely many which are "small". For example, the only

complemented subspace of L which embeds into ,~ itself [6].
p p p

The question studied in [5] is "what are the complemented subspaces of LP
which embed into A p q? 2 2 ?" For 1  p  2, the following partial answer

i s given:

Theorem A: If X is a complemented subspace of L (1  q  2 )

which has an unconditional basis and X embeds then X

is isomorphic to q ~2, or q Y, 2

It is of course a major unsolved problem whether every complemented

subspace of 1~ (1  p ~ 2  00) has an unconditional basiso

Theorem A is an immediate consequence of the result of [6J mentioned

above and:

Proposition B: Let X be a subspace of L 
p 

(2  p  ) which has an
- _. _ - p  _- _.

unconditional basis and which is isomorphic to a quotient of EB 1.,2. Then
- - - - - - - p 2 -

there is a subspace U of 1., 
p 

(possibly U = (0)) so that X is isomorphic
- - - - p - .._

to U, ;, or ,l2 .
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The classification of complemented subspaces of L which embed into
p

p I 2 is more complicated for 2  P  00 because of the presence of

Rosenthal’s space x- [11 ] . However, in [5 ] the following is proved:

Theorem C: If X is a complemented subspace of L (2  p  00)

which has an unconditional basis and which embeds into EB .t2’ then X

is isomorphic to £ EÐ £2’ or x- 0

Below we give a more-or-less complete proof of Proposition B and

outline the proof of Theorem C. Actually, Theorem A is also a consequence

of Theorem C and the following result from [~J which will not be discussed

in this seminar:

Theorem D: If X is a subs2ace of L (2  p  00) which is isomorphic

to a quotient of a subspace of A p fl9 A 2 then X embeds into 2 Ef 2 .- - - - - p 2

Proof of Proposition B: Let (x) be a normalized unconditional

basis for X and let 0, . be a norm one operator from £ EB ~ onto X.

Claim: There exists e &#x3E; 0 so that for all 0  6  g., (I :
I

If the claim is false, then there are c1&#x3E; e2 &#x3E; ... &#x3E; 0 and infinite

sets M of integers so that BPc- ~ B12 -  E n for i E M n and

n = 12.. 1. Since (x.) is unconditional, it foll.ows from the classical
i

results of Kadec and Pelczynski [7 ] that (x i)i E Mn 
is equivalent to

n
the unit vector basis for -2 for each n = 1,2,..., hence so is
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E M if ( f i ) is the sequence of biorthogonal functior,ais to ,1x, ».
n

But this means that for each n = 1,2, .. , the ;2 q - contribution to theq

norm of (Q*f.) tends to zero as i in M , because every operator from
n

A2 into 2q is compact. Consequently, since Q* is an isomorphism, ~re

can select M so that (Q*f. ) 00 lis equivalent to the unit vectorn n ’1n=
n

co 00

basis of A 2.1 hence the same is true of (xj )n=l* But (xi has a
2 i n= i =

n n

subsequence equivalent to the unit vector basis of A because
p

lim II 2 = 0. This completes the proof of the claim.
n-*m n

Exercise: Where w-as unconditionality of (x ) used in the proof of
n

the claim?

Since for any c &#x3E; 0, the closed linear span of (x.: &#x3E; e) is
1 1

either finite dimensional or i somorphic to l2, we can, in view of the claim,

assume that 0 and hence [7 ] that no subsequence of (xn) is
n n

equivalent to the unit vector basis for A 2 We will show that this cor.dition

implie s that X embeds into ae.
p

Let f. _ 1 = gi 0153 e. 1 E £ q 0153 £2 (lip + 1) be a normalized sequence

which is equivalent to the biorthogonal functionals to (xi). In view of

Lemma 1 below, we can assume that (gi) is a monotonely unconditional basic

sequence in £, and (hi) is orthogonal in £2. Since no subsequence of
q 1 2

(fi) is equivalent to the unit vector basis of A 2 there exists 5 &#x3E; 0

and n so that Ilgi 11 &#x3E; 3 for all i &#x3E; n. Letting P denote the natural
1 - -

projection 12 we complete the proof by observing that
q q

P is an isomorphism when restricted to ], the closed linear span
1 l=n

ex:&#x3E;

of ( f . ) .. . Indeed, since (g.) is monotonely uncondi tional, we have
1 i=n 1

for all scalars (a. ) that O:la.12)1/2  K 5-1 IITh.g.11 where K is1 1 - q 1 1 q
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Khintchine’s constant for L . Hence for any
q

In the proof of Proposition B, we used:

Lemma 1: Let i be an unconditional basic sequence in 1 p E) ’e2- ]. -- - P

(1  P  00). Then there is a monotonely unconditional basic sequence (ul)
in .9 p and an orthogonal sequence (v.) in 1 2 so that (xj) is

equivalent to (ui G vi) in £ EB 12.

Proof. The proof uses an idea of Schechtman’s [13J. Note that by a

perturbation argument we can assume that, if (e ) denotes the natural
n

basis for l2’ then for any n = 1,2,..., only finitely many of the

xi’s have a non-zero nth coordinate when xi is expanded in terms of (en).
We can represent ( e ) in L by having (e2 ) 00 1 be a sequence of

n p 2n n=

L -normalized indicator functions of disjoint subsets of E-1,O) and
p

letting be the Rademacher functions on [0,1]. Write
2n-1 

x. = y. + z. with y. E and z. E The sequence
1 1], ]. n n= l 1 n- n=

(xi) is easily seen to be equivalent to the sequence (ri 9 yi + zi)
in Lp ([0,1] X [-1,1] ), where ( ri ) is the usual sequence of Rademacher

functions. Of course, (ri ~ zi) is equivalent to an orthogonal sequence;

the point is that the terms of the monotonely unconditional sequence (ri 0 y. )
are measurable with respect to a purely atomic sub-sigma field of [0.,l] X [-1, 0]

so that err. 0 Yi)] embeds isometrically into £. 0
i i p
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Throughout the rest of this seminar, we let 2  p  00 and let (e)
(respectively, t6 B n )) denote the unit vector basis for A 

p 
(respectively,n P

12). p £2’ we le t Ilyll I and .

Given a sequence w = (wn) of non-negative weights, the space X 
p , w 

is

defined to be the subspace A2’ We use n to

denote the natural basis (e n E) wn 3n) for a generic X 
p~ w 

space; if

confusion is likely to result, we use ~’ 2,w to denote the £’2- part of

the norm in so that for x = Ea n b n E XPl w .1 Ixl2 = (E , n n , , n n

No matter what the weight sequence w is, the space X 
p w 

is

isomorphic to e 2 0153 l2 or the space X 
p 

introduced by Rosenthal2 p p 2 p

[11]. Rosenthal showed that is isomorphic to X 
p 

if and only if

for each c &#x3E; 0,

X is isomorphic to a complemented subspace of L but is not isomorphic
p p

to a complemented subspace of ;2 p ® A2 It has become clear during the last

ten years that, rather than being a pathological example, X plays a

fundamental role in the study of L (cf.., e. g. [2 ], [4 ] , and [12 ] ).

There are three important steps in the proof of Theorem C:

Proposition 2: Let X be a subspace of A p E) 12 (2  p  (0) and let

T be an operator from L 
p 

into X. Then T factors through X o
.- ._ - p - - p

Proposition 3 : If X is isomorphic to a complemented subspace of X
and X is isomorphic to a complemented subspace of X, then X is
- - - - - - -

isomorphic to xp.
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Proposition 4: Let X be a - of ;2 (2  p  ) 
normalized basis x where (y ) (respectively, (z )) is a

- n n n - B n n - -

basic sequence in ae (respectively, ). Assume that Iz ’2 + 0 as

Then either X embeds into 1,1’ or xp is isomorphic to a comple-

mented subspace of X.

Notice that Proposition 2 implies, that a complemented subspace of L
which embeds is isomorphic to a complemented subspace of

X.. Suppose now that X is a complemented subspace of L1’ which embeds

into 1,1’ E9 1,2 and X has normalized unconditional basis which in 1,1’ EÐ 2 2
can be represented as x = zn, where by Lemma 1 we can assume that

n n n

(y ) is unconditional in £ 
p 

and (z ) is orthogonal in £. Suppose that
n p n

We can then use a standard gliding hump and perturbation argument to
t co I

find infinite so that, setting M = U M , we have that
n=l

(yi)i E M is equivalent to the unit vector basis of A 
p 

and 
i i p i i

equivalent to an orthogonal sequence in A2. Thus by Rosenthal’s characteri-

zation of xp mentioned earlier, [(x. ) .  ] is isomorphic to X p and

is complemented in X because (xi) is unconditional, hence by Propositions
1

2 and 3, X is isomorphic to .
If (*) is false, then there is c &#x3E; 0 and A 9 IN so that

e for i ~ A and lim , JZ.I0 = O.
°

1 EA
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By Proposition 4, either X is complemented in and hence in

X, so that, by Proposition 3, X and X are isomorphic, or 

embeds into /p’ and so is finite dimensional or isomorphic to p since

it embeds into L 
p 

as a complemented subspace. Of course, 

is isomorphic to a Hilbert space and so if [(xi)i EA ] embeds 

then X is isomorphic to ., e ;2, or 2 if, respectively, 
P P 2 2

is finite, A and IN -A are infinite, or A is finite.

To indicate how to prove Proposition 2, we need to recall the concept

of a blocking of a finite dimensional decomposition ( f. d. d. , in short).

Given an f . d. d. (E ) for some space Z, a blocking of ( En ) is an f . d. d.
n n

for Z of the form where for k = 1,2,..., E t for
n 

~ ’ ’ ° ° ° ’ JK i 

some sequence 1 = n(l)  n(2)  ... of integers. The simplest version of

the blocking method, introduced in [6] (cf. also Proposition in

[8] ) can be stated qualitatively as follows: If Z has a shrinking f.d.d.

(E n ), Y has an f.d.d. (F n ), and T: Z -* Y is an operator, then there

t t

are blockings (E) of (E) and (F ) of (F ) so that for all
n n n n

I t t

n = 1,2,..., T En is "essentially" contained in Fn + ("Essentially"
, t

means: given any e I 0, (E) and (F) may be chosen so that for

t 

t n n

x E E , d(Tx, F , + 6 nllxll.) An easy consequence of this blocking
n n n+ - n

principle is:

Lemma 5 : If (E ) is a shrinking f, d. d. for Z, ( F ) i s an fodod.
- n -- - n-- -

t

for Y, and T: Z + Y is an operator, then there are blockings (E ) of
- - - - - - - n -

,00,00, I

( E ) and (F ) of (F ) so that T : ( E E ) -~ ( E F ) is bounded.
n - n - n --- - n p n=l n p 

20132013201320132013

I 
n=l n=l.

We are now ready to prove Proposition 2. By a change of densi ty on

the underlying measure space, we can by one of Maurey’s theorems [9J
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assume that T is bounded as an operator from L 2 into (X, 1 * ’2)’ i.e.,
for all K IIxll2 for some constant K. Secondly, by

Lemma 5, we can find a blocking (H ) of the Haar basis so that T is
n

m

bounded as an operator from ( E (x., 1-1 p ). (To see this,
P P P

embed (Xl p into £ p and block the unit vector basis for j . )’ ’ 
P p P

Consequently, if for x (E L. x = Ex 
n (x ~ we define )(( x ))( =

p n n n

max ((E 
1/p 

then we have that T is bounded as an operator
p

from (L, 111 - into X. The identity mapping from L 
p 

into (L, (11 . ) (I )
p P P

is bounded because the Haar basis, being unconditional, admits a lower -
P

estimate. Thus the operator T: L 
p 

-+ X factors through (L, )(( . lll ).P P

To complete the proof of Proposition 2 we only need to observe that the

completion of (L, (I( . ((( ) is isomorphic to a complemented subspace of
P

X 
w 

for some weight sequence w. This is done by seeing that the completion
p,w

of (L, jtHff) = (Z H, tfHff) is norm one complemented in (E E ((( . ((( )
p n n

.. 2k(n)
by the orthogonal projection, where for n= 1,2,..., E n = I and

k(n) is chosen so that H n 9 E . If f? ~ E denotes the L -normalized
’ n n i n p

indicator function of the interval r(i-1)2 -k(n) -1 i 2-k(n) ) for

1  i  kfn) 
n 1 2y.,. then one can easily see that 

n n 2k(n)
- - y then one can easily see that 

n ) 
n=l

in (Z E, n )(( . ((( ) is equivalent to the natural basis of for the
n P-1

weight sequence w = 
?k(n) oJ

weight sequence w = 
n=i 

°

To prove Proposition 3 we need the following:

Lemma 6: There exists M 
p 
 00 so that if T is an operator on X 

p,w20132013201320132013 2013201320132013 2013201320132013 p 
--- -- --2013201320132013 2013 

p

for some weight sequence w = then there exists a weight sequence
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v so that lllxlll =max (Ixl is m -
equivalent to the usual norm on X 

.

The lemma can be proved by embedding X 
p 

into L by identifying

the nth-unit vector of X 
p,w 

with the function f 
n 

= g 
n 

+ w n r, n where (g) n
are disjointly supported unit vectors in L p [-1,01,  w, and (r )

p n - n n

are the Rademacher functions on [0,11. Note that on X. YW is

equivalent to 11.112 under this identification. Now one uses [3] to

get a change of density Jll &#x3E; £ on E-1 11 so that T is bounded when

considered as an operator from ([f n 1,2(odm)) into itself. One can

check that the weight sequence v = (v n defined by v 2 n = W 2 n + 
does the job.

Re are now ready to prove Proposition 3. The idea is to use Pelczynski’s

classical proof [10] that every complemented subspace of A 
p 

is isomorphic

to A . We need to write X 
p 

as a symmetric sum (X 
p SX ? .0.) in

such a way that X EF ... ) is complemented in (X p ED Q9 ... ). The

problem is that X 
p 

is not isomorphic to X E) ... )P. However, if
P - P p P

we represent X 
p 

as then X 
p 

is isomorphic to (X 
P,,W 

ED X P,,W ED p , 2
where for . the norm in

n ,W

is given by BByB1 I = max ( ( E Ix 1p) 1/p , (E Ix n 12 2 ) 12 ) . (One checks then p n 2, w

isomorphism of X 
p 

with (X 
w 

EB EP ...) p 2 by observing that

(3L EB X. w 
? ... )p., 2is isometric to X where the weight sequencePw p p,v

v consists of all terms of the weight sequence w, each repeated infinitely

many times.) Unfortunately, it is not true that X E9 .o.) must be

complemented in (X 
p, w 

E9 X ? ... ) p~ 2 if X is complemented in X .
so Pelczynski’s argument does not apply. 0 However, if the projection
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P: X p -* X is bounded in both and the norms on X,

is complemented by the

projection P 0153 P 0153 .... The point of Lemma 6 is that we can assume,

without loss of generality, that 00. ° Of course, IPI p might be

infinite, but there is by Lemma 5 a blocking (E ) of the natural basis for
n

X so that P is bounded as an operator from (Z En ) p into itself,

where each space E n has the X 
p, w 

norm, jj’jj, on it. If we define

t t on X 
P,,W 

by Ixl T = (E iix nilp) p 
lip 

E ) then it is
p p, w p n p n n n

easy to check that the norm is equivalent to the norm =

T ,

max ix 12yw · Since P p and I P ( 2 are both finite, (X 

is complemented in III) ? 111) ® · · · ) PJ2 and this

letter space is easily seen to be isomorphic to X . This completes the
p

sketch of the proof of Proposition 3.

We complete this seminar by giving a proof of Proposition 4.

If 12 does not embed into X, then X embeds into I p by a result

of Johnson and Odell (or see [2]). Thus we may assume X contains a copy

of t2.
Since Iznl2 + 0, we can assume without loss of generality that

)z j  1 for each n. For a subspace Y of X, iet x(Y) =

sup {Iy 12: : llyll = ’)’ Note that since X contains e2,, if dim X/Y  m,

then 3(Y) = 1. By the blocking technique [6] there exists

0 = k(l)  k(2)  ... such that if E and F = o == k(l  k(2  ... such that 1f n == L 1 k(n)+1 and 
n 

== 

1 k(n)+l
then ’n is -f. d. d. for [(yn)] is an Q2-f. d. d. for

[( z ) ] . Thus if E ,  u P) 
1/p 

and a similar~ 
n n n 

’ 

np 
’ ’ 

np

statement holds for ( Fn ) . Also by our above remark we can insure that
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for each n. Since we can find q(n)

such that if

Let e~ ~ H so that = 1 and = 5H~&#x3E;. Clearly 

is isomorphic to Xp. We must show it is also complemented in X. Thus we

- 

p 
-

wish to find f 6 X* so that (f ) is biorthogonal to (e ) and
n n n

P(x) = E f n(x) e n is a bounded operator, and hence a projection onto

[(e n)].
Let f be the functional on H defined by f (h) = (h. e 

Then

since le L =5(H ) and 11.11 = 1-1 p on H. Thus f is a norm 1
n n p n n 

-

functional on H 
n 

in the A 
p 

norm. Extend f 
n 

to a functional fin on

X by letting f(x.)= 0 if i  k(n) or i &#x3E;q(n). Since (yi) and
n i 

. i

(z.) are basic, we have
1
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where K is twice the larger basis constant of (y.) and (z.). Moreover.

since (E ) and (F ) are p- and respectively, and

I e I  1, we see that P(x)= Zf(x) e is bounded. fl’ 
np 

’ n n
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