SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

S. J. SZAREK
Volume estimates and nearly euclidean decompositions for normed spaces
Séminaire d'analyse fonctionnelle (Polytechnique) (1979-1980), exp. no 25, p. 1-8
<http://www.numdam.org/item?id=SAF_1979-1980
\qquad A22_0>

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ECOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. : (1) 941.82.00-Poste N° Télex : ECOLEX 691596 F

S E M I N A I R E
D'A N A L Y S E F O N C T I O N N E L L E 1979-1980

VOLUME ESTIMATES AND NEARLY EUCLIDEAN
 DECOMPOSITIONS FOR NORMED SPACES

S.J. SZAREK
(Polish Academy of Sciences, Warsaw)

The purpose of this talk is to present a new isomorphic invariant of a finite dimensional normed space, so called "volume ratio" (introduced in $\lfloor 8\rfloor$). We set

$$
\operatorname{vr}(E)=\left(\frac{\operatorname{vol} B_{E}}{\operatorname{vol} \varepsilon}\right)^{1 / n}
$$

where B_{E} is the unit ball of an n-dimensional real normed space E, \mathcal{E}-the ellipsoid of maximal volume contained in B_{E} (so called 'John's ellipsoid of E) and vol A stands for volume of a set A.
It follows directly from the definition that

$$
\begin{equation*}
\operatorname{vr}(E) \leq \operatorname{vr}(E) d(E, F) \tag{1}
\end{equation*}
$$

where E and F are normed spaces of the same dimension, d-the Banach-Mazur distance.

To explain the motivation for introducing such an invariant let us mention the following :

Theorem 1 (Kashin [6]): There is a universal constant C such that, given n, there exist two n-dimensional subspaces E_{1}, E_{2} of $L_{2 n}^{1}$, orthogonal (in $\ell_{2 n}^{2}$) satisfying

$$
\mathrm{d}\left(\mathrm{E}_{\mathrm{i}}, \ell_{\mathrm{n}}^{2}\right) \leq \mathrm{C} \text { for } \mathrm{i}=1,2
$$

Theorem 1 solved some problems from the approximation theory and was used later (see [3]) to construct an n-dimensional space, whose constant of local unconditional structure is of order \sqrt{n} (the largest possible). However, Kashin's original proof was very complicated. A simple proof of Th. 1 appeared in [7]. It depends essentially on the following two observations.
[Proposition $2: \quad \operatorname{vr}\left(\ell_{n}^{1}\right) \leq \sqrt{2 \mathrm{e} / \pi}$ for $n=1,2, \ldots$
Proposition 3 : Let C and $\theta<1$ be positive constants. Then, for any normed space E with $\operatorname{vr}(E)<C$ and positive integer $k \leq \theta$ dime, "most of" k-dimensional subspaces F of E satisfy

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{~F}, \ell_{\mathbf{k}}^{2}\right) \leq \mathrm{C}^{\prime} \tag{2}
\end{equation*}
$$

where C^{\prime} depends only on C and θ. More precisely: if $G=G(k, n)$ is the Grassmann manifold of k-dimensional subspaces of E, μ-a normalized invariant measure on G, generated by the John's ellipsoid. Then

$$
\mu(\{F \in G: F \text { satisfies }(2)\})>\frac{1}{2}
$$

Deducing Th. 1 from Prop. 2 and Prop. 3 is immediate, one must only remember that the map $F \mapsto F^{\perp}$ (the orthogonal complement of F), acting on $G(n, 2 n)$, is measure-preserving.

Proof of Prop. 2 : By direct computation.

Proof of Prop. 3 : Let $E=\left(R^{n},\|\cdot\|\right)$. We may assume that the John's ellipsoid of E is equal to the Euclidean unit ball $B^{n}=\left\{\|x\|_{2} \leq 1\right\}$. Denote by m the normalized Haar measure on S^{n-1}. Then

$$
\begin{equation*}
C^{n}>\operatorname{vr}(E)^{n}=\int_{S^{n-1}}\|x\|^{-n} m(d x) \tag{4}
\end{equation*}
$$

(one gets the equality by representing vol A as $\int_{R^{n}} X_{A}$ and passing to polar coordinates).

Given $r \in(0,1)$ define $A_{r}=\left\{x \in S^{n-1}:\|x\|<r\right\}$. Then one gets from (4) that

$$
m\left(A_{r}\right)<(C r)^{n}
$$

On the other hand, we have

$$
\begin{aligned}
m\left(A_{r}\right)=\int_{S^{n-1}} X_{A_{r}} d m & =\int_{G} \mu(d F) \int_{S_{F}} X_{A_{r} \cap F} d m_{F}= \\
& =\int_{G} m_{F}\left(A_{r} \cap F\right) \mu(d F)
\end{aligned}
$$

where m_{F} is the normalized Haar measure on $S_{F}=F \cap S^{n-1}$. The last two formulae show that

$$
\mu\left(\left\{F \in G: m_{F}\left(A_{r} \cap F\right)<2(C r)^{n}\right\}\right)>\frac{1}{2} ;
$$

in other words, for "most of" $F \in G$ we have

$$
\mathrm{m}_{\mathrm{F}}\left(\left\{\mathrm{x} \in \mathrm{~S}_{\mathrm{F}}:\|\mathrm{x}\|<\mathrm{r}\right\}\right)<2(\mathrm{Cr})^{\mathrm{n}} \leq(2 \mathrm{Cr})^{\mathrm{n}}
$$

We show that every such Fis "close" to ℓ_{k}^{2} in the Banach-Mazur sense, thus proving Prop. 3.

Indeed, since, for given $\mathrm{x}_{\mathrm{o}} \in \mathrm{S}_{\mathrm{F}}$ and $\delta \leq \frac{1}{2}$,

$$
\mathrm{m}_{\mathrm{F}}\left(\left\{\mathrm{x} \in \mathrm{~S}_{\mathrm{F}}:\left\|\mathrm{x}-\mathrm{x}_{\mathrm{o}}\right\|_{2} \leq \delta\right\}\right) \geq\left(\frac{\delta}{4}\right)^{\mathrm{k}},
$$

the previous estimate shows (remember that $k \leq \theta n$) that $S_{F} \backslash A_{r}$ is an $r / 2-$ net (in ℓ_{n}^{2} metric) for S_{F}, provided $r=r(\theta, C)$ is small enough (precisely, if $r \leq\left(2^{3 \theta+1} C\right)^{1 /(1-\theta)}$. Fix such r. Then, for any $y \in S_{F}$, there is a $y_{o} \in S_{F} \backslash A_{r}$ (i.e. $\left\|y_{o}\right\| \geq r$) such that $\left\|y-y_{o}\right\|_{2} \leq r / 2$. Since (by $\mathrm{B}^{\mathrm{n}} \subset \mathrm{B}_{\mathrm{E}}$) $\|\mathrm{x}\|_{2} \geq\|\mathrm{x}\|$ for all $\mathrm{x} \in \mathrm{E}$, we have also $\left\|\mathrm{y}-\mathrm{y}_{\mathrm{o}}\right\| \leq \frac{\mathrm{r}}{2}$. Therefore

$$
\|\mathbf{y}\| \geq\left\|y_{0}\right\|-\left\|y-y_{0}\right\| \geq r-\frac{r}{2}=\frac{r}{2} .
$$

So, by homogeneity,

$$
\frac{\mathrm{r}}{2}\|\mathrm{y}\|_{2} \leq\|\mathrm{y}\| \leq\|\mathrm{y}\|_{2}
$$

for all $y \in F$. Hence $d\left(F, \ell_{k}^{2}\right) \leq 2 r^{-1}=2 r(\theta, C)^{-1}$. This ends the proof of Prop. 3.

In the sequel, we shall frequently use the following concepts. We say that (e_{i}) is an unconditional basis of a B-space E provided

$$
\operatorname{ubc}\left(\mathbf{e}_{\mathbf{i}}\right) \stackrel{\text { def }}{=}\left|\varepsilon_{i}\right| \leq 1,\left\|_{\Sigma_{i}} t_{i} e_{i}\right\| \leq 1\left\|_{i} \varepsilon_{i} t_{i} e_{i}\right\|<\infty
$$

We say that a B-space E is of cotype $q(q \geq 2)$ if there is a constant K such that, for every finite sequence $x_{1}, x_{2}, \ldots \in E$, we have

$$
\int\left\|\sum_{i} r_{i} x_{i}\right\| \geq K^{-1}\left(\sum_{i}\left\|x_{i}\right\|^{q}\right)^{1 / q}
$$

where (r_{i}) is the sequence of Rademacher functions. The smallest such constant K is called the cotype q constant of E and denoted by $K_{q}(E)$.

It was proved in [4] that given K there exist $C, \theta>0$ such that, for every finite dimensional E with $K_{2}(E) \leq K$, one can find a subspace of E, say F, with $\operatorname{dim} F=k \geq \theta \operatorname{dim} E$ and $d\left(F, l_{k}^{2}\right) \leq C$. Prop. 2 and Prop. 3 strengthen this result in the special case $E=\ell_{n}^{1}$. This raises
the following problems :

Problem $4:$ Given $\theta \in(0,1)$, does every normed space f contain a $\left[\theta\right.$ dimE]-dimensional subspace F with $d\left(\ell_{\text {dim } F}^{2}, F\right)<C$, where C depends only on $K_{2}(E)$?

Problem $5:$ Does there exist a function $C($.$) such that v r(E) \leq C\left(K_{2}(E)\right)$ for every E ?

Of course a positive solution of Problem 5 implies a positive solution of Problem 4. We have two partial results in this direction.

Theorem $6[8]:$ Let E be a finite dimensional space, (e_{i}) -its basis. Then

$$
\operatorname{vr}(E) \leq C K_{2}(E) \operatorname{ubc}\left(e_{i}\right)
$$

where C is aniversal constant.

Theorem $7\lfloor 8\rfloor: T h e r e$ is a universal constant C such that

$$
\operatorname{vr}\left(\ell_{n}^{2} \hat{\otimes} l_{n}^{2}\right) \leq C \quad \text { for all } n
$$

Recall that $\ell_{n}^{2} \hat{\otimes} \ell_{n}^{2}$ is the tensor product $\ell_{n}^{2} \otimes \ell_{n}^{2}$ equipped with the largest tensor norm (in other words : the space of nuclear operators on ℓ_{n}^{2}). It is known that ubc (ω_{i}) is of order \sqrt{n} for every basis (ω_{i}) of $\ell_{n}^{2} \hat{\otimes}_{n}^{2}$, while $K_{2}\left(\ell_{n}^{2} \widehat{\otimes} l_{n}^{2}\right) \leq K$, where K does not depend on n.

Theorem 7 can be generalized to a large class of tensor products and unitary ideals. In particular, a unitary ideal \mathfrak{N} on ℓ_{n}^{2} has "small" volume ratio if the associated n-dimension symmetric space $\ell_{\mathscr{U}}$ has (in the case of Th. 7 we have $\ell_{\mathscr{A}}=\ell_{n}^{1}$; see e.g. [5] for definitions).

Now I present a sketch of the proof of Th. 6. We shall need two lemmas.

Lemma A Let $(E,\|\cdot\|)$ be a B-space of cotype 2 with an unconditional basis (e_{i}). Then there exists a norm $\|\cdot\|^{(1)}$ such that
a) $\|x\| \leq\|x\|^{(1)} \leq C K_{2}(E) u b c\left(e_{i}\right)\|x\|$ for $x \in E$
(C is an absolute constant).
b) $\operatorname{ubc}\left(e_{i}\right)=1 \operatorname{in}\left(E,\|\cdot\|^{(1)}\right.$)
c) the dual norm $\|\cdot\|$ on E^{*} is 2-convex; in other words a functional defined by $\left\|\left\|\left(x_{j}\right)\right\|=\left(\left\|\sum_{j} \sqrt{\left|x_{j}\right|} e_{j}^{*}\right\|_{*}^{(1)}\right)^{2}\left(\left(e_{j}^{*}\right)\right.\right.$ is a basic sequence E^{*} dual to $\left.\left(e_{j}\right)\right)$ is a norm (then, of course, unconditional).

Lemma A is well known (see e.g. [1]).

Lemma B : Let $(F,\|\cdot\|)$ be an n-dimensional normed space, (f_{i}) -its basis with ubc (f_{i}) $=1$. Then there exists a sequence of positive numbers $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ such that, for all $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in R$,

$$
\begin{equation*}
\frac{1}{n} \sum_{\mathbf{i}}\left|\lambda_{\mathbf{i}}\right| \leq\left\|\sum_{\mathbf{i}} \beta_{\mathbf{i}} \lambda_{\mathbf{i}}{\underset{\mathbf{f}}{\mathbf{i}}}\right\| \leq \max _{\mathbf{i}}\left|\lambda_{\mathbf{i}}\right| \tag{5}
\end{equation*}
$$

Proof of lemma B : Some variants of lemma B are known in a more general setting of B-lattices. I present a proof, which is essentially due to T.K. Carne.

Consider $f: B_{E} \rightarrow R$ defined by $\underset{i}{f}\left(\sum_{i} b_{i} f_{i}\right)=\prod_{i} b_{i} . \operatorname{Let} \beta=\sum_{i} \beta_{i} f_{i}$ be a point, where f attains its maximum. Of course one can choose β to satisfy $\beta_{i} \geq 0$ for $i=1,2, \ldots, n$. Clearly $\|\beta\|=1$; this implies immediately the right hand inequality of (5), because ubc (f_{i}) = 1. By the same reason, to prove the left hand inequality of (5) it is enough to show that the functional $\varphi: \sum_{i} \lambda_{i} \beta_{i} f_{i} \mapsto \frac{1}{n} \sum_{i} \lambda_{i}$ is of norm at most 1 . It is easy to see that φ is the only functional satisfying
(i) $\varphi(\beta)=1$,

But it is clear that the functional ψ separating disjoint (by definition of β) and convex sets B_{E} and $Q\left(i . e \cdot \psi\left(B_{E}\right) \leq 1, \psi(Q)>1\right)$ satisfies (i) and (ii); hence $\varphi=\psi$ and $\varphi\left(\mathrm{B}_{\mathrm{E}}\right) \leq 1$, in other words $\|\varphi\| \leq 1$. This proves lemma B.

Now we shall derive th. 6 from lemmas A and B.

Clearly, by lemma A and (1), it is enough to prove that if ($\mathrm{E},\|\cdot\|^{(1)}$) satisfies conditions (b) and (c) of lemma A, then $\operatorname{vr}(E) \leq C$, where C is a universal constant. On the other hand, this estimate will immediately follow from existence of a sequence (α_{k}) such that

$$
\begin{equation*}
\sum_{k}\left|x_{k}\right| \leq\left\|\sum_{k} \alpha_{k} x_{k} e_{k}\right\|^{(1)} \leq \sqrt{n}\left(\sum_{k}\left|x_{k}\right|^{2}\right)^{1 / 2} \tag{*}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in R$. Indeed, defining an ellipsoid

$$
\varepsilon \in=\left\{\mathbf{x}=\sum_{k} \alpha_{k} \mathbf{x}_{k} \mathbf{e}_{\mathbf{k}}: \sqrt{\mathbf{n}} \sqrt{\sum_{k}\left|\mathbf{x}_{k}\right|^{2}} \leq 1\right\}
$$

we get $\mathcal{E} \subset \mathrm{B}_{\left(\mathrm{E},\|\cdot\|^{(1)}\right)}^{\sim}{ }_{\ell_{\mathrm{n}}^{1}}$. Hence

$$
\operatorname{vr}(E) \leq\left(\frac{\operatorname{vol} B}{\operatorname{vol} \varepsilon^{\prime}}\right)^{1 / n} \leq\left(\begin{array}{cc}
\operatorname{vol} B_{1}^{1} \\
\operatorname{vol} \varepsilon & \ell_{n}^{1 / n} \\
\end{array}\right)^{1 / n}=\operatorname{vr}\left(\ell_{n}^{1}\right) \leq \sqrt{\frac{2 e}{\pi}}
$$

by proposition 2.
To show (*) consider its dual version

$$
\begin{equation*}
\max _{k}\left|y_{k}\right| \geq\left\|\sum_{k} \frac{y_{k}}{\alpha_{k}} e_{k}^{*}\right\|_{*}^{(1)} \geq \frac{1}{\sqrt{n}}\left(\sum_{k}\left|y_{k}\right|^{2}\right)^{1 / 2} \text {. } \tag{**}
\end{equation*}
$$

Of course it is enough to prove ($\boldsymbol{*}^{*}$) for nonnegative sequences (y_{k}) only. Substituting $y_{k}=\sqrt{\lambda_{k}}$ and $\alpha_{k}=1 / \sqrt{\beta_{k}}$ one gets
(米落)

$$
\frac{1}{n} \sum_{k} \lambda_{k} \leq\left(\left\|\sum_{k} \sqrt{\beta_{k} \lambda_{k}} e_{k}^{*}\right\|_{*}^{(1)}\right)^{2} \leq \max _{k} \lambda_{k}
$$

Now existence of (β_{k}) satisfying ($*_{*}^{*}$) follows immediately from condition (c) of lemma A (i.e. the fact that the term in the centre of ($*_{*} *$) is equal to $\left\|\mid\left(\beta_{k} \lambda_{k}\right)\right\|$ for some unconditional norm $|||.|| |)$ and lemma B.

Let us introduce another invariant :

$$
\operatorname{hvr}(E) \stackrel{\text { def }}{=} \sup _{F \subset E, \operatorname{dim} F<\infty} \operatorname{vr}(E)
$$

where E is a Banach space, not necessarily of finite dimension. Using some methods from [4], one can easily derive from Prop. 3 the following :
$\left[\begin{array}{ll}\text { Theorem } 8 \\ \text { In general } \varepsilon \text { cannot be omitted. } \quad \operatorname{lf} \ln (E)<\infty, \text { then } E \text { is of cotype } 2+\varepsilon \text { for every } \varepsilon>0 .\end{array}\right.$

Finally I am going to present :

Theorem 9: There exists a function $(0,1) \ni \theta \rightarrow C(\theta)$ such that for any k-dimensional subspace E of ℓ_{n}^{∞} we have

$$
\mathrm{d}\left(\mathrm{E}, \ell_{\mathbf{k}}^{2}\right)>\mathrm{C}(\mathrm{k} / \mathrm{n}) \sqrt{\mathrm{k}}
$$

$\underline{\text { Remark }: ~ O u r ~ p r o o f ~ g i v e s ~} C(\theta)=\sqrt{\pi / 2 e^{3}} \theta$.
Recently Figiel and 亡ohnson proved th. 9 with $C(\theta)=V \bar{\theta} / 2$.

Proof of theorem $9:$ Since $d\left(E, \ell_{k}^{2}\right)=d\left(E^{*}, \ell_{k}^{2}\right)$, it is enough to prove (+) with E replaced by E*

To say that E is a subspace of ℓ_{n}^{∞} is the same as to say that the unit ball of E^{*} has at most $2 n$ extreme points, say $x_{1}, x_{2}, \ldots, x_{n}$, $-x_{1},-x_{2}, \ldots,-x_{n}$. Let ε be an ellipsoid contained in the unit ball of E^{*}. We must show that, for some $i, x_{i} \notin C(k / n) \sqrt{k} \mathcal{E}$. Thus the proof reduces to the following fact :

Let $B=\operatorname{abs} \operatorname{conv}\left(y_{i}\right)_{i=1}^{n} \subset R^{k}$ and let the Euclidean unit ball $B^{k}=\left\{x \in R^{k}:\|x\|_{2} \leq 1\right\}$ be contained in B. Then $\underset{1 \leq i \leq n}{\max }\left\|y_{i}\right\|_{2} \geq \sqrt{k} C(k / n)$.

To see the above consider all sets of the form $B_{A}=\operatorname{abs} \operatorname{conv}\left(y_{i}\right)_{i \in A}, \quad A \subset\{1,2, \ldots, n\}, \operatorname{card} A=k$. Clearly $\underset{A}{U} B_{A}=B$. Choose A so that vol B_{A} is maximal. Then

$$
\binom{n}{k} \operatorname{vol} B_{A} \geq \operatorname{vol} B \geq \operatorname{vol} B^{k}
$$

On the other hand

$$
\operatorname{vol} \mathrm{B}_{\mathrm{A}} \leq \prod_{\mathrm{i} \in \mathrm{~A}}\left\|\mathrm{y}_{\mathbf{i}}\right\|_{2}{\operatorname{vol} \mathrm{~B}_{\ell_{\mathrm{k}}^{1}}}
$$

Combining these two estimates one gets

$$
\begin{aligned}
& \left.\prod_{i \in A}\left\|y_{i}\right\|_{2} z\binom{n}{k} \frac{\operatorname{vol} B^{k}}{\operatorname{vol~B} B_{1}^{1}}\right)=\binom{n}{\ell_{k}}^{-1}(\sqrt{k})^{k} \frac{\operatorname{vol} B^{k}}{\operatorname{vol}\left(\sqrt{k} B_{\ell_{1}}\right)}= \\
& =\binom{n}{k}^{-1}(\sqrt{k})^{k}\left[\operatorname{vr}\left(\ell_{k}^{1}\right)\right]^{-k} .
\end{aligned}
$$

Hence

$$
\max _{i \in A}\left\|y_{i}\right\|_{2} z\left[\binom{n}{k}^{1 / k} \operatorname{vr}\left(\ell_{k}^{1}\right)\right]^{-1} \sqrt{k} \geq \frac{k}{e n} \sqrt{\frac{\pi}{2 e}} \sqrt{k}
$$

This ends the proof of theorem 9.

Let us mention finally some easy observations, which may indicate another application of concepts introduced here. Namely, we have

$$
[\operatorname{vr}(E)]^{\theta}[\operatorname{vr}(F)]^{1-\theta}=\operatorname{vr}\left(E E_{\ell}^{2} F\right)
$$

where $\theta=\operatorname{dim} E /(\operatorname{dim} E+\operatorname{dim} F)$ and $E \oplus{ }_{\ell} F$ is a direct sum of E and F in the sense of ℓ_{2}^{2}.

One can hope that this may help in investigating complemented susbpaces of a normed space.

REFERENCES

[1] T. Figiel : On the moduli of convexity and smoothness, Studia Math. 56 (1976), 121-155.
[2] T. Figiel W.B. Johnson : Large subspaces of ℓ_{n}^{∞} and estimates of the Gordon-Lewus constant, preprint, January 1980.
[3] T. Figiel, S. Kwapien, A. Pełczynski : Sharp estimates for the constant of local unconditional structure of Minkowski spaces, Bull. Acad. Sc. Polon. 25 (1977) 1221-1226.
[4] T. Figiel, J. Lindenstrauss, V. Millman : On dimensions of almost spherical sections of convex bodies, Acta Math. 139 (1977) 53-94.
[5] I.C. Gohberg, M.G. Krein : Introduction to the theory of linear non-selfadjoint operators, A.M.S. Trans., vol. 18.
[6] B.S. Kashin : Sections of some finite dimensional sets and classes of smooth functions, Izv. Acad. Nauk SSSR, ser. mat. 41 (1977), 334-351 (Russian).
[7] S.J. Szarek : On Kashin's almost Euclidean orthogonal decomposition of ℓ_{n}^{1}, Bull. Acad. Sc. Polon. 26 (1978).
[8] S.J. Szarek, N. Tomczak-Jaegermann : On nearly Euclidean decompositions for some classes of Banach spaces, Compositio Math., to appear.

