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XI.1

0. INTRODUCTION AND NOTATION.

In this note we shall investigate for which Banach spaces E

and Banach lattices X the m-tensor product (defined below)

has the property that for every bounded operator T on X

I®T (I denoting the identity on E ) is a bounded operator

on We shall then apply it to the question when spaces

of absolutely summing operators have the uniform approximation

property.

All the results of this note will appear in [7] to which we

refer for further information and detailed proofs.

We shall use the notation and terminology commonly used in

Banach space theory as it appears in [4].

If E and F are Banach spaces B(E,F) denotes the space

of all bounded operators from E to F equipped with the

operator norm and we write B(E,E) = B(E) . If N (E,F)
P

denotes the space of all p-nuclear operators from E to F

with the p-nuclear norm np , I (E,F) the space of all
P P

p-integral operators from E to F with the p-integral norm

ip and the space of all p-summing operators from E

to F with the p-summing norm n p . Finally is the

space of operators from E to F , which factor through

an L 00 -space equipped with the factorization norm y . If 

-is one of the operator ideals above 0!(E,F) denotes the closure

of E*@F in CL(E,F) .

If then we write E 4 L , respectively E ~ QL ,
if there is a measure p so that E is isomorphic to a subspace

of L p (~) , respectively a subspace of a quotient of L p (~) .
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Throughout the paper we let E and F denote Banach spaces

and X a Banach lattice. Px and qx are defined by

p X = sup{p ~ X is p-convex} .

q - inf{q ~ I X is q-concave} .

1. THE TENSOR PRODUCT 

Let us recall that a linear operator T : E - X is called

order bounded if there exists a z E X , z &#x3E; 0 so that

(1) llxll z for all x E E ,

and we define the order bounded norm llTll  of T by

inf { ))z)) I I z satisfies (1)} .

ll.ll  is a norm on the space of all order bounded

operators from E to X turning it into a Banach space [6].

1.1 Definition

The m-tensor product is defined to be the closure in

of EOX in 

This tensor product was originally introduced by Schaefer

[11]. Further investigation of the geometric properties of

E8 X e.g. concerning the uniform approximation property,

can be found in [2]. The tensor product is a generalization of

spaces of vector-valued functions. Indeed, in [2] it was proved

that if X is an order continuous K6the function space on a

probability space (~,1,~) , then EO m X can be identified in a

canonical manner with the space X(E) consisting of all

measurable functions f : ~ ~ E with E X .
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We now wish to comment a little on the computation of norms

in E8X . If then the function f : 

defined by

is a continuous function, homogeneous of degree one. Therefore

the Krivine calculus of 1-homogeneous expressions in Banach

lattices (see [4]) gives that f(xl,x2,...,xn) can be given

a unique meaning as an element in X for all xl,x2,...,xn E X ,
n

and we denote that element by 11 Z x.e.IlE . It is readily
verified that

Hence if then

2. THE IDEAL PROPERTY OF (E,X) .

2 .1 Definition

The pair (E,X) is said to have the ideal property (I.P.),

if for every operator T E and every operator S E B(X)

ST E E~mX . In other words if IOS E B(E@mX) for every S E B(X) ,

where I is the identity operator on E .

The following result was proved in [6]

2.2 Proposition

Let X be weakly sequentially complete. If T E B(E,F) with

T* E then ST E ~(E,X) for all S E B(F,X) and

llsll nl(T*) . If X is arbitrary the result holds for
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all finite dimensional T E B (E,F) .

It was proved by Kwapien [3] that (E,L ()) , has
P -

the if and only if E QL . Grothendieck’s inequality
p

gives together with Proposition 2.2 that (t2/X) has the I.P.

for all Banach lattices X . In fact the following was noted

in [7].

2.3 Proposition

If T E then

If X is weakly sequentially complete, then

In the sequal we shall need the following lemma:

2.4 Lemma

If 2pq p 

Proof

It is readily verified that it suffices to prove the statement

when E is a quotient of so let us assume that.

Since E is of cotype p it follows from [5] that

= for every Banach space G . By assumption

E* is a subspace of L (0,1) and hence isomorphic to a sub-

space of Ll(0,1) . Hence if T E nl(E,kl) then T* E 

by a result of KwapJan [3] and therefore T Clearly

= E*amti = N,(E,kl) . Combining this with the

above we get = TT q,(E,P, 1) = and therefore

by duality B(k1 E) 
q.e.d.q.e.d.
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We are now ready to show

2.5 Theorem

1°. If lq~2 ~ X is q-concave and

then

Dually

2°. If X is p-convex and B~~ 1 ,E) - P then

If furthermore X is weakly sequentially complete, the super-

scripts "f" can be removed in ( ii ) .

Proof

We shall only prove 1°. (ii) in 2° can be obtained from 1°

using duality theory and the second statement in 2° follows from

Theorem 1.3 in [2].

Note that the assumptions in 1° imply that EC+ QL q so that

E is reflexive.

Let T E E®mX . Then there exists a compact Hausdorff space

S and operators Tl : E* -~ C(S) , T2 : C(S) - X so that

T = T2Tl and 1 , T2 &#x3E; 0 , JITIJm IIT2J! . Since

X is q-concave T2 is q-integral by [4] and hence T is

q-integral as well.

Assume next that 
, 

T E I q (E*,X) . Let p be a measure so that

there is a quotient map S of L1 (~) onto E* . Since S is

q’-summing by assumption it follows from [9] that TS and hence

also S*T* are 1-integral. S* is an isometry and therefore

T* E 
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If T* E then Proposition 2.2 gives that

T (X is weakly sequentially complete), but the

reflexivity of E implies that fi3(E*,X) = [2] .

q.e.d.

The result corresponding to Theorem 2.5 in case q=l is

wellknown. Indeed if X = for some measure p then by

a result of Grothendieck [1] we have for all Banach spaces E :

EQ mL1(p) = = 

The next theorem gives a necessary and sufficient condition

for a pair (E,X) to have the I.P. in certain cases.

2.6 Theorem

(i) If and X is qx-concave then (E,X) has the

I.P. if and only if 
qX

Dually if and X is px-convex then (E,X)

has the I.P. if and only i f B(A.,E) = nPx (Q1,E) .

(ii) If (E,X) has the I.P. and X is p x-convex with

(resp. X is qx-concave and then

= (resp. = 

(iii) If and either Px or qx is attained or X

contains (Qn) uniformly complemented on disjoint blocks then2

(E,X) has the I.P. if and only if E is isomorphic to a Hilbert

space.

Proof

The "if" part of ( i ) follows from Proposition 2.3 and Theorem

2.5. The "only if" parts of ( i ) - ( iii ) are based on the following

argument:

Assume that (E,X) has the I.P. and that X is qx-concave

or ..
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It follows from [2], Proposition 1.6 that every T E E~mX
has p X -summing adjoint. Since qX is attained we get from [5]

and [10] that for every n there is a sublattice F of X

spanned by n mutually disjoint positive vectors, 2-equivalent

to the unit vector basis of t n and so that the F ’s are

qx n

uniformly complemented in X . Together with the above this

shows that there is a constant K1 so that for every n and

every T E we have
m qx

An approximation argument yields that (1) holds for every

Proof of (i)

If then by [5] there is a constant K2 so that

wl(S) -  K2n (S) for all S E n ( , ,E) . Combining this
" " X x

with (1) and Proposition 2.2 we conclude that T e E8 &#x26; qx 
if

and only if T* E , , E) . In particular (E,£ ) has the I . P.
q X qx

and therefore E ~ QL by Kwapien’s result so that E is
qx

reflexive. By duality we get that

Let K3 be a constant so that

Now let S E B ( 1, E* and

and hence

Since (3) holds for all V E it follows from [6]
" ~ X

that S is q’x-summing with I . This shows

the f irst part of ( i ) . The second part follows from the above

by duality.
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We shall not prove (ii) and (iii) here, but let us just

mention that to obtain (ii) (1) is used to show that for every

S E and every V E VS* E E@ m t Px so that

S is pX-summing. To get (iii) we observe that (1) implies that 
,

if r = qX , if qx is attained and r=2 if X contains

uniformly complemented copies of n on disjoint blocks then2

every element in EO mLr(0,1) has 2-summing adjoint. It is

easily verified that this implies that E is both of type 2

and of cotype 2 so that E is isomorphic to a Hilbert space.

We refer to [7] for details concerning (ii) and (iii).

q.e.d.

. We have not been able to extend Theorem 2.6 to the case where

neither py nor qX is attained and to the case where pX = qX

and at most one of them is attained.

The condition T1 , (kl.,E) is not completely-L qX "

satisfactory. We can pose

2.7 Problem

If 1p2 H , (Q1,E ) . Does E ~ QLr for

some r , pr2 .

If the answer to this question is affirmative then it follows

from Theorem 2.5 that the condition in (ii) above is also

sufficient for (E,X) to have the I.P.

, It can be shown that the condition TIp’ for

some p , 1p2 implies that E ~ QL p and that E is of type

p-stable. We may therefore ask

2.8 Problem

Let Ip2 , and let E4 QL 
p 

be of type p-stable. Does there
p .

exist an r&#x3E;p so that E QL ?
r
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It is wellknown that the answer to 2.8 is affirmative if

either  Lp (follows from a result of Rosenthal) or if

E is a quotient of L P (in which case E is isomorphic to

a Hilbert space).

If F is a subspace of X then we put E8 F = 

We have the following theorem:

2.9 Theorem

Let or and p=2 , X q-concave and E L ,
.:Sq p

and let F c X be a subspace.

1~. For every T E B(E*,F) we have

2°. The superscript "f" can be removed if either

(ii) F is complemented in X

(iii) E or F and X have the bounded approximation property.

Sketch of proof

(i) If then it follows from [5] that = 

and since T E niE*,F&#x3E; implies that 

Further if E is isomorphic to a Hilbert space then clearly

n2 (E,F) and if q&#x3E;2 then it follows from [3] that

T E n q (E*,F) implies T*~n.(F*,E) .
Combining this with Theorem 2.5 we obtain (i).

2°: It follows directly from the arguments above that "f" can

be removed in case F = X . To prove 20 in general it is there-

fore enough to show that if T E EOMX and T(E*) c F then

T E E~mF .
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(ii): Assume that there is a projection P of X onto F .

Since (E,X) has the I.P. there is a constant K , so that

I I PS I l m  K liP II !ISIImfor all S E E®mX .
If now T E E0 X with T(E*) c F and (T n) c’: EOX converges

to T in the m-norm then (PTn) c E8F and by the inequality

above it is a Cauchy sequence in the m-norm. Clearly its limit

has to be T .

That the "f" can be removed under the assumptions in (iii)

follows from the fact that if G1 and G2 are arbitrary

Banach spaces so that either G* or G2 has the bounded

approximation property then an operator T E B(Gl,G2) belongs

to n(Gl,G2) if and only if it is quasi-q-nuclear.q 2)
q.e.d.

We have omitted the well-known case p=q=l in Theorem 2.9.

Let F c X be a subspace and let K &#x3E; 1 be a constant. We

shall say that the pair (E,F) has the I.P. with constant K

relative to X , if for every T E E8 F and every S E B(F,X)

ST E E®mX with 11 ST I ! m  K IISII I 

Using arguments similar to the ones in the proof of Theorem 2.6

we get

Theorem ,

1°. If pq2 then the following statements are equivalent

(ii) 3K &#x3E; 1 , so that (E,F) has the I.P. with constant K

~ 

relative to X for all subspaces F c X .

20. If and pyqy unless then (ii) above holds

if and only if E is isomorphic to a Hilbert space.
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3. APPLICATIONS TO THE UNIFORM APPROXIMATION PROPERTY.

Let us recall the following definition

3.1 Definition

Let IN E is said to have the 

approximation property «À,q»-u.a.p.) if for every n-dimensional

subspace F c E there is an operator T E B(E) with Tx=x

for all x E F , and 

We shall say that E has the a-u . a . p . if it has the ( a , cp) -

u.a.p. for some function cp . The u.a.p. was first introduced by

Pelczynski and Rosenthal [8] and has since been studied by various

authors. In [2] the u.a.p. of m-tensor products and Banach

lattices was studied and we wish to apply the results there to

the situation of this note.

It follows from [2], Theorem 3.7 that if E and X both

have the u.a.p. and X is superreflexive then E8 X has the

u.a.p. Combining this with Theorem 2.5 and the fact that the

u.a.p. is a self-dual property we obtain immediately

3.2 Theorem

Let and assume that X is p-convex and superreflexive

, and that = If E and X have the u.a.p.

then nl(X,E) has the u.a.p.

’ 

If E has the u.a.p. and X is a general Banach lattice,

then [2] gives that has the u.a.p., provided X has the

order u.a.p. (which means that the operators in the definition

of the u.a.p. can be chosen with "controlled" modulus). However

since for every p , the class of Lp-spaces is closed
. 

under ultraproducts the proof of [2], Theorem 3.7 easily yields:
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3.3 Theorem

Let and assume that has the I.P. and that
-- P

EC+ L .
P

If E and X have the u.a.p. so does EO mx
As a corollary we obtain:

3.4 Corollary

1°. Let or q=l and and let E L , X
- - P

q-concave. If E and X have the u.a.p. and F is a complemented

subspace of X , then n (E*,F) and have the u.a.p.

2°. If F* is isomorphic to a complemented subspace of a

weakly sequentially complete Banach lattice X with the u.a.p.,

then nl(F’£2) has the u.a.p.

Proof

Assume first 1qp2 . By Theorem 2.9 it suffices to show

that has the u.a.p. Since (E,X) has the I.P. E® m F is

complemented in EOmX , which has the u.a.p. by Theorem 3.3.

If p=q=l , then n  (E*,X) = and the latter space has

the u.a.p., [2]. is clearly complemented in nl(E*,F) .
the of ,0

..L 11.L Ù ..L...L .I..&#x26;...s.. &#x26;..&#x26;. B".., ,;J ’-.I..&#x26;. BoJ BoJ .L BoJ .L ..L .

° follows from Theorem 2.3.

q.e.d.

3.5 Corollary

Let and r*s’ unless s=1,2 . If E is an

J?r-space and F is an øes-space complemented in F** , then

nl(E,F) has the u.a.p.

We conjecture that for all p , has the
’" P p

u.ap. but we were not able to verify it using the methods of

this note.
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