@incollection{SB_1970-1971__13__11_0, author = {Azra, Jean-Pierre}, title = {Relations diophantiennes et la solution n\'egative du 10e probl\`eme de {Hilbert}}, booktitle = {S\'eminaire Bourbaki : vol. 1970/71, expos\'es 382-399}, author = {Collectif}, series = {S\'eminaire Bourbaki}, note = {talk:383}, publisher = {Springer-Verlag}, number = {13}, year = {1971}, zbl = {0268.02030}, mrnumber = {469884}, language = {fr}, url = {http://archive.numdam.org/item/SB_1970-1971__13__11_0/} }
TY - CHAP AU - Azra, Jean-Pierre TI - Relations diophantiennes et la solution négative du 10e problème de Hilbert BT - Séminaire Bourbaki : vol. 1970/71, exposés 382-399 AU - Collectif T3 - Séminaire Bourbaki N1 - talk:383 PY - 1971 DA - 1971/// IS - 13 PB - Springer-Verlag UR - http://archive.numdam.org/item/SB_1970-1971__13__11_0/ UR - https://zbmath.org/?q=an%3A0268.02030 UR - https://www.ams.org/mathscinet-getitem?mr=469884 LA - fr ID - SB_1970-1971__13__11_0 ER -
Azra, Jean-Pierre. Relations diophantiennes et la solution négative du 10e problème de Hilbert, dans Séminaire Bourbaki : vol. 1970/71, exposés 382-399, Séminaire Bourbaki, no. 13 (1971), Exposé no. 383, 18 p. http://archive.numdam.org/item/SB_1970-1971__13__11_0/
[1] Mathematische Probleme. Vortrag gehalten auf dem internationalen Mathematiker-Kongress zu Paris 1900. Traduction anglaise, Bull. Amer. Math. Soc., 8 (1901/1902), 437-479. | JFM 33.0976.07
-[2] Existential definability in aritmetic, Trans. A.M.S., vol. 72 (1952), 437-449. | MR 48374 | Zbl 0047.24802
-[3] The decision problem for exponential diophantine equations, Annals of Math., vol. 74 (1961), 425-436. | MR 133227 | Zbl 0111.01003
, and -[4] Enumerable sets are diophantine, Soviet Mathematics, Mar-Apr. 1970, vol. 11, number 2, p. 354. | Zbl 0212.33401
-[5] La théorie des fonctions récursives et ses applications, Bull. Soc. Math. France, 88 (1960), 393-468. | Numdam | MR 122720 | Zbl 0156.25201
-[6] An unsolvable problem in number theory, J. of Symb. Logic, t. 25 (1960), 220-232. | MR 158825 | Zbl 0108.00701
-[7] An explicit diophantine definition of the exponential function, (non publié).
-