SÉMINAIRE N. BOURBAKI

NICHOLAS KATZ Travaux de Dwork

Séminaire N. Bourbaki, 1973, exp. nº 409, p. 167-200 http://www.numdam.org/item?id=SB_1971-1972_14_167_0

© Association des collaborateurs de Nicolas Bourbaki, 1973, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Séminaire BOURBAKI 24e année, 1971/72, nº 409 409-01 Février 1972

TRAVAUX DE DWORK

par Nicholas KATZ

Introduction.

This talk is devoted to a part of Dwork's work on the <u>variation</u> of the zeta function of a variety over a finite field, as the variety moves through a family. Recall that for a single variety V/\mathbb{F}_q , its zeta function is the formal series in t

$$Zeta(V/\mathbb{F}_q;t) = exp\left(\sum_{n \ge 1} \frac{t^n}{n} \quad (\# \text{ of points on } V \text{ rational over } \mathbb{F}_q^n)\right)$$

As a power series it has coefficients in \mathbb{Z} , and in fact it is a rational function of t [4]. We shall generally view it as a rational function of a p-adic variable.

Suppose now we consider a one parameter family of varieties, i.e. a variety $V/\mathbb{F}_{p}[\lambda]$. For each integer $n \geq 1$ and each point $\lambda_{o} \in \mathbb{F}_{p}^{n}$, the fibre $V(\lambda_{o})/\mathbb{F}_{pn}$ has a zeta function $Zeta(V(\lambda_{o})/\mathbb{F}_{pn};t)$. We want to understand how this rational function of t varies when we vary λ_{o} in the algebraic closure of \mathbb{F}_{p} . Ideally, we might wish a "formula", of a p-adic sort, for, say, one of the reciprocal zeroes of $Zeta(V(\lambda_{o})/\mathbb{F}_{pn};t)$. A natural sort of "formula" would be a p-adic power series $a(x) = \sum a_{n}x$ with coefficients $a_{n} \in \mathbb{Z}_{p}$ tending to zero, with the property :

for every $n\geq 1$ and for every $\lambda_o\in {\rm I\!F}$, let $X_o\in$ the algebraic closure of Q_p be the unique quantity lying over λ_o which satisfies $X_o=X_o^n$. Then

$$a(X_o)a(X_o^p)\dots a(X_o^{p^{n-1}})$$

is a reciprocal zero of $Zeta(V(\lambda_o)/\mathbb{F}_n;t)$, i.e., the numerator of p $Zeta(V(\lambda_o)/\mathbb{F}_n;t)$ is divisible by $(1-a(X_o)a(X_o^p)...a(X_o^p)t)$.

Now it is unreasonable to expect such a formula unless we can at least describe a priori <u>which</u> reciprocal zero it's a formula for ! If, for example, we knew a priori that one and only one of the reciprocal zeroes were a p-adic unit, then we might reasonably hope for a formula for it. If, on the other hand, we knew a priori that precisely $v \ge 2$ of the reciprocal zeroes were p-adic units, we oughtn't hope to single one out ; we could expect at best that we could describe the polynomial of degree v which has those v as its reciprocal zeroes. For instance, we might hope for a $v \times v$ matrix A(X) with entries in $\mathbb{Z}_p[[X]]$, their coefficients tending to zero, so that for each $\lambda_o \in \mathbb{F}_n$, the characteristic polynomial

$$det(I - t A(X_o)A(X_o^p)...A(X_o^{p-1}))$$

is the above polynomial.

In another optic, zeta functions come from cohomology, and to study their variation we should study the variation of cohomology. As Dwork discovered in 1961-63 in his study of families of hypersurfaces, their cohomology is quite rigid p-adically, forming a sort of structure on the base now called an F-crystal. Thanks to crystalline cohomology, we now know that this is a general phenomenon (cf. pt. 7 for a more precise statement). The relation with the "formula" viewpoint is this : a formula a(X) for one root is sub-F-crystal of rank 1, a formula A(X) for the v roots "at once" is a sub-F-crystal of rank v.

So in fact this exposé is about some of Dwork's recent work on variation of F-crystals, from the point of view of p-adic analysis. Due to space limitations, we have systematically suppressed the Monsky-Washnitzer "overconvergent" point of view in favor of the simpler but less rich "Krasneranalytic" or "rigid analytic" one (but cf. [16]). Among the casualties are Dwork's work on "excellent Liftings of Frobenius", and on the p-adic use of the Picard-Lefschetz formula, both of which are entirely omitted.

168

1. F-<u>crystals</u> ([1],[2]).

In down-to-earth terms, an F-crystal is a differential equation on which a "Frobenius" operates. Let us make this precise.

(1.0) Let k be a perfect field of characteristic p > 0, W(k) its Witt vectors, and S = Spec(A) a smooth affine W(k)-scheme. For each $n \ge 0$, we put $S_n = Spec(A/p^{n+1}A)$, an affine smooth $W_n(k)$ -scheme, and for $n = \infty$ we put $S^{\infty} =$ the p-adic completion of $S = Spec(\lim A/p^{n+1}A)$. (Function theoretically, $A^{\infty} = \lim_{l \to \infty} A/p^{n+1}A$ is the ring of those rigid analytic functions of norm ≤ 1 on the rigid analytic space underlying S which are defined over W(k)). For any affine W(k)-scheme T and any k-morphism $f_0: T_0 \longrightarrow S_0$, there exists a compatible system of $W_n(k)$ -morphisms $f_n: T_n \longrightarrow S_n$ with f_{n+1} lifting f_n (because T is affine and S smooth), or, equivalently, a W(k)-morphism $f: T^{\infty} \longrightarrow S^{\infty}$ lifting f_0 . Of course, there is in general no unicity in the lifting f.

In particular, noting by σ the Frobenius automorphism of W(k), there exists a σ -linear endomorphism ϕ of S[∞] which lifts the p'th power endomorphism of S_o. The interplay between S_o,S,S[∞] and ϕ is given by :

<u>Lemma</u> 1.1. (Tate-Monsky [24],[27]). <u>Denote by</u> \mathfrak{c} <u>the completion of the</u> <u>algebraic closure of the fraction field</u> K <u>of</u> W(k), <u>and by</u> \mathfrak{G}_{C} <u>its ring</u> of integers.

1.1.1. The successive inclusions between the sets below are all bijections a) the C-valued points of S (as W(k)-scheme) b) the continuous W(k)-homomorphisms $A^{\infty} \rightarrow \Theta_{C}$ c) " $A^{\infty} \rightarrow C$ d) the closed points of $S^{\infty} \otimes C$. 1.1.2. Every k-valued point e_0 of S_0 lifts uniquely to a W(k)-valued point e of S^{∞} which verifies $\varphi \circ e = e \circ \sigma$. In fact, for any isometric extension $\overline{\sigma}$ of σ to C, e is the unique C-valued point of S^{∞} which lifts e_0 and verifies $\varphi \circ e = e \circ \overline{\sigma}$. The point e is called the φ -Teichmuller representative of e_0 . The Teichmuller points of S^{∞} (C-valued points e satisfying $\varphi \circ e = e \circ \overline{\sigma}$) are in bijective correspondence with the points of S_0 with values in the algebraic closure \overline{k} of k, and all take values in W(\overline{k}).

(1.2) Let H be a locally free S^{∞} -module of finite rank, with an integrable connection ∇ (for the <u>continuous</u> derivations of $S^{\infty}/W(k)$) which is nilpotent. This means that for any continuous derivation D of $S^{\infty}/W(k)$ which is p-adically topologically nilpotent as additive endomorphism of A^{∞} , the additive endomorphism $\nabla(D)$ of H is also p-adically topologically nilpotent. For any affine W(k)-scheme T which is p-adically complete, any pair of maps

$$T \xrightarrow{f} s^{\circ}$$

which are congruent modulo a divided-power ideal of T ((p), for example), the connection ∇ provides an isomorphism

This isomorphism satisfies

(i)
$$\chi(g,h) \chi(f,g) = \chi(f,h)$$
 if $T \xrightarrow{\frac{f}{g}}{h} S^{\infty}$
(ii) $\chi(fk,gk) = k^* \chi(f,g)$ if $R \xrightarrow{k} T \xrightarrow{\frac{f}{g}} S^{\infty}$

(iii) $\chi(id,id) = id$.

The universal example of such a situation $T \xrightarrow[g]{r} S^{\infty}$ is provided by

,

the "<u>closed</u> divided power neighborhood of the diagonal" P.D.- $\Delta(S^{\infty})$, with its two projections to S^{∞} . When, for examples, S is etale over $\mathbb{A}^{n}_{W(k)}$, P.D.- $\Delta(S^{\infty})$ is the spectrum of the ring of <u>convergent</u> divided power series over A^{∞} in n indeterminates, the formal expressions

$$\sum a_{i_1,\ldots,i_n} \frac{t_1^{i_1}}{i_1!} \cdots \frac{t_n^{i_n}}{i_n!}$$

whose coefficients a_{i_1,\ldots,i_n} are elements of A^{∞} which tend to zero (in the p-adic topology of A^{∞}).

Any situation $T \xrightarrow{f}_{\alpha} S^{\infty}$ of the type envisioned above can be factored uniquely

$$T \xrightarrow{f \times g} P.D.-\Delta(S^{\infty}) \xrightarrow{pr_2} S^{\infty}$$

and we have

$$\chi(f,g) = (f \times g)^* \chi(pr_1, pr_2)$$
.

giving the isomorphism $\chi(pr_1, pr_2)$, subject to a cocycle In fact, condition, is <u>equivalent</u> to giving the nilpotent integrable connection ∇ .

- We may now define an F-crystal $\underline{H} = (H, \nabla, F)$ as consisting of : (1.3)
 - (1) a "differential equation" (H, ∇) as above

(2) for every lifting
$$\varphi$$
 : S ^{∞} \longrightarrow S ^{∞} of Frobenius, a horizontal prphism

morp

which becomes an isomorphism upon tensoring with Q.

For different liftings $\ \phi_1$, ϕ_2 , we require the commutativity of the diagram below. (compare [11], section 5 and [12], section 2)

(1.4) Given a k-valued point e_0 of S_0 , let ϕ_1 and ϕ_2 be two liftings of Frobenius, and e_1 and e_2 the corresponding Teichmuller representatives. By inverse image, we obtain two F-crystals on W(k), $(e_1^*H, e_1^*(F(\phi_1)))$ and $(e_2^*H, e_2^*F(\phi_2))$ which are explicitly isomorphic

We thus obtain an F-crystal on W(k) (a free W(k)-module of finite rank together with a σ -linear endomorphism which is an isomorphism over K) which depends <u>only</u> on the point e_0 of S_0 . In case k is a finite field \mathbb{F}_n , then for every multiple, m, of n, the m-th iterate of the σ -linear endomorphism is <u>linear</u> over W(\mathbb{F}_m). Its characteristic polynomial det(1 - t \mathbb{F}^m) is denoted

2. F-crystals over W(k) and their Newton polygons [19].

<u>Theorem</u> 2.(Manin-Dieudonné). Let (H,F) be an F-crystal over h/(k), and suppose k algebraically closed.

2.1. H admits an increasing finite filtration of F-stable sub-modules

$$0 \subset H_0 \subset H_1 \subset \ldots$$

whose associated graded is free, with the following property. There exists a sequence of rational numbers in "lowest terms"

$$0 \le \frac{a_0}{n_0} < \frac{a_1}{n_1} < \frac{a_2}{n_2} < \dots$$

(if $a_0 = 0$, $n_0 = 1$; $n_i \ge 1$, $a_i \ge 0$, and $(a_i, n_i) = 1$ if $a_i \ne 0$)

such that

2.1.1. $(H_i/H_{i-1}) \otimes K$ admits a K-base of vectors x which satisfy $F^{n_i}(x) = p^{a_i}x$, and its dimension is a multiple of n_i .

2.1.2. If $a_0/n_0 = 0$, then H_0 itself admits a W(k) base of elements x satisfying Fx = x, F is topologically nilpotent on H/H_0 , and the rank of H_0 is equal to the stable rank of the p-linear endomorphism of the k-space H/pH induced by F; H_0 is then called the "unit root part" of H, or the "slope zero" part.

2.1.3. If (H,F) is deduced by extension of scalars from an F-crystal (H,F) over W(k_o), k_o a perfect subfield of k, then the filtration descends to an F-stable filtration of H. In case k_o is a finite field \mathbb{F}_{p} , the eigenvalues of \mathbb{F}^{n} on the i'th associated graded have p-adic ordinal na_{i}/n_{i} .

2.2. The rational numbers a_i/n_i are called the slopes of the F-crystal, and the ranks of H_i/H_{i-1} are called the multiplicities of the slopes. The slopes and their multiplicities <u>characterize</u> the F-crystal up to isogeny. It is convenient to assemble the slopes and their multiplicities in the <u>Newton polygon</u>

When (H,F) comes by extension of scalars from (H,F) over $W(F_n)$, this p Newton polygon is the "usual" Newton polygon of the characteristic polynomial $P(\underline{H};e_o,F_n,t)$, calculated with the ordinal function normalized by $ord(p^n) = 1$.

3. Local Results ; F-crystals on W(k)[[t1,...tn]].

(3.0) The <u>completion</u> of S^{∞} along a k-valued point e_o of S_o is (non-canonically) isomorphic to the spectrum of $W(k)[[t_1,...,t_n]]$. In this optic, the set of W(k)-valued points of S^{∞} lying over e_o becomes the n-fold product of pW(k), and the set of $\mathfrak{G}_{\mathbb{C}}$ -valued points of S^{∞} lying over e_o becomes the n-fold product of the maximal ideal of $\mathfrak{G}_{\mathbb{C}}$ (namely, the <u>values</u> of $t_1,...,t_n$).

By inverse image, any F-crystal on S^{∞} gives an F-crystal on $W(k)[[t_1,...,t_n]]$.

<u>Proposition</u> 3.1. Let (H, ∇, F) be an F-crystal over $W(k)[[t_1, ..., t_n]]$.

3.1.1. Let $W(k) \ll t_1, t_n \gg$ denote the ring of convergent divided power series over W(k) (cf. 1.2). Then $H \otimes W(k) \ll t_1, \ldots, t_n \gg$ admets a basis of horizontal (for ∇) sections.

3.1.2. Let $K\{\{t_1, \ldots, t_n\}\}$ denote the ring of power series over K which are convergent in the open polydisc of radius one (i.e. series $\sum a_{i_1, \ldots, i_n} t_1 \cdots t_n^{i_n}$ such that for every real number $0 \le r < 1$, $|a_{i_1, \ldots, i_n}|_r t_1 t_1 \cdots t_n$ tends to zero). Then $H \otimes K\{\{t_1, \ldots, t_n\}\}$ admits a basis of horizontal sections.

3.1.3. Every horizontal section of $H \otimes W(k) \ll t_1, \ldots, t_n \gg$ fixed by F "extends" to a horizontal section of H (i.e. over all of $W(k)[[t_1, \ldots, t_n]])$.

<u>Proof</u>: 3.1.1. is completely formal : the two homomorphisms f,g : W(k)[[t₁,...,t_n]] \longrightarrow W(k) \ll t₁,...,t_n \gg given by f = natural inclusion, g = evaluation e at (0,...,0), followed by the inclusion of W(k) in W(k) \ll t₁,...,t_n \gg , are congruent modulo the divided power ideal (t₁,...,t_n) of the p-adically complete ring W(k) \ll t₁,...,t_n \gg . Thus χ (f,g) is an isomorphism between H \otimes W(k) \ll t₁,...,t_n \gg with its induced connection and the "constant" module H(0,...,0) $\bigotimes_{W(k)}$ W(k) \ll t₁,...,t_n \gg with connection 1 \otimes d.

3.1.2. is more subtle. Let's choose a particularly simple φ (as we may using 1.3.1), the one which sends $t_i \longrightarrow t_1^p$, i=1,...,n , and is σ -linear. Choose a <u>basis</u> of the free $W(k)[[t_1,...,t_n]]$ module H , and let A_{co} denote the matrix of

$$\begin{split} F(\phi) &: \phi^* H \longrightarrow H. \text{ Denote by } Y \text{ the matrix with entries in} \\ W(k) &<\!\!<\!\!<\!\!t_1, \ldots, t_n^{>\!\!>} \text{ whose columns are a basis of horizontal sections} \\ \text{of } H \otimes W(k) &<\!\!<\!\!t_1, \ldots, t_n^{>\!\!>} \text{ (a "fundamental solution matrix") ;} \\ \text{in the notation of (2) above, it's the matrix of } \chi(g,f). Because} \\ F(\phi) \text{ is <u>horizontal</u>, we have the matricial relation} \end{split}$$

$$A_{\mathfrak{Q}} \cdot \varphi(Y) = Y \cdot A_{\mathfrak{Q}}(0, \dots, 0)$$

We must deduce that Y converges in the open unit polydisc. We know this is true of A_{φ} , as it even has coefficients in $W(k)[[t_1,...,t_n]]$. Since $A_{\varphi}(0,...,0)$ is invertible over K by definition of an F-crystal, we conclude that for any real number $0 \le r < 1$, we have the implication

 $\phi(Y)$ converges in the polydisc of radius $r \Longrightarrow Y$ converges in the polydisc of radius r .

On the other hand, writing $Y = \sum Y_{i_1} \cdots i_n t_1^{i_1} \cdots t_n^{i_n}$, we have $\varphi(Y) = \sum \sigma(Y_i, \dots, i_n) t_{i_1}^{pi_1} \cdots t_{i_n}^{pi_n}$, whence for any real $r \ge 0$, we have the implication

Y converges in the polydisc of radius $r \Longrightarrow \phi(Y)$ converges in the polydisc of radius $r^{1/p}$.

Since Y has entries in $W(k) \ll t_1, \ldots, t_n \gg$, it converges in the polydisc of radius $r_o = |p|^{1/p-1}$, hence, iterating our two implications, in the polydisc of radius r_o^{1/p^n} for every n; as $\lim(r_o)^{1/p^n} = 1$, we are done.

3.1.3. is similar to 3.1.2, only easier. If y is a column vector with entries in $W(k) \ll t_1, \ldots, t_n \gg$ satisfying

$$A_{0}, \varphi(y) = y$$

then for every integer $m \ge 1$ we have

$$\mathbb{A}_{\varphi} \cdot \varphi(\mathbb{A}_{\varphi}) \cdot \varphi^{2}(\mathbb{A}_{\varphi}) \cdot \cdot \cdot \varphi^{m-1}(\mathbb{A}_{\varphi}) \cdot \varphi^{m}(\mathbb{Y}) = \mathbb{Y}$$

Since $\varphi^{m}(y)$ is congruent to $\sigma^{m}(y(0,...,0) \mod (t_{1}^{pm},...,t_{n}^{pm})$, we have a $(t_{1},...,t_{n})$ -adic limit formula for y

$$y = \lim_{n \to \infty} A_{\varphi}.\varphi(A_{\varphi})...\varphi^{n-1}(A_{\varphi})^{\circ n}(\varphi(0,...,0))$$

which shows that y has entries in $W(k)[[t_1,...,t_n]]$.

Q.E.D.

<u>Remark</u> 3.2. 3.1.2 shows that "most" differential equations do not admit any structure of F-crystal. For example, the differential equation for $\exp(t^{p^{n}})$ is nilpotent provided $n \ge 1$, but its local solutions around any point $\alpha \in \mathfrak{G}$ converge only in the disc of radius $|p|^{1/p^{n}(p-1)}$.

The meaning of 3.1.2 is this : for any two points e_1, e_2 of S^{∞} with values in $\mathcal{G}_{\mathbb{C}}$ which are sufficiently near (congruent modulo $p^{1/p-1}$), the connection provides an explicit isomorphism of the two $\mathcal{G}_{\mathbb{C}}$ -modules $e_1^*(H)$ and $e_2^*(H)$. If the two points are further apart, but still congruent modulo the maximal ideal of $\mathcal{G}_{\mathbb{C}}$, 3.1.2 says the connection still gives an explicit isomorphism of the \mathbb{C} -vector spaces $e_1^*(H) \otimes \mathbb{C}$ and $e_2^*(H) \otimes \mathbb{C}$.

4. Global results : gluing together the "unit root" parts ([11], thm 4.1)

(4.0) Given an F-crystal $\underline{H} = (H, \nabla, F)$ and an integer $n \ge 0$, we denote by $\underline{H}(-n)$ the F-crystal $(H, \nabla, p^n F)$. An F-crystal of the form $\underline{H}(-n)$ necessarily has all its slopes $\ge n$, though the converse need not be true.

Theorem 4.1. Suppose k algebraically closed, and <u>H</u> an F-crystal on S^{∞} such that at every k-valued point of S_0 , its Newton polygon begins with a side of slope zero , always of the same length $v \ge 1$ (i.e., point by point, the unit root part has rank v). Suppose further that there exists a locally free submodule Fil \subset H such that H/Fil is locally free of rank v, and such that for every lifting ϕ of Frobenius, we have

 $F(\varphi) (\varphi *Fi1) \subset p H$.

<u>Then there exists a sub-crystal</u> $\underline{U} \subset \underline{H}$, <u>of rank</u> ν , <u>whose underlying</u> <u>module</u> U <u>is transversal to</u> Fil ($\underline{H} = U \oplus Fil$) <u>such that</u>

- 4.1.1. F is an isomorphism on U.
- 4.1.2. The connection ∇ on <u>U</u> prolongs to a stratification.
- 4.1.3. The quotient F-crystal H/U is of the form V(-1).
- 4.1.4. The extension of F-crystals $0 \rightarrow \underline{U} \rightarrow \underline{H} \rightarrow \underline{H}/\underline{U} \rightarrow 0$ splits when pulled back to W(k) along any W(k)-valued point of S[∞].
- 4.1.5. If the situation (<u>H</u>, Fil) on $S^{\infty}/W(k)$ comes by extension of scalars from a situation (**H**, Fil) on $S^{\infty}/W(k_{o})$, k_{o} a perfect subfield of k, the F-crystal <u>U</u> descends to an F-crystal <u>U</u> on $S^{\infty}/W(k_{o})$.

,

,

<u>Proof</u>. We may assume Fil, H and H/Fil are free, say of ranks r-v, r and v. In terms of a basis of H adopted to the filtration Fil \subset H, the matrix of $F(\phi)$ for some fixed choice of ϕ is of the form

$$\begin{array}{c} \mathbf{r} - \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \end{array} + \left(\begin{array}{c} \mathbf{pA} & \mathbf{C} \\ \\ \mathbf{pB} & \mathbf{D} \end{array} \right) \\ \hline \\ \mathbf{r} - \mathbf{v} & \mathbf{v} \end{array}$$

The hypothesis that there be ν unit root point by point means D is invertible. Let's begin by finding for a free submodule $U \subset H$ which is transversal to Fil and stable by $F(\phi).\phi^*$. This means finding an $r-\nu \times \nu$ matrix η , such that the submodule of H spanned by the colums of

•

$$\begin{pmatrix} \eta \\ I \end{pmatrix}$$

(I denoting the $\, \lor \, X \, \lor \,$ identity matrix) is stable under $F(\phi) \, \circ \, \phi^*$. But

$$F(\varphi)\varphi^{*}\begin{pmatrix}\eta\\I\end{pmatrix} = \begin{pmatrix}pA & C\\pB & D\end{pmatrix}\begin{pmatrix}\varphi^{*}(\eta)\\I\end{pmatrix} = \begin{pmatrix}pA\varphi^{*}(\eta)+C\\pB\varphi^{*}(\eta)+D\end{pmatrix}$$

so that F-stability of $\begin{pmatrix} I \\ I \end{pmatrix}$ is equivalent to having

$$\begin{pmatrix} pA\phi^{*}(\eta)+C \\ \\ pB\phi^{*}(\eta)+D \end{pmatrix} = \begin{pmatrix} \eta(pB\phi^{*}(\eta)+D) \\ \\ I(pB\phi^{*}(\eta)+D \end{pmatrix}$$

or equivalently (D being invertible) that η satisfy

4.1.6
$$\eta = (pA\varphi^{*}(\eta) + C)(I + pD^{-1}B\varphi^{*}(\eta))^{-1} \cdot D^{-1}$$

Because the endomorphism of r - v X v matrices given by

(4.1.7)
$$\eta \longrightarrow (pA \varphi^*(\eta) + C)(1+pD^{-1}B\varphi^*(\eta))^{-1} \cdot D^{-1}$$

is a contraction mapping in the p-adic topology of A^{∞} , it has a unique fixed point.

In order to prove that U is horizontal, it suffices to do so over the completion of S^{∞} along any closed point e_0 of S_0 . Let e be the φ -Teichmuller point of S^{∞} with values in W(k) lying over e_0 . By hypothesis, $e^*(H)$ contains \vee fixed points of $e^*(F(\varphi))$ which span a direct factor of $e^*(H)$, which is necessarily transverse to $e^*(Fil)$. By 3.1.3, these fixed points extend to horizontal sections over $H \otimes W(k)[[t_1, \ldots, t_n]] \xrightarrow{dfn} \hat{H}(e)$, which span a direct factor of $\hat{H}(e)$, still transversal to Fil(e). Write these sections as column vectors :

$$\begin{array}{c} \mathbf{r} - \mathbf{v} \begin{bmatrix} \mathbf{s}_2 \\ \mathbf{s}_1 \end{bmatrix} \in \mathbf{M}_{\mathbf{r},\mathbf{v}}(\mathbf{W}(\mathbf{k})[[\mathbf{t}_1,\ldots,\mathbf{t}_n]]) \\ \vdots \\ \mathbf{v} \end{bmatrix}$$

By transversality we have S_1 invertible. The fixed-point property is

$$\begin{pmatrix} pA & C \\ pB & D \end{pmatrix} \begin{pmatrix} \varphi^{*}(S_{2}) \\ \varphi^{*}(S_{1}) \end{pmatrix} = \begin{pmatrix} S_{2} \\ S_{1} \end{pmatrix}$$

or equivalently

$$\begin{pmatrix} pA & c \\ pB & D \end{pmatrix} \begin{pmatrix} \varphi^*(s_2s_1^{-1}) \\ I \end{pmatrix} = \begin{pmatrix} s_2s_1^{-1} \cdot s_1\varphi^*(s_1^{-1}) \\ s_1\varphi^*(s_1^{-1}) \end{pmatrix}$$

Let's put $\mu = S_2 \cdot S_1^{-1}$; we have

$$\int_{pB} \varphi^{*}(\mu) + c = \mu s_{1} \varphi^{*}(s_{1}^{-1})$$

$$pB \varphi^{*}(\mu) + b = s_{1} \varphi^{*}(s_{1}^{-1})$$

so μ satisfies $\mu = (pA\varphi^*(\mu) + C) \cdot (1+pD^{-1}B\varphi^*(\mu))^{-1}D^{-1}$. Since the endomorphism of $M_{r-\nu,\nu}(W(k)[[t_1,...,t_n]])$ defined by 4.1.7 is still a contraction mapping in its p-adic topology, it follows that μ is its unique fixed point, and hence that μ is the power series expansion of our global fixed point η near e_0 . This proves that 4.1.8. <u>the inverse image</u> $\hat{U}(e)$ <u>of</u> U <u>over</u> $W(k)[[t_1,...,t_n]]$ <u>is the</u> <u>module spanned by the horizontal fixed points of</u> $F(\varphi) \cdot \varphi^*$ <u>in</u> $\hat{H}(e)$. <u>Hence</u>

U(e) is horizontal, and stratified, which proves 4.1.2.

4.1.9. <u>The matrices</u> $\mu = S_2 S_1^{-1}$ and $S_1 \varphi^* (S_1^{-1})$ with entries in $W(k)[[t_1,...,t_n]]$ are the local expansion of the global matrices η and $pB\varphi^*(\eta) + D$ respectively. This is an example of analytic continuation par excellence.

To see that U is F-stable, notice that once we know it's horizontal, it suffices for it to be $F(\varphi)$ -stable for <u>one</u> choice of φ (as it is), thanks to 1.3.1. In terms of the new base of H , adopted to $H = Fil \oplus U$, the matrix of $F(\varphi)$ is

181

$$\begin{pmatrix} (1 \ \eta \\ 0 \ 1 \end{pmatrix}^{-1} \begin{pmatrix} pA & C \\ pB & D \end{pmatrix} \begin{pmatrix} 1 & \varphi^{*}(\eta) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} pA - p\eta & B & 0 \\ pB & D + pB\varphi^{*}(\eta) \end{pmatrix}$$

which proves 4.1.1 and 4.1.3. That 4.1.5 holds is clear from the "rational" way η was determined.

It remains to prove 4.1.4. The matrix of F in $M_r(W(k))$ looks like

$$\begin{array}{c} r - \nu \\ \nu \\ \nu \\ \hline \end{array} \begin{array}{c} \left(\begin{array}{c} pa & 0 \\ pb & d \\ \hline r - \nu & \nu \end{array} \right) \end{array}$$

in a base adopted to $H = Fil \oplus U$, with d invertible. It's again a fixed point problem, this time to find a matrix $E \in M_{V,r-V}(W(k))$ so that the span of the column vectors $\begin{pmatrix} I \\ .pE \end{pmatrix}$ is F-stable. But

$$\begin{pmatrix} pa & 0 \\ pb & d \end{pmatrix} \begin{pmatrix} I \\ \sigma p(E) \end{pmatrix} = \begin{pmatrix} pa \\ pb + \cdot pd\sigma(E) \end{pmatrix}$$

so F-stability is equivalent to the equation

$$\begin{pmatrix} pa \\ pb + pd\sigma(E) \end{pmatrix} = \begin{pmatrix} pa \\ pE.pa \end{pmatrix}$$
.

Thus E must be a fixed point of $E \longrightarrow \sigma^{-1}(-d^{-1}b+pd^{-1}Ea)$, which is again a contraction of $M_{\nu,r-\nu}(W(k))$. Q.E.D.

5. Hodge F-crystals ([20])

5.0. A Hodge F-crystal is an F-crystal (H, ∇, F) together with a finite decreasing "Hodge filtration" $H = Fil^0 \supseteq Fil^1 \supseteq ...$ by locally free sub-modules with locally free quotients, subject to the transversality condition

5.0.1
$$\nabla \operatorname{Fil}^{i} \subset \operatorname{Fil}^{i-1} \otimes \Omega^{1}$$

Its Hodge numbers are the integers $h^i = rank (Fil^{i+1})$.

A Hodge F-crystal is called $\underline{\text{divisible}}$ if for $\underline{\text{some}}$ lifting arphi of Frobenius, we have

5.0.2
$$F(\varphi) \ (\varphi^{*}(Fil^{i})) \subset p^{i} H$$
 for $i = 0, 1, ...$

It is rather striking that <u>if</u> p is sufficiently large that $\operatorname{Fil}^p = 0$, then 5.0.2 will hold for <u>every</u> choice of φ if it holds for one. [To see this, one uses the explicit formula (1.3.1) for the variation of $F(\varphi)$ with φ , transversality (5.0.1), and the fact that the function $f(n) = \operatorname{ord}(p^n/n!)$ satisfies $f(n) \ge \inf(n, p-1)$ for $n \ge 1$.]

The Hodge polygon assosciated to the Hodge numbers h^0 , h^1 ,... is the polygon which has slope ν with multiplicity h^{ν} :

By looking at the first slopes of all exterior powers, one sees:

Lemma 5.1. The Newton polygon of a divisible Hodge F-crystal is always above (in the (x, y) plane) its Hodge polygon.

5.2. A Hodge F-crystal is called autodual of weight N if H is given a horizontal autoduality $\langle , \rangle : H \otimes H \longrightarrow \otimes_{S^{\infty}}$ such that 5.2.1 <u>the Hodge filtration is self-dual, meaning</u> $(\text{Fil}^{i}) = \text{Fil}^{N+1-i}$. 5.2.2 F <u>is</u> p^N-<u>symplectic</u>, <u>meaning that for</u> x, y \in H , and any <u>lifting</u> φ , <u>we have</u> $\langle F(\varphi)(\varphi^*x), F(\varphi)(\varphi^*y) \rangle = p^{N}\varphi^*(\langle x, y \rangle)$.

The Newton polygon of an autodual Hodge F-crystal of weight N is symmetric, in the sense that its slopes are rational numbers in [0, N] such that the slopes α and N- α occur with the same multiplicity.

As an immediate corollary of 4.1, we get

<u>Corollary</u> 5.3. <u>Let</u> (H, \bigtriangledown , F, Fil, < , >) <u>be an autodual divisible</u> <u>Hodge F-crystal, whose Newton polygon over every closed point of</u> So <u>has slope zero with multiplicity</u> h^o. <u>Then</u> <u>H</u> admits a three-step

184

filtration

 $\overline{\Pi} \subset T$ ($\overline{\Pi}$) $\subset \overline{H}$

with:

5.3.1. U the "unit root" part of H , from 4.1. 5.3.2. $\underline{H}/\underline{I}$ (U) is of the form \underline{V}_{N} (-N) , where \underline{V}_{N} is a unit-root F-crystal (its F is an isomorphism).

5.3.3. $\underline{\bot}(\underline{U})/\underline{U}$ is of the form $\underline{H}_1(-1)$, where \underline{H}_1 is an autodual divisible Hodge F-crystal of weight N-2.

Similarly, we have

<u>Corollary 5.4.</u> <u>Suppose</u> (H, \bigtriangledown , F, Fil) <u>is a Hodge F-crystal whose</u> <u>Newton polygon coincides</u> with its Hodge polygon over every closed point <u>of S₀</u>. <u>Then H</u> <u>admits a finite increasing filtration</u>

$$0 \subset \underline{\underline{v}}_0 \subset \underline{\underline{v}}_1 \subset \dots$$

such that

5.4.1. $\underline{U}_i / \underline{U}_{i+1}$ is of the form \underline{V}_i (-i), with \underline{V}_i a unit-root F-crystal (F an isomorphism)

5.4.2. the filtration is transverse to the Hodge filtration: H = Filⁱ \oplus U_{i-1}.

5.4.3. <u>if</u> (H, ∇ , F, Fil) admits an autoduality of weight N , the filtration by the U_i is autodual: \perp (U_i) = U_{N-1-i}.

Remark 5.5. F-crystals and p-adic representations.

The category of "unit-root" F-crystals on S^{∞} (F an isomorphism), such as the V_i occurring in 5.4, is equivalent to the category of continuous representations of the fundamental group $\Pi_1(S_0)$ on free \mathbb{Z}_p -modules of finite rank (i.e., to the category of "constant tordu" étale p-adic sheaves on S_0).

[Given <u>H</u> and a choice of φ , one shows successively that for each $n \ge 0$, there exists a finite étale covering T_n of S_n over which $H/p^{n+1}H$ admits a basis of fixed points of $F(\varphi) \cdot \varphi^*$. The fixed points form a free $\mathbb{Z}/p^{n+1}\mathbb{Z}$ module of rank = rank (H) , on which $\operatorname{Aut}(T_n/S_n)$, hence $\pi_1(S_n) = \pi_1(S_0)$ acts. For n variable, these representations fit together to give the desired p-adic representation of $\pi_1(S_0)$. This construction is inverse to the natural functor from constant tordu p-adic étale sheaves on S_0 to F-crystals on S^{∞} with F invertible].

6. A conjecture on the L-function of an F-crystal.

6.0. Suppose <u>H</u> is an F-crystal on $S^{\sim}/W(\mathbb{F}_q)$. Denote by Δ_n the points of S_o with values in \mathbb{F}_{q^n} which are of degree precisely n over \mathbb{F}_q . The L-function of <u>H</u> is the formal power series in $1 + tW(\mathbb{F}_q)[[t]]$ defined by the infinite product (cf. [13], [26])

$$L(\underline{H}; t) = \prod_{n \ge 1} \prod_{e_o \in \Delta_n} \left[P(\underline{H}; e_o, \mathbb{F}_{q^n}, t^n) \right]^{-1/n}$$

When \underline{H} is a unit root F-crystal, its L-function is the L-function

associated to the corresponding étale p-adic sheaf (cf. [13], [26]).

Conjecture 6.1. (cf.[8], [13])

6.1.1. L(H; t) is p-adically meromorphic.

6.1.2. if <u>H</u> is a unit root F-crystal, denote by M the corresponding p-adic étale sheaf on S_o , and by $H_c^i(M)$ the étale cohomology groups with compact supports of the geometric fibre $\bar{S}_o = S_o \times_{\mathbf{F}_q} \bar{\mathbf{F}}_q$ with coefficients in M. These are \mathbb{Z}_p -modules of finite rank, zero for $i \geq \dim S_o$, on which $\operatorname{Gal}(\bar{\mathbf{F}}_q/\mathbf{F}_q)$ acts. Let $f \in \operatorname{Gal}(\bar{\mathbf{F}}_q/\mathbf{F}_q)$ denote the <u>inverse</u> of the automorphism $x \longrightarrow x^q$. Then the function

$$L(\underline{H}; t) \cdot \frac{\dim S_{o}}{\prod_{i=0}^{i=0}} \det (1 - tf | H_{c}^{i}(M))^{(-1)^{i}}$$

has neither zero nor pole on the circle |t| = 1.

<u>Remarks</u> 6.1.1. is (only) known in cases where the F-crystal <u>H</u> on S^{∞} "extends" to the Washnitzer-Monsky weak completion S⁺ of S ([23]), in which case it follows from the Dwork-Reich-Monsky fixed point formula ([4], [25], [24]). Unfortunately, such cases are as yet relatively rare (but cf. [10] for a non-obvious example). It is known ([12a]) that when S₀ = \mathbb{A}^n , then L(<u>H</u>; t) is meromorphic in the closed disc $|t| \leq 1$. The extension to general S₀ of <u>this</u> result should be possible by the methods of ([25]); it would at least make the second part 6.1.2 of the conjecture meaningful. As for 6.1.2 itself, it doesn't seem to be known for <u>any</u> non-constant M. Even for $M = \mathbb{Z}_p$, when L = zeta of S₀, 6.1.2 has only been checked for curves and abelian varieties.

409-21

7. <u>F-crystals from geometry</u> ([1], [2])

Let $f: X \longrightarrow S^{\infty}$ be a proper and smooth morphism, with geometrically connected fibres, whose de Rham cohomology is locally free (to avoid derived categories!). Crystalline cohomology tells us that for each integer $i \ge 0$, the de Rham cohomology $H^{i} = \mathbf{R}^{i} f_{*}(\Omega_{X/S^{\infty}}^{\bullet})$ with its Gauss-Manin connection ∇ is the underlying differential equation of an F-crystal \underline{H}^{i} on S^{∞} . When k is finite, say \mathbf{F}_{q} , then for every point \mathbf{e}_{0} of S_{0} with values in $\mathbf{F}_{q^{n}}$, the inverse image $X_{\mathbf{e}_{0}}$ of X over \mathbf{e}_{0} is a variety over $\mathbf{F}_{q^{n}}$, and its zeta function is given by (cf. 1.4)

$$Zeta(X_{e_o} / \mathbb{F}_{q^n}; t) = \frac{2dim}{\prod_{i=0}^{i}} P(\underline{H}^i; e_o, \mathbb{F}_{q^n}, t)^{(-1)^{i+1}}$$

If in addition we suppose that the Hodge cohomology of X/S^{∞} is locally free, and that X/S^{∞} is projective, then according to Mazur [20], the Hodge F-crystal \underline{H}^{i} is divisible, provided that $p \ge i$. For <u>every</u> p and i we have $F(\varphi)\varphi^{*}(Fi1^{1}) \subseteq p \ H^{i}$, and the p-linear endomorphism of $\underline{H}^{i}/p\underline{H}^{i}+Fi1^{1} \cong \underline{R}^{i}f_{*}(\underline{\mathbb{S}}_{X})/p\underline{R}^{i}f_{*}(\underline{\mathbb{S}}_{X}) = \underline{R}^{i}f_{\phi}(\underline{\mathbb{S}}_{X})$ $(f_{o}: X_{o} \longrightarrow S_{o}$ denoting the "reduction modulo p " of $f: X \longrightarrow S^{\infty}$) is the classical Hasse-Witt operation, deduced from the p'th power endomorphism of $\underline{\mathbb{S}}_{X_{o}}$. Thus if Hasse-Witt is <u>invertible</u>, we may apply 4.1 to the situation \underline{H}^{i} , $\underline{H}^{i} \supseteq Fi1^{1}$.

When X/S^{∞} is a smooth hypersurface in $\mathbb{P}^{N+1}_{S^{\infty}}$ of degree prime to p which satisfies a mild technical hypothesis of being "in general position", Dwork gives ([5], [7]) an a priori description of an F-crystal on S^{∞} whose underlying differential equation is (the primitive part of $H_{DR}^{N}(X/S^{\infty})$ with its Gauss-Manin connection, and whose characteristic polynomial is the "interesting factor" in the zeta function ([14]). The identification of Dwork's F with the crystalline F follows from [14] and (as yet unpublished) work of Berthelot and Meredith (c.f. the Introduction to [2]) relating the crystalline and Monsky-Washnitzer theories ([23], [24]). Dwork's F-crystal is <u>isogenous</u> to a divisible one for <u>every</u> prime p ([7], lemma 7.2).

8. Local study of ordinary curves : Dwork's period matrix T ([11])

7.0. Let $f: X \longrightarrow \operatorname{Spec}(W(k)[[t_1, \ldots, t_n]])$ be a proper smooth curve of genus $g \ge 1$. It's crystalline \underline{H}^1 is an autodual (cup-product) divisible Hodge F-crystal of weight 1. We assume that it is <u>ordinary</u>, in the sense that modulo p its Hasse-Witt matrix is invertible, or equivalently that its Newton polygon is

(this means geometrically that the jacobian of the special fibre has p^g points of order p). Let's also suppose k algebraically closed, and denote by e the homomorphisme "evaluation at $(0, \ldots, 0)$ ": $W(k)[[t_1, \ldots, t_n]] \longrightarrow W(k)$. By 2.1.2 and 4.1.4, $e^*(H^1)$ admits a symplectic base of F-eigenvectors

$$\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g$$

satisfying

7.0.1

$$\begin{cases}
e^{*(F)(\alpha_{i}) = \alpha_{i}, e^{*(F)(\beta_{i}) = p\beta_{i}} \\
< \alpha_{i}, \alpha_{j} > = < \beta_{i}, \beta_{j} > = 0, \\
< \alpha_{i}, \beta_{j} > = - < \beta_{j}, \alpha_{i} > = \delta_{ij}
\end{cases}$$

By 3.1.2, this base is the value at $(0, \ldots, 0)$ of a horizontal base of $H^1 \otimes K\{\{t_1, \ldots, t_n\}\}$, which we continue to note $\alpha_1, \ldots, \alpha_g$, β_1, \ldots, β_g . For each choice of lifting ϕ , we have

7.0.2
$$\begin{cases} F(\varphi)(\varphi^{*}(\alpha_{i})) = \alpha_{i} \\ \\ F(\varphi)(\varphi^{*}(\beta_{i})) = p\beta_{i} \end{cases}$$

According to 3.1.3, the sections $\alpha_1, \ldots, \alpha_g$ extend to horizontal sections over "all" of H¹, where they span the submodule U of 4.1; in general the β_i do not extend to all of H¹.

We now wish to express the position of the Hodge filtration $\operatorname{Fil}^1 \subset H$ in terms of the horizontal "frame" provided by the α_i and β_j . Since $H^1 = U \oplus \operatorname{Fil}^1$ is a decomposition of H^1 in submodules isotropic for <, >, there is a base w_1, \ldots, w_g of Fil^1 dual to the base $\alpha_1, \ldots, \alpha_g$ of U.

7.0.3
$$\langle w_i, w_j \rangle = 0$$
, $\langle \alpha_i, w_j \rangle = \delta_{ij}$

In H \otimes K{{t_1,...,t_n}} , the differences w_i - β_i are orthogonal to U , hence lie in U :

7.0.4
$$\omega_i - \beta_i = \sum_j \tau_{ji} \alpha_j ; \tau_{ji} = \langle \omega_i, \beta_j \rangle$$

The matrix $T = (\tau_{ij})$ is Dwork's "period matrix"; it has entries in $W(k) \ll t_1, \ldots, t_n \gg \bigwedge K\{\{t_1, \ldots, t_n\}\}$. Differentiating 7.0.4 via the Gauss-Manin connection, we see :

Lemma 7.1. T is an indefinite integral of the matrix of the mapping "cup-product with the Kodaira-Spencer class" : for every continuous W(k)-derivation D of W(k) [[t_1, \ldots, t_n]], D(T) is the matrix of the composite

7.1.1
$$\operatorname{Fil}^1 \longrightarrow \operatorname{H}^1 \xrightarrow{\nabla(D)} \operatorname{H}^1 \xrightarrow{\operatorname{proj}} \operatorname{H/Fil}^1 \simeq \operatorname{U}$$

expressed in the dual bases
$$\omega_1, \ldots, \omega_g$$
 and $\alpha_1, \ldots, \alpha_g$.

Lemma 7.2. For any lifting φ of Frobenius, we have the following congruences on the τ_{ij} :

7.2.1
$$\varphi^{*}(\tau_{ij}) - p \tau_{ij} \in pW(k)[[t_1,...,t_n]]$$

7.2.2
$$T_{ii}(0,...,0) \in pW(k)$$

<u>Proof</u>. Applying $F(\phi) \circ \phi^*$ to the defining equation (7.0.4), we get

$$F(\varphi)(\varphi^{*}(\omega_{i})) - p \beta_{i} = \sum_{j} \varphi^{*}(\tau_{ji}) \alpha_{j}$$

•

Subtracting p times (7.0.4), we are left with

$$F(\varphi)(\varphi^{*}(w_{i})) - P w_{i} = \sum_{j} [\varphi^{*}(\tau_{ji}) - P\tau_{ji}] \alpha_{j}$$

Since the left side lies in $\ensuremath{ pH}^1$, we get

$$\phi^{\ast}(\tau_{ij}) - p\tau_{ij} = \langle F(\phi)\phi^{\ast}(\omega_i) - p\omega_i, \omega_j \rangle \in pW(k)[[t_1, \dots, t_n]].$$

To prove that $\tau_{ij}(0,...,0) \in pW(k)$, choose a lifting φ which preserves (0,...,0), for instance, $\varphi(t_i) = t_i^p$ for i = 1,...,n, and evaluate (7.21) at (0,...,0) :

$$\sigma(\tau_{ij}(0,...,0)) - p\tau_{ij}(0,...,0) \in pW(k)$$

which implies $\tau_{ij}(0,...,0) \in pW(k)!$

QED.

•

.

7.3. According to a criterion of Dieudonné and Dwork ([3]), these congruences for $p \neq 2$ imply that the formal series

$$q_{ij} \stackrel{\text{defn}}{=} \exp(\tau_{ij})$$

lie in $W(k)[[t_1,...,t_n]]$, and have constant terms in 1 + pW(k). (When p = 2, we cannot define q_{ij} unless τ_{ij} has constant term $\equiv 0$ (4), in which case we would again have the q_{ij} in $W(k)[[t_1,...,t_n]]$).

It is expected that the g^2 principal units q_{ij} in $W(k)[[t_1,...,t_n]]$ are the Serre-Tate parameters of the particular lifting to $W(k)[[t_1,...,t_n]]$ of the jacobian of the special fibre of X given by the jacobian of $X/W(k)[[t_1,...,t_n]]$ (cf. [18], [22]). This seems quite reasonable, because over the ring of <u>ordinary</u> divided power series $W(k) < t_1,...,t_n >$, $p \neq 2$, such liftings are known to the parameterized by the postion of the Hodge filtration, ([21]), which is precisely what (τ_{ij}) <u>is</u>.

Proposition 7.4. The following conditions are equivalent

7.4.1. The Gauss-Manin connection on H^1 extends to a stratification (i.e. horizontal section of $H^1 \otimes W(k) \ll t_1, \ldots, t_n \gg$ extend to horizontal sections of H^1)

7.4.2. Every horizontal section of $H\otimes \{\{t_1, \ldots, t_n\}\}$ is bounded in the open unit polydisc (i.e. lies in $p^{-\mathbf{m}} H^1$ for some \mathbf{m}).

7.4.3. The τ_{ij} are all bounded in the open unit polydisc (i.e., lie in $p^{-m}W(k)[[t_1,...,t_n]]$ for some m).

409-27

7.4.4. The
$$\tau_{ij}$$
 all lie in $W(k)[[t_1, \dots, t_n]]$.
7.4.5. The τ_{ij} all lie in $pW(k)[[t_1, \dots, t_n]]$.

<u>Proof</u>. Using the congruences 7.2, we get 7.4.3 \iff 7.4.4 \iff 7.4.5, by choosing for φ the lifting $\varphi(t_i) = t_i^p$ for i = 1, ..., n. By 7.0.4, 7.4.1 \iff 7.4.4 and 7.4.2 \iff 7.4.3.

QED.

<u>Corollary</u> 7.5. <u>Suppose</u> X/W(k)[[t]] <u>is an elliptic curve with ordinary</u> <u>special fibre</u>, and that the induced curve over $k[t]/(t^2)$ <u>is non-constant</u>. <u>Then every horizontal section of</u> H¹ <u>is a W(k)-multiple of</u> α_1 , <u>the horizontal fixed point of</u> F <u>in</u> H¹.

<u>Proof</u>. The non-constancy modulo (p,t^2) means precisely that the Kodaira-Spencer class in $H^1(X_{special}, T)$ is non-zero, which for an elliptic curve is equivalent to the non-vanishing modulo (p,t) of the composite mapping :

$$\operatorname{Fil}^1 \hookrightarrow \operatorname{H}^1 \xrightarrow{\nabla (\frac{\mathrm{d}}{\mathrm{d}t})} \operatorname{H}^1 \xrightarrow{\operatorname{proj}} \operatorname{H/Fil} \xrightarrow{\sim} \operatorname{U}$$

whose matrix is $\frac{d\tau}{dt}$. Thus $\frac{d\tau}{dt} \notin (p,t)$, and hence by 7.4 there exists an unbounded horizontal section of $H^1 \otimes K\{\{t\}\}$. Writing it a a $\alpha_1 + b \beta_1$ a, b $\in K$, we must have b $\neq 0$ because α_1 is bounded. Hence β_1 is unbounded, hence any bounded horizontal section is a K-multiple of α_1 , and $H^1 \cap K\alpha_1 = W(k)\alpha_1$.

The interest of this corollary is that it describes the filtration $U \subset H^1$ purely in terms of the differential equation (i.e., without reference to F) as being the span of the horizontal sections of H^1 (the "bounded solutions" of the differential equation). (cf. [9], pt. 4 where this is worked out in great detail for Legendre's family of elliptic curves]. The general question of when the filtration by slopes can be described in terms of growth conditions to be imposed on the horizontal sections of $H^1 \otimes K\{\{t\}\}$ is not at all understand. 8. <u>An example</u> ([6], [10]). Let's see what all this means in a concrete case : the ordinary part of Legendre's family of elliptic curves. We take $p \neq 2$, $H(\lambda) \in \mathbb{Z}[\lambda]$ the polynomial $\Sigma(-1)^{j} \begin{pmatrix} \frac{p-1}{2} \\ j \end{pmatrix} \lambda^{j}$ of degree p-1/2, S the smooth \mathbb{Z}_{p} -scheme $\operatorname{Spec}(\mathbb{Z}_{p}[\lambda][1/\lambda(1-\lambda) H(\lambda)])$, and $\mathbb{X}/\mathbb{S}^{0}$ the Legendre curve whose affine equation is $y^{2} = x(x-1)(X-\lambda)$ (*). The De Rham H^{1} is free of rank 2, on ω and ω' , where

8.0
$$\begin{aligned} & \omega \text{ is the class of the differential of the first} \\ & \text{kind } dx/y \\ & \omega' = \nabla(\frac{d}{d\lambda})(\omega) \qquad . \end{aligned}$$

The Gauss-Manin connection is specified by the relation

8.1
$$\lambda(1-\lambda) \omega'' + (1-2\lambda) \omega' = \frac{1}{4}\omega ; \quad (\omega'' \stackrel{\text{defn}}{=\!\!=\!\!=} (\nabla (\frac{d}{d\lambda}))^2(\omega))$$

The Hodge filtration is $H_{D}^{1}Fi_{1}^{1} \subset H^{1}$ = span of ω . The cup-product is given by $\langle \omega, \omega \rangle = \langle \omega', \omega' \rangle = 0$; $\langle \omega, \omega' \rangle = -\langle \omega', \omega \rangle = -2/\lambda(1-\lambda)$. Horizontal sections are those of the form $\lambda(1-\lambda)f'\omega - \lambda(1-\lambda)f\omega'$, where f is a solution of the ordinary differential equation $('=\frac{d}{d\lambda})$

8.2.
$$\lambda 1 - \lambda f'' + (1 - 2\lambda) f' = \frac{1}{4} f$$

For any point $\alpha \in W(\mathbb{F}_q)$ for which $|H(\alpha).\alpha.(1-\alpha)|=1$ we know by 7.5 and 4.1 that the $W(\overline{\mathbb{F}}_q)$ -module of solutions in $W(\overline{\mathbb{F}}_q)[[t-\alpha]]$ of the differential equation 9.2 is free of rank one, and is generated by a solution whose constant term is 1. Denote this solution f_α . According to 4.1.9, the ratis f'_α/f_α is the local expression of a "global" function $\eta \in$ the p-adic completion of $\mathbb{Z}_p[\lambda][1/\lambda(1-\lambda)H(\lambda)]$. Now choose a lifting φ of Frobenius, say the one with $\varphi^*(\lambda) = \lambda^p$. For each Teichmuller point α , there exists a unit C_α in $W(\overline{\mathbb{F}}_q)$, such that the function $C_\alpha f_\alpha/\phi^*(C_\alpha f_\alpha)$ is the local expression of the 1 x 1 matrix of $F(\varphi)$ on the rank one module U. (*) $H(\lambda)$ modulo p is the Hasse invariant = 1 x 1 Hasse-Witt matrix.

196

This is just the spelling out of 4.1.9, the constant C_{α} so chosen as to make $C_{\alpha}f_{\alpha}$ a fixed point of F. In terms of this matrix, call it $a(\lambda)$, we have a formula for zeta :

For each $\alpha_o \in \mathbb{F}_{q^n}$ such that $y^2 = X(X-1)(X-\alpha_o)$ is the affine equation of an ordinary elliptic curve \mathbb{E}_{α_o} , denote by $\alpha \in W(\mathbb{F}_{p^n})$ its Teichmuller representative. The unit root of the numerator of Zeta $(\mathbb{E}_{\alpha_o}/\mathbb{F}_{p^n};t)$ is

8.3
$$u_n(\alpha) \stackrel{\text{defn}}{=} a(\alpha)a(\alpha^p)\dots a(\alpha^p)$$

and hence

8.4
$$\operatorname{Zeta}(\mathbb{E}_{\alpha_{o}}/\mathbb{F}_{p^{n}}; t) = \frac{(1 - u_{n}(\alpha)t)(1 - (p^{n}/u(\alpha))t)}{(1 - t)(1 - p^{n}t)}$$

This formula, known to Dwork by a completely different approach in 1957, ([6]) was the starting point of his application of p-adic analysis to zeta !

REFERENCES

- P. BERTHELOT <u>A Series of notes in C.R. Acad. Sci. Paris</u> Série A, t. 269, pp. 297-300, 357-360, 397-400, t. 272, pp. 42-45, 141-144, 254-257, 1314-1317, 1397-1400, 1574-1577.
- 2. P. BERTHELOT Thèse, Paris VII, 1972.
- B. DWORK Norm Residue Symbol in Local Number Fields, Abh. Math. Sem. Univ. Hamburg, 22 (1958), pp. 180-190.
- 4 B. DWORK <u>On the Rationality of the Zeta Function of an</u> Algebraic Vairety, Amer. J. Math, 82 (1960), pp.631-648.
- 5 B. DWORK On the zeta function a hypersurface, Pub. Math. IHES 12, Paris 1962, pp.5-68.
- 6 B. DWORK <u>A deformation theory for the zeta function of</u> <u>a hypersurface</u>, Proc. Int'l Cong. Math. Stockholm, 1962, pp. 247-259.
- 7 B. DWORK <u>On the zeta function of a hypersurface</u> II, Annals of Math. 80 (1964), pp. 227-299.
- B. DWORK <u>On the rationality of zeta functions and L-series</u>, <u>Proc. of a Conf. on Local Fields</u>, held at Driebergen, 1966. Springer-Verlag, 1967, pp. 40-55.
- 9. B. DWORK P-adic Cycles, Publ. Math. IHES 37, Paris, 1969, pp. 27-116
- 10. B. DWORK <u>On Hecke Polynomials</u>, Inventiones Math. 12(1971), pp. 249-256.

- B. DWORK <u>Normalized Period Matrices</u>. Annals of Math. 94 (1971), pp. 337-388.
- B. DWORK <u>Normalized Period Matrices</u> II, to appear in Annals, of Math.
- 12 a. B. DWORK p-adic Analysis and Geometry Seminar at IHES, Fall 1971.
- A. GROTHENDIECK Formule de Lefschetz et Rationalité des fonctions L , Séminaire Bourbaki, exposé 279. 1964/65.
- N. KATZ <u>On the Differential Equations Satisfied by Period</u> <u>Matrices</u>, Pub. Math. IHES 35, Paris, 1968, pp. 71-106.
- N. KATZ <u>On the Intersection Matrix of a hypersurface</u> Ann. Sci. E.N.S., 4e série, t.2, fasc.4, 1969, pp. 583-598.
- N. KATZ <u>Introduction aux travaux récents de Dwork</u>, IHES multigraph, 1969.
- N. KATZ <u>On a theorem of Ax</u>. Amer. J. Math. 93, (1971), pp. 485-499.
- J. LUBIN J.P. SERRE, J. TATE : <u>Elliptic Curves and Formal</u> Groups, Woods Hole Summer Institue, 1964 (miméographed notes).
- J. MANIN Theory of Commutative formal groups over fields of finite characteristic. Russian Math. Surveys 18, n°6 (1963).
- B. MAZUR "Frobenius and the Hodge filtration" Univ. of Warwick mimeographed notes, 1971.
- 21. B. MAZUR and W. MESSING work in preparation.
- W. MESSING The Crystals associated to Barsotti-Tate groups, with application to Abelian schemes. Thesis, Princeton, Univ. 1971

- P. MONSKY and G. WASHNITZER Formal Cohomology I. Annals of Math. 88 (1968), pp. 181-217.
- 24. P. MONSKY Formal Cohomology II, III ; Annals of Math. 88 (1968), pp. 218-238, and 93 (1971), pp. 315-343?
- D. REICH <u>A p-adic fixed point formula</u>, Amer. J. Math 91 (1969), pp. 835-850.
- 26. J.P. SERRE Zeta and L functions, in Arithmetic Algebraic Geometry, ed. Schilling, Harper and Row, New York, 1965, pp. 82-92.
- 27. J. TATE <u>Rigid Analytic Spaces</u>, Inventiones Math. 12 (1971), pp. 257-289.