SÉminaire N. Bourbaki

Enrico Bombieri

Simultaneous approximations of algebraic numbers

Séminaire N. Bourbaki, 1973, exp. no 400, p. 1-20
http://www.numdam.org/item?id=SB_1971-1972__14__1_0
© Association des collaborateurs de Nicolas Bourbaki, 1973, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SIMULTANEOUS APPROXIMATIONS OF ALGEBRAIC NUMBERS

[following W. M. SCHMIDT] by Enrico BOMBIERI
I. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be real numbers. Dirichlet's theorem in Diophantine Approximation states that

THEOREM (Dirichlet).- For every $N \geq 1$ there is $q, 1 \leq q \leq N$, such that $\left\|q \alpha_{1}\right\| \leq N^{-1 / n}, \ldots,\left\|q \alpha_{n}\right\| \leq N^{-1 / n}$,
where || || denotes the distance from the nearest integer.

COROLLARY.- Let $1, \alpha_{1}, \ldots, \alpha_{n}$ be real numbers, linearly independent over \mathbb{Q}. Then there are infinitely many integers q such that

$$
\left\|q \alpha_{1}\right\| \leq q^{-1 / n}, \ldots,\left\|q \alpha_{n}\right\| \leq q^{-1 / n}
$$

In 1955, after previous work by Thue, Siegel, Dyson, Gel'fond and Schneider it was proved by Roth that

ROTH'S THEOREM. - Let $\boldsymbol{\alpha}$ be irrational algebraic and let $\varepsilon>0$. There are oniy finitely many integers q such that
$\|q \boldsymbol{\alpha}\| \leq \mathrm{q}^{-1-\boldsymbol{\varepsilon}}$.
Now Roth's theorem has been generalized by W. M. Schmidt to the case of simultaneous approximations.

SCHMIDT'S THEOREM 1.- Let $1, \alpha_{1}, \ldots, \alpha_{n}$ be algebraic real numbers, linearly independent over Q, and let $\varepsilon>0$. There are only finitely many integers q such that

$$
\left\|q \alpha_{1}\right\| \ldots\left\|q \alpha_{n}\right\| \leq q^{-1-\varepsilon}
$$

400-02

COROLLARY.- There are only finitely many integers q such that

$$
\left\|q \alpha_{1}\right\| \leq q^{-1 / n-\varepsilon}, \ldots,\left\|q \alpha_{n}\right\| \leq q^{-1 / n-\varepsilon} .
$$

Schmidt also proves a dual version of this result :

THEOREM 2.- Let $\alpha_{1}, \ldots, \alpha_{n}$ be as in Theorem 1, and let $\varepsilon>0$. There are only finitely many n-ples of non-zero integers q_{1}, \ldots, q_{n} such that

$$
\left\|q_{1} \alpha_{1}+\cdots+q_{n} \alpha_{n}\right\| \leq\left|q_{1} \cdots q_{n}\right|^{-1-\varepsilon} .
$$

COROLLARY.- Let α be algebraic, k a positive integer and $\varepsilon>0$. There are only finitely many algebraic numbers ω of degree $\leq k$ such that

$$
|\alpha-\omega| \leq H(\omega)^{-k-1-\varepsilon}
$$

where $H(\omega)$ is the height of ω (maximum coefficient of an irreducible integral defining polynomial of ω).

If $k=1$ this reduces to Roth's theorem ; a weaker result, with an exponent $2 k+\varepsilon$ instead of $k+1+\varepsilon$ has been proved by Wirsing [3] with a different method.

Schmidt's proof of these results uses Roth's method, but the extension is not straightforward and many original ideas are needed. In order to present Schmidt's arguments, it is therefore worthwhile to sketch Roth's proof.
II. Roth's Proof. For a neat exposition of Roth's proof we refer to Cassels [1]. Roth's theorem is obtained combining the following two results :

PROPOSITION 1.- Let α be algebraic, let $\varepsilon>0$ and let r_{1}, \ldots, r_{m} be positive integers.

For $m \geq m_{0}(\alpha, \varepsilon)$ there is a polynomial

$$
P \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]
$$

not identically 0 of degree $s r_{h}$ in x_{h}, such that
(i) $\quad|p| \leq c_{1}+\cdots+r_{m}$;
(ii) $D^{J} P(\alpha, \alpha, \ldots, \alpha)=0$
if $J=\left(j_{1}, \ldots, j_{m}\right)$ and

$$
\begin{equation*}
\sum_{n=1}^{m} j_{h} / r_{h} \leq\left(\frac{1}{2}-\varepsilon\right) m \tag{2.1}
\end{equation*}
$$

Here $|P|$ is the sum of the moduli of the coefficients of P and D^{J} is the usual differential operator $\left(\partial / \partial x_{1}\right)^{j_{1}} \ldots\left(\partial / \partial x_{m}\right)^{j_{m}}$. The constant C_{1} depends only on $\boldsymbol{\alpha}$.

The proof is simple. Considering the $\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)$ coefficients of P as unknowns one has a system of homogeneous linear equations $D^{J} P(\alpha)=0$. Now if $\boldsymbol{\alpha}$ is algebraic of degree s, the equation

$$
\frac{1}{J!} D^{J} P(\alpha, \ldots, \alpha)=0
$$

splits in a system of s linear equations in the coefficients of the polynomial P, with integral coefficients $\leqslant C_{2}+\cdots+r_{m}$ where $C_{2}=C_{2}(\alpha)$. Since equation (2.1) has at most $\frac{1}{\varepsilon \sqrt{m}}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)$ solutions, we get a system of $\leq \frac{s}{\varepsilon \sqrt{m}}\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)$ equations in $\left(r_{1}+1\right) \ldots\left(r_{m}+1\right)$ unknowns with integral coefficients $\leq \mathrm{C}_{2}{ }^{\mathrm{r}}+\cdots+\mathrm{r}_{\mathrm{m}}$. This is easily solved using Dirichlet's box principle, provided $\frac{s}{\varepsilon \sqrt{m}} \leq \frac{1}{2}$, that is $m \geq m_{0}(\alpha, \varepsilon)$, obtaining a non-zero solution satisfying (i).

Now let $\beta_{h}=p_{h} / q_{h}$ be m approximations to $\boldsymbol{\alpha}$ such that

$$
\begin{equation*}
\left|\alpha-p_{h} / q_{h}\right|<q_{h}^{-k} \tag{2.2}
\end{equation*}
$$

let P be the polynomial of Proposition 1 and let $\nu=\left(\nu_{1}, \ldots, \nu_{m}\right)$ be such that,

400-04
if we write

$$
Q=\frac{1}{v!} D^{v} P
$$

we have

$$
Q\left(\beta_{1}, \ldots, \beta_{m}\right) \neq 0
$$

Then $Q(\beta)=Q\left(\beta_{1}, \ldots, \beta_{m}\right)$ is a rational number with denominator $\leq q_{1}^{r_{1}} \ldots q_{m}^{r_{m}}$ therefore

$$
|Q(\beta)| \geq q_{1}^{-r_{1}} \ldots q_{m}^{-r_{m}}
$$

Now assume that

$$
\sum_{h \equiv 1}^{m} v_{h} / r_{h}<\varepsilon m
$$

Then Q is not identically 0 and $Q(\boldsymbol{\alpha})=0$, therefore

$$
|Q(\beta)|=|Q(\beta)-Q(\alpha)| \leq \Sigma \frac{1}{J!}\left|D^{J}+\nu P(\alpha)\right||\alpha-\beta|^{J}
$$

$$
\leq C_{3}^{r_{1}+\cdots+r_{m}} \max |\alpha-\beta|^{J}
$$

where the max is over the n-pies J such that

$$
\sum_{h \equiv 1}^{m}\left(j_{h}+v_{h}\right) / r_{h} \geq\left(\frac{1}{2}-\varepsilon\right) m
$$

If there are infinitely many approximations satisfying (2.2) one can take ${ }_{q_{1}}^{r_{1}} \sim q_{2}^{r_{2}} \sim \ldots \sim q_{m}^{r_{m}}$ and more precisely

$$
r_{1} \text { very large }
$$

$$
r_{h}=\left[r_{1} \frac{\log q_{1}}{\log q_{h}}\right]+1
$$

$$
h=2, \ldots, m
$$

$q_{1} \quad$ very large
and now

$$
\begin{aligned}
|\alpha-\beta|^{J} & \leq q_{1}^{-k j_{1}} \ldots q_{m}^{-k j_{m}} \\
& \leq q_{1}^{-k r_{1}} \Sigma j_{h} / r_{h}
\end{aligned}
$$

Since

$$
\sum_{h=1}^{m} j_{h} / r_{h} \geq\left(\frac{1}{2}-\varepsilon\right) m-\sum_{h=1}^{m} \nu_{h} / r_{h} \geq\left(\frac{1}{2}-2 \varepsilon\right) m
$$

we deduce

$$
|Q(\beta)| \leq C_{4}^{r_{1}+\cdots+r_{m}} q_{1}^{-k\left(\frac{1}{2}-2 \varepsilon\right) m r_{1}}
$$

On the other hand,

$$
|Q(\beta)| \geq q_{1}^{-r_{1}} \ldots q_{m}^{-r_{m}} \geq C_{5}^{-r_{1}-\ldots-r_{m}} q_{1}^{-m r_{1}}
$$

If we choose q_{1}, q_{2}, \ldots rapidly increasing then r_{1}, r_{2}, \ldots are rapidly decreasing and we may ensure that $r_{1}+\ldots+r_{m} \leq 2 r_{1}$. Hence, letting $q_{1} \rightarrow \infty$ we find

$$
m \geq k\left(\frac{1}{2}-2 \varepsilon\right) m
$$

and

$$
k\left(\frac{1}{2}-2 \varepsilon\right) \leq 1 .
$$

Since ε is arbitrary, $k \leq 2$ and Roth's theorem follows.
The difficulty consists in showing that $\Sigma \nu_{h} / r_{h}$ is small without putting conditions of the sort " q_{1} is not too large compared with q_{m} ". Now using an ingenious inductive method, Roth obtains

PROPOSITION 2.- Let $0<\delta<16^{-m}$, let $P \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r_{h}$ in x_{h} and not identically 0 , let

$$
\delta r_{h} \geq r_{h+1}, \quad h=1, \ldots, m-1, \quad \delta r_{m} \geq 10
$$

and let $\beta_{h}=p_{h} / q_{h}$ be such that
(i) $\quad \delta r_{1} \log q_{1} \gg \log |p|$
(ii) $\delta \log q_{h} \gg m, \quad r_{h} \log q_{h} \geq r_{1} \log q_{1}$.

Then there is $v=\left(\nu_{1}, \ldots, v_{m}\right)$ with

$$
D^{\nu} P\left(\beta_{1}, \ldots, \beta_{m}\right) \neq 0
$$

and

400-06

$$
\sum_{h=1}^{m} \psi_{h} / r_{h} \leq 10^{m} \delta^{2^{-m}}
$$

It is clear that, taking δ sufficiently small, Proposition 2 is sufficient to complete the proof of Roth's theorem along the lines mentioned before.

The proof of Proposition 2 is rather intricate, and because of lack of space and time, we cannot give an indication of the ideas involved in it.
III. Schmidt's Proof. The index. In the previous argument, instead of working with polynomials of degree $\leq r_{h}$ in x_{h} we could work with polynomials in pairs of variables $x_{h}, y_{h}, h=1, \ldots, m$ and homogeneous of degree r_{h} in the pair x_{h}, y_{h}. Instead of asking that a derivative $D^{J} P$ should vanish at a point $\left(\beta_{1}, \ldots, \beta_{m}\right)$ we could introduce the linear forms

$$
L_{h}=x_{h}-\beta_{h} y_{h}
$$

and ask that P belong to the ideal in $\mathbb{R}\left[x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right]$ generated by polynomials

$$
L_{1}{ }^{i_{1}} \ldots L_{m}{ }_{m}^{i_{m}}
$$

with $i_{h}>j_{h}$ for $h=1, \ldots, m$. This remark leads Schmidt to the following definitions.

Let $R=\mathbb{R}\left[x_{11}, \ldots, x_{1 \ell} ; \ldots ; x_{m 1}, \ldots, x_{m \ell}\right]$ be the ring of polynomials in $m \ell$ variables and let L_{1}, \ldots, L_{m} be linear forms (not 0) of the type

$$
L_{h}=L_{h}\left(x_{h 1}, \ldots, x_{h \ell}\right)
$$

For $c \geq 0$ let $I(c)$ be the ideal in R generated by all L^{J} where $J=\left(j_{1}, \ldots, j_{m}\right)$ satisfies

$$
\sum_{h=1}^{\cdot m} j_{h} / r_{h} \geq c,
$$

where r_{1}, \ldots, r_{m} are positive integers.

DEFINITION.- The index of P with respect to ($L_{1}, \ldots, L_{m} ; r_{1}, \ldots, r_{m}$) is the largest c with $P \in I(c)$ and $c=+\infty$ if P is identically 0 .

We have

$$
\begin{aligned}
& \text { ind }(P+Q) \geq \min (\text { ind } P \text {, ind } Q) \\
& \text { ind } P Q=\text { ind } P+\text { ind } Q \text {. }
\end{aligned}
$$

If J is a em-uple

$$
J=\left(j_{11}, \ldots, j_{1 \ell} ; \ldots ; j_{m+1}, \ldots, j_{m \ell}\right)
$$

one puts

$$
(J / r)=\sum_{h \equiv 1}^{m}\left(j_{h 1}+\cdots+j_{h \ell}\right) / r_{h}
$$

and

$$
P^{(J)}=\frac{1}{J!} D^{J} P
$$

One gets easily

$$
\text { ind } P^{(J)} \geq \text { ind } P-(J / r)
$$

The first step in Schmidt's proof is to obtain the analogue of Propositions 1 and 2. We have

PROPOSITION A.- Let $L_{j}=\alpha_{j 1} X_{1}+\ldots+\alpha_{j \ell} X, j=1, \ldots, \ell$, be independent linear forms, with algebraic integers as coefficients. Let

$$
L_{h j}=L_{j}\left(x_{h 1}, \ldots, x_{h \ell}\right)
$$

and let $\varepsilon>0$.
For $m \geq m_{0}(\alpha, \varepsilon)$ there is a polynomial

$$
P \in \mathbb{Z}\left[x_{11}, \ldots, x_{m \ell}\right]
$$

not identically 0 , homogeneous of degree r_{h} in $x_{h 1}, \ldots, x_{h e}$ such that
(i) $\quad|P| \leq C_{5} r_{1}+\cdots+r_{m}$;
(ii) ind $P \geq\left(e^{-1}-\varepsilon\right) m$,
with respect to $\left(L_{1}, \ldots, L_{m j} ; r_{1}, \ldots, r_{m}\right)$ for $j=1, \ldots, \ell$. Moreover, if we

400-08
write

$$
\frac{1}{J!} D^{J} P=\Sigma d^{J}(j) L_{11}^{j_{11}} \ldots L_{m \ell}^{j_{m}}
$$

we have

$$
\left|d^{J}(j)\right| \leq C_{6}^{r_{1}}+\cdots+r_{m}
$$

for all J, j and $d^{J}(j)=0$ unless for $k=1, \ldots, \ell$

$$
\begin{equation*}
\left|\sum_{h \equiv 1}^{m} j_{h k} / r_{h}-e^{-1} m\right| \leq e m \varepsilon+\ell(J / r) \tag{iii}
\end{equation*}
$$

The proof of Proposition A is rather similar to that of Proposition 1.
Proposition 2 can also be extended, and one gets
PROPOSITION B.- Let $0<\delta<C_{7}^{-2^{m}}, 0<\tau \leq 1$, let $P \in Z\left[x_{11}, \ldots, x_{m \ell}\right]$ be not identically 0 , homogeneous of degree r_{h} in $x_{h 1}, \ldots, x_{h \ell}$, let

$$
\delta r_{h} \geq r_{h+1}, \quad h=1, \ldots, m-1
$$

and let $\quad M_{h}=m_{h 1} x_{h 1}+\cdots+m_{h e} x_{h e}$
be non-zero linear forms whose coefficients are integral and have no common factor. Let also

$$
\left|M_{h}\right|=\max _{j}\left|m_{h j}\right|
$$

and assume
(i) $\quad \delta \pi r_{1} \log \left|M_{1}\right| \gg \log |\mathrm{P}|$;
(ii) $\quad \delta \tau \log \left|M_{h}\right| \gg m, \quad r_{h} \log \left|M_{h}\right| \geq \tau r_{1} \log \left|M_{1}\right|$ for $h=1, \ldots, m$.

Then the index of P with respect to ($M_{1}, \ldots, M_{m} ; r_{1}, \ldots, r_{m}$) satisfies
ind $P \leq 10^{m} \delta^{2^{-m}}$.

The ideas in the proof are the same as Roth's, but the technical difficulties are of course much greater.

The conclusion that may be drawn from Propositions A and B is, except in case $\ell=2$ substantially weaker than Schmidt's theorems. In Roth's case, one takes

$$
\ell=2 \quad, \quad L_{1}=X_{1}-\alpha X_{2} \quad, \quad L_{2}=X_{2}
$$

and in Schmidt's case one would take

$$
L_{j}=X_{j}-\alpha_{j} X_{e} \quad, \quad j=1, \ldots, \ell-1 \quad, \quad L_{\ell}=X_{\ell}
$$

However, in order to conclude the proof, one eventually has to consider many other sets of linear forms.
IV. Schmidt's Proof. The theorem of the next to last minimum.

Let K be a symmetrical convex body in R^{n} centered at the origin and let $V(K)$ be its volume. For $\lambda>0$ let λK be the corresponding homothetic convex body. The successive minima $\lambda_{1}, \ldots, \lambda_{n}$ are defined as follows :

$$
\lambda_{i}=\inf \left\{\lambda \mid \lambda K \text { contains } i \text { linearly independent points of } \mathbf{z}^{n}\right\} .
$$

A basic theorem of Minkowski states

SECOND THEOREM OF MINKOWSKI.- We have

$$
\frac{2^{n}}{n!} \leq \lambda_{1} \cdots \lambda_{n} v(K) \leq 2^{n}
$$

We need another definition. Let

$$
M_{i}=\beta_{i 1} x_{1}+\cdots+\beta_{i \ell} X_{\ell}
$$

be independent linear forms with algebraic coefficients. Let S be a subset of $\{1,2, \ldots, \ell\}$.

DEFINITION.- $\left\{M_{1}, \ldots, M_{\ell} ; S\right\}$ is regular if
(i) for $j \in S$ the non-zero elements among $\beta_{j 1}, \ldots, \beta_{j \ell}$ are linearly independent over Q ;
(ii) for every $k \leq \ell$ there is $j \in S$ with $\beta_{j k} \neq 0$.

Now let L_{1}, \ldots, L_{ℓ} be again linear forms with algebraic coefficients and let $S \subset\{1,2, \ldots, \ell\}$.

400-10
DEFINITION.- $\left\{L_{1}, \ldots, L_{\ell} ; S\right\}$ is proper if $\left\{M_{1}, \ldots, M_{\ell} ; S\right\}$ is regular, where the M_{i} are the adjoint forms of L_{j}.

Now Schmidt proves
THEOREM of the next to last minimum.- Let $\left\{L_{1}, \ldots, L_{\ell} ; S\right\}$ be proper and let A_{1}, \ldots, A_{e} be positive reals such that

$$
A_{1} \cdots A_{l}=1 \quad, \quad A_{j} \geq 1 \quad \text { if } j \in S
$$

The set in \mathbb{R}^{ℓ}

$$
\left|L_{j}(x)\right| \leq A_{j} \quad, \quad j=1, \ldots, \ell
$$

is a symmetric convex body centered at 0 ; let $\lambda_{1}, \ldots, \lambda_{\ell}$ denote its successive minima.

For every $\delta>0$ there is

$$
Q_{0}=Q_{0}\left(\delta ; L_{1}, \ldots, L_{\ell} ; S\right)
$$

such that

$$
\lambda_{e-1}>Q^{-\delta}
$$

provided

$$
Q \geq \max \left(A_{1}, \ldots, A_{e} ; Q_{0}\right)
$$

This is a consequence of Propositions A and B. The proof of the theorem is obtained through various reduction steps.
a) It is sufficient to prove the result when $A_{j}=Q^{C_{j}}$ and c_{1}, \ldots, c_{ℓ} are fixed constants such that

$$
c_{1}+\cdots+c_{\ell}=0, \quad\left|c_{j}\right| \leq 1 \text { for all } j, \quad c_{j} \geq 0 \text { for } j \in S
$$

This is easy, because one can show that if one modifies slightly the A_{j} (say by a factor $Q^{b_{j}}$, with $\left|b_{j}\right|<\delta / 2$) then the minimum $\lambda_{\ell-1}$ is modified by a factor of that order of magnitude. Thus one may suppose that $A_{j}=Q^{C}{ }_{j}$ where the c_{j} belong to a finite set depending only on δ.
b) We may suppose that the coefficients $\boldsymbol{\alpha}_{i j}$ are algebraic integers. In fact if q is a common denominator for the $\alpha_{i j}$, the successive minima of $\left|q L_{j}\right| \leq A_{j}$ are q^{-1} times the successive minima of $\left|L_{j}\right| \leq A_{j}$.

Now assume the theorem is false. There is $b>0$ and an increasing sequence Q_{1}, Q_{2}, \ldots going to infinity and ℓ-uples $y_{h 1}, \ldots, y_{h e}$ of linearly independent points of \mathbb{a}^{ℓ} such that

$$
\left|L_{j}\left(y_{h k}\right)\right| \leq Q_{h}^{c_{j}-b}
$$

for $j=1, \ldots, \ell, k=1, \ldots, \ell$ and $h=1,2, \ldots$.
We let $M_{h}, h=1,2, \ldots$ be the (unique up to sign) linear form with integer coefficients without common factor, such that

$$
M_{h}\left(y_{h k}\right)=0 \quad \text { for } k=1, \ldots, \ell
$$

Let us assume that Q_{1} is large, take (as in Roth's proof)

$$
r_{h}=\left[r_{1} \frac{\log Q_{1}}{\log Q_{h}}\right]+1
$$

where r_{1} is very large and let P be the polynomial of Proposition A. Then, using property (ii) of P (the lower bound for the index) Schmidt shows that P has index

$$
\text { ind } P \geq C_{8} b m
$$

with respect to $\left(M_{1}, \ldots, M_{m} ; r_{1}, \ldots, r_{m}\right)$, for some constant

$$
C_{8}=C_{8}(\ell)>0
$$

The proof goes as follows.
Let

$$
y_{h}=\sum_{k=1}^{\ell} a_{k} y_{h k}
$$

be a linear combination of $y_{h 1}, \ldots, y_{h e}$ with integral coefficients a_{k}, with $\left|a_{k}\right| \leq Q_{1}^{\varepsilon}$. If we use Proposition A and $\left|L_{j}\left(y_{h k}\right)\right| \leq Q_{h}^{C_{j}}{ }^{-b}$ we get

400-12
$\frac{1}{J!}\left|P^{J}\left(y_{1}, \ldots, y_{m}\right)\right| \leq\left(C_{Q_{1}} Q_{1}^{\varepsilon}\right)^{r_{1}+\cdots+r_{m}} \max \prod_{h=1}^{m} Q_{h}^{\left.j_{h 1}\left(c_{1}-b\right)+\ldots+j_{h}{ }^{(} c_{\ell}-b\right)}$ and, by (ii) and (iii) the max is over the j 's such that (iii) holds. By the choice of r_{h} the product is

$$
\leq C_{10}^{m r_{1}} Q_{1}-b \ell\left(e^{-1}-\ell \varepsilon\right) m r_{1}+b \ell(J / r) r_{1}+K r_{1}
$$

where

$$
K=c_{1} \sum_{h=1}^{m} j_{h 1} / r_{h}+\cdots+c_{\ell} \sum_{h=1}^{m} j_{h e} / r_{h} .
$$

Now using (iii) and $c_{1}+\cdots+c_{\ell}=0,\left|c_{i}\right| \leq 1$ we find

$$
K \leq C_{11} m \varepsilon+\ell^{2}(J / r)
$$

therefore
$\frac{1}{J!}\left|P^{J}\left(y_{1}, \ldots, y_{m}\right)\right| \leq\left(C_{12} Q_{1}^{\varepsilon}\right)^{m r_{1}} Q_{1}^{-b m r_{1}+C_{13}[\mathrm{~mm}+(J / r)] r_{1}}<1$
if $(\mathrm{J} / \mathrm{r})<\mathrm{C}_{14}{ }^{\mathrm{bm}}, \mathrm{Q}_{1}$ is large enough, for ε sufficiently small. Now the left hand side of this inequality is an integer, therefore

$$
P^{J}\left(y_{1}, \ldots, y_{m}\right)=0
$$

for

$$
\mathrm{y}_{\mathrm{h}}=\sum_{k=1}^{\ell} \mathrm{a}_{\mathrm{k} \mathrm{y}_{\mathrm{hk}}, \quad\left|a_{k}\right|<Q_{1}^{\varepsilon}, ~}^{\text {, }}, \quad \left\lvert\, \begin{aligned}
& \text {, }
\end{aligned}\right.
$$

a_{k} integral, and all J with

$$
(\mathrm{J} / \mathrm{r})<\mathrm{C}_{14} \mathrm{bm}^{\mathrm{bm}} .
$$

It is not difficult to show that this implies that the restriction of $\mathrm{P}^{J}\left(\mathrm{x}_{11}, \ldots, \mathrm{x}_{\mathrm{m} \ell}\right)$ to the linear space $\mathrm{m}_{1}\left(\mathrm{x}_{11}, \ldots, \mathrm{x}_{1 \ell}\right)=0, \ldots, \mathrm{M}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{m} 1}, \ldots, \mathrm{x}_{\mathrm{m} \ell}\right)=0$ vanishes identically, since it vanishes on sufficiently many well-distributed integral points of this linear space ; the required statement about the index of P with respect to M_{1}, \ldots, M_{m} follows easily. Now one would like to apply Proposition B and show that if the r_{h} are rapidly
decreasing then for every $\varepsilon>0$

$$
\text { ind } P \leq \varepsilon m
$$

with respect to $\left(M_{1}, \ldots, M_{m} ; r_{1}, \ldots, r_{m}\right)$ thus getting a contradiction. In order to be able to do this one needs first that the r_{h} be rapidly decreasing, which means the Q_{h} rapidly increasing and this can be done by taking a subsequence of the Q_{h}. But one also needs inequalities for the r_{h} and the $\log \left|M_{h}\right|$ and one should show that

$$
\log Q_{h}<\log \left|M_{h}\right|<\log Q_{h}
$$

It turns out without much difficulty that this follows from the condition that $\left\{L_{1}, \ldots, L_{\ell} ; S\right\}$ be a proper system, and this ends the argument.
V. Schmidt's Theorem. End of the Proof.

Let $L_{j}=\alpha_{j 1} X_{1}+\ldots+\alpha_{j \ell} X_{\ell}$ be linear forms of determinent 1 and let E be the corresponding automorphism of \mathbb{R}^{ℓ}. For $1 \leq \mathrm{p} \leq \ell$ the exterior power $\Lambda^{P} E$ defines an automorphism of

$$
\Lambda R^{\ell} \simeq \mathbb{R}^{\binom{\ell}{P}}
$$

Expressing $\Lambda^{P} \mathbb{R}^{\ell}$ by means of a standard basis of \mathbb{R}^{ℓ} one obtains a set of $\binom{l}{p}$ linear forms $L_{\sigma}^{(p)}$ indexed by ordered p-subsets σ of $\{1, \ldots, \ell\}$; explicitly

$$
L_{\sigma}^{(p)}=\sum_{\tau} \alpha_{\sigma T} x_{\tau}
$$

where

$$
\alpha_{\sigma T}=\operatorname{det}\left(\alpha_{i j}\right)_{i \in \sigma, j \in T}
$$

Let A_{1}, \ldots, A_{ℓ} be positive numbers with

$$
A_{1} \ldots A_{\ell}=1
$$

let also

$$
A_{\sigma}=\prod_{i \in \sigma} A_{i}
$$

400-14
and consider the convex set $K^{(p)}$:

$$
\left|L_{\sigma}^{(p)}(x)\right| \leq A_{\sigma}, \quad \operatorname{Card}(\sigma)=p
$$

This is called the p-compound of the set $K^{(1)}$:
$\left|L_{j}(x)\right| \leq A_{j}$,
Let $\left.v_{1}, \ldots, \nu_{(}^{n} \begin{array}{l}n \\ p\end{array}\right)$
$K^{(1)}$. Put also

$$
\lambda_{\sigma}=\prod_{i \in \sigma} \lambda_{i} .
$$

MAHLER'S THEOREM. - There is an ordering σ_{j} of the σ such that

$$
v_{j}<\lambda_{\sigma_{j}}<v_{j}, \quad \text { all } j
$$

For Mahler's proof, see Mahler [2].
Now Schmidt's idea is to apply the previous theorem to get a nontrivial lower bound for $v\binom{\ell}{p}-1$ and then use Mahler's theorem to deduce a non-trivial lower bound for the first minimum λ_{1}.

One needs a lemma.

Lemma 1.- Let L_{j}, λ_{i} be as in the theorem of the previous section. Then if $A_{1} \ldots A_{l}=1$ and

$$
\lambda_{1} A_{i}>Q^{-\delta / 2 l}, \quad i \in S
$$

we have

$$
\lambda_{e-1}>\lambda_{e^{Q^{-\delta}}}
$$

provided $\quad Q \quad 2 \max \left(A_{1}, \ldots, A_{\ell} ; Q_{1}\right)$.

$$
\text { (Note that the condition } A_{i} \geq 1 \text { for } i \in S \text { is not needed.) }
$$

The proof goes as follows. Put

$$
\begin{aligned}
& \rho_{0}=\left(\lambda_{1} \cdots \lambda_{\ell-2} \lambda_{\ell-1}^{2}\right)^{1 / \ell}, \\
& \rho_{i}=\rho_{0} \lambda_{i} \quad, \quad i=1, \ldots, \ell-1 \quad, \quad \rho_{\ell}=\rho_{\ell-1} .
\end{aligned}
$$

By a general result of Davenport there is a permutation $\left\{\mathrm{P}_{\mathrm{j}}\right\}$ of $\{1, \ldots, \ell\}$
such that the successive minima λ_{j}^{\prime} of

$$
\left|L_{i}(x)\right| \leq \rho_{P_{i}}^{-1} A_{i}=A_{i}^{\prime}
$$

satisfy

$$
\rho_{j} \lambda_{j}<\lambda_{j}^{\prime}<\rho_{j} \lambda_{j} ;
$$

note that $\rho_{j} \lambda_{j}=\rho_{0}$ for $j=1, \ldots, \ell-1$, and

$$
\rho_{1} \cdots \rho_{e}=1 .
$$

If $A_{i}^{\prime} \leq 1$ for some $i \in S$ then since

$$
A_{i}^{\prime}=A_{i} P_{P_{i}}^{-1} \geq A_{i} P_{1}^{-1}=\lambda_{1} A_{i} \rho_{0}^{-1} \geq Q^{-\delta / 2 \ell} \rho_{0}^{-1}
$$

we have

$$
\rho_{0} \geq Q^{-\delta / 2 \ell}
$$

therefore

$$
\lambda_{e} \lambda_{\ell-1}^{2} \cdots \lambda_{1}>\lambda_{e}^{Q}-\delta / 2 .
$$

By Minkowski's theorem, $\lambda_{1} \cdots \lambda_{l}<1$ and we deduce

$$
\lambda_{\ell-1}>\lambda_{\ell} Q^{-\delta / 2} .
$$

Now suppose $A_{i}^{\prime}>1$ for every $i \in S$. Then we may apply the theorem of the next to last minimum and find

$$
\lambda_{\ell-1}^{\prime} \geq Q^{-\delta C}
$$

provided

$$
Q^{C} \geq \max \left(A_{1}^{\prime}, \ldots, A_{\ell}^{\prime} ; Q_{2}\right) .
$$

By Davenport's lemma one has $\lambda_{\ell-1}^{\prime}<\rho_{0}$ therefore $\rho_{0}>Q^{-\delta C}$ and as before we get

$$
\lambda_{\ell-1}>\lambda_{e^{-l C \delta}}
$$

400-16
hence the result (taking a smaller δ if necessary). It remains to show that if $Q \geq \max \left(A_{1}, \ldots, A_{e} ; Q_{1}\right)$ then for some C we have $Q^{C} \geq \max \left(A_{1}^{\prime}, \ldots, A_{\ell}^{\prime} ; Q_{2}\right)$. This is easy :

$$
\begin{aligned}
& \max A_{i}^{\prime} \leq \rho_{\ell-1}^{-1} \max A_{i}=\lambda_{\ell-1} \rho_{0}^{-1} \max A_{i} \\
& \leq \lambda_{\ell-1} \lambda_{1}^{-1} \max A_{i}<\lambda_{i}^{-\ell} \max A_{i} \\
&\text { (since } \left.\lambda_{1}^{\ell-1} \lambda_{\ell-1} \leq \lambda_{1} \cdots \lambda_{\ell}<1\right) \\
&<\left(\lambda_{1}{\left.\max A_{i}\right)^{-\ell}\left(\max A_{i}\right)^{\ell+1}}<Q^{\delta / 2+\ell+1},\right.
\end{aligned}
$$

whence the result with $\mathrm{C}=2 \ell$.
The proof of Schmidt's theorem now ends as follows. Firstly one proves
Lemma 2.- Let $1, \alpha_{1}, \ldots, \alpha_{\ell-1}$ be real algebraic linearly independent over \mathbb{Q}. Write

$$
\begin{array}{ll}
L_{j}(x)=x_{j}-\alpha_{j} X_{\ell}, & j \leq \ell-1 \\
L_{\ell}(x)=X_{\ell}
\end{array}
$$

and for $1 \leq p \leq \ell-1$ let $S^{(p)}$ be the set of ordered p-uples $\sigma \subset\{1, \ldots, \ell\}$ with $\quad \ell \in \sigma$.

Then the forms $L_{\sigma}^{(p)}$ together with $S^{(p)}$ form a proper system.
Now let $A_{1} \ldots A_{\ell}=1, A_{\ell}>1,0<A_{i}<1, i=1, \ldots, \ell-1$ and let $\lambda_{1}, \ldots, \lambda_{l}$ be the successive minima of $\left|L_{j}(x)\right| \leq A_{j}$. One now proves that

$$
\begin{equation*}
\lambda_{1} \geq Q^{-\delta} \tag{5.1}
\end{equation*}
$$

for $\quad Q \geq \max \left(A_{\ell}, Q_{3}\right)$
and some

$$
Q_{3}=Q_{3}(\alpha, \delta)
$$

The theorem of the next to last minimum gives the result for $\lambda_{\ell-1}$ and so our statement is true if $\ell=2$. Now suppose $\ell>2$. We shall show that

$$
\begin{equation*}
\lambda_{\ell-p}>\lambda_{\ell-p+1} Q^{-\delta} \tag{5.2}
\end{equation*}
$$

for $P=1,2, \ldots, e-1, Q \geq \max \left(A_{e}, Q_{4}\right)$ and the result will follow.
Let $\sigma=\{1, \ldots, p-1, \ell\}$. We shall prove that

$$
\lambda_{1} A_{\sigma}^{1 / P}>Q^{-\delta}
$$

In fact, let $B_{i}=A_{i} / A_{\sigma}^{1 / P}, i \in \sigma$. Since $A_{1} \ldots A_{\ell}=1$ we have $A_{\sigma} \geq 1$ and

$$
A_{e} \geq B_{e}>1 \quad, \quad B_{i}<1 \text { for } i=1, \ldots, p-1, \quad B_{1} \ldots B_{p-1}^{B}{ }_{e}=1 .
$$

By definition of λ_{1} there is a non-zero integral point $x^{\circ} \in \mathbf{z}^{\ell}$ with

$$
\left|L_{i}\left(x^{0}\right)\right| \leq \lambda_{1} A_{i}, \quad i=1, \ldots, \ell
$$

and by Minkowski's theorem $\lambda_{1} \leq 1$. Hence $\lambda_{1} A_{i}<1$, $i=1, \ldots, \ell-1$, and thus the last coordinate $\mathrm{x}_{\ell}^{\circ}$ of x° is not 0 . Hence the vector $y^{\circ}=\left(x_{1}^{\circ}, \ldots, x_{p-1}^{\circ}, x_{l}^{\circ}\right)$ is not 0 and regarding $L_{i}, i \in\{1, \ldots, p-1, \ell\}$ as forms in p variables we get

$$
\left|L_{i}\left(y^{0}\right)\right| \leq \lambda_{1} A_{i}=\lambda_{1} A_{\sigma}^{1 / P_{B_{i}}}
$$

Hence the first minimum μ_{1} of

$$
\left|L_{i}(y)\right| \leq B_{i}, \quad i \in\{1, \ldots, p-1, e\}
$$

satisfies

$$
\mu_{1} \leq \lambda_{1} A_{\sigma}^{1 / P}
$$

Since $B_{1} \ldots B_{p-1}{ }^{B}{ }_{\ell}=1, B_{\ell}>1, B_{i}<1$ for $i=1, \ldots, p-1$, and since $p \leq \ell-1$ we may use induction and apply (5.1). We get

$$
\mu_{1}>Q^{-\delta}
$$

provided $Q \geq \max \left(B_{\ell}, Q_{5}\right) ;$ since $B_{\ell} \leq A_{\ell}$, it suffices $Q \geq \max \left(A_{\ell}, Q_{5}\right)$.
Clearly the argument applies to every $\sigma \in S^{(p)}$, hence

$$
\lambda_{1} A_{\sigma}^{1 / P}>Q^{-\delta}
$$

for all $\sigma \in S^{(p)}$. By Mahler's theorem the first minimum v_{1} of the p-compound $L_{\sigma}^{(p)}$ of the linear forms L_{j} satisfies

400-18

$$
v_{1}>\lambda_{1} \lambda_{2} \cdots \lambda_{p} \geq \lambda_{1}^{p}
$$

therefore

$$
v_{1} A_{\sigma}>Q^{-p \delta} \quad \text { for } \sigma \in S^{(p)}
$$

Hence taking a smaller δ if necessary, we may apply Lemma 1 and Lemma 2 and get

$$
\begin{equation*}
v^{v}\binom{\ell}{p}-1>v_{\binom{\ell}{p}} Q^{-\delta} \tag{5.3}
\end{equation*}
$$

provided

$$
Q \geq \max \left(A_{\sigma}, Q_{6}\right) \quad \text { where } \operatorname{Card} \sigma=p
$$

Since $A_{\sigma} \leq A_{\ell}$, it suffices $Q \geq \max \left(A_{\ell}, Q_{6}\right)$. By Mahler's theorem again, we have

$$
\begin{aligned}
& v_{\binom{\ell}{p}}>\lambda_{\ell-p+1} \lambda_{l-p+2} \cdots \lambda_{\ell} \\
& \dot{v}_{\binom{\ell}{p}-1} \ll \lambda_{\ell-p} \lambda_{\ell-p+2} \cdots \lambda_{l}
\end{aligned}
$$

and by (5.3) we deduce (5.2). Clearly (5.2) implies $\lambda_{1}>\lambda_{\ell} Q^{-\ell \delta}$ and since $\lambda_{1} \ldots \lambda_{\ell} \gg 1$ by Minkowski's theorem, we have also $\lambda_{\ell} \gg 1$ and (5.1) follows, by taking a smaller δ if necessary.

Schmidt's Theorem 1 is almost immediate from (5.1). In fact, by definition of first minimum, (5.1) implies that the inequalities
(5.4) $\left|x_{1}-\alpha_{1} x_{e}\right| \leq Q^{-\delta_{A_{1}}}, \ldots,\left|x_{\ell-1}-\alpha_{\ell-1} x_{\ell}\right| \leq Q^{-\delta_{A}}{ }_{\ell-1},\left|x_{\ell}\right| \leq Q^{-\delta_{A_{e}}}$
are insoluble if $A_{1}<1, \ldots, A_{\ell-1}<1, A_{\ell}>1$ and $A_{1} \ldots A_{\ell}=1$, for

$$
Q \geq \max \left(A_{\ell}, Q_{3}\right)
$$

unless all the x_{i} are 0 . By Liouville's theorem, there is C such that

$$
\left|x_{i}-\alpha_{i} x_{e}\right|>\left|x_{e}\right|^{-C}
$$

if x_{e} is large enough ; now take

$$
A_{i}=\left|x_{i}-\alpha_{i} x_{e}\right| Q^{\delta}
$$

$$
A_{\ell}=\left(\begin{array}{llll}
A_{1} & \ldots & A_{\ell-1}
\end{array}\right)^{-1}
$$

so that

$$
A_{e}<\left|x_{e}\right|^{C \ell} Q^{\ell \delta} .
$$

If $Q>\max \left(\left|x_{e}\right|^{C \ell} Q^{\ell \delta}, Q_{3}\right)$ and if

$$
A_{i}=\left|x_{i}-\alpha_{i} x_{e}\right| Q^{\delta}<1
$$

we deduce that we must have (the inequalities (5.4) are insoluble)

$$
\left|x_{e}\right|>Q^{-\delta} A_{e},
$$

hence

$$
\left|x_{1}-\alpha_{1} x_{\ell}\right| \ldots\left|x_{\ell-1}-\alpha_{\ell-1} x_{\ell}\right|\left|x_{\ell}\right|>Q^{-\ell \delta} .
$$

Since the only restriction on Q is

$$
Q>\left|x_{e}\right|^{C}
$$

for some C, we deduce that the inequalities

$$
\left\{\begin{array}{l}
\left\|q \alpha_{1}\right\| \ldots\left\|q \alpha_{\ell-1}\right\| q^{1+l \varepsilon}<1 \\
\left\|q \alpha_{i}\right\|<q^{-\varepsilon},
\end{array} \quad i=1, \ldots, \ell-1\right.
$$

have only a finite number of solutions.
Clearly the conditions $\left\|q \alpha_{i}\right\|<q^{-\varepsilon}$ are not restrictive, because if say $\left\|q \alpha_{\ell-1}\right\| \geq q^{-\varepsilon}$ it is sufficient to show that

$$
\left\|q \alpha_{1}\right\| \ldots\left\|q \alpha_{\ell-2}\right\| q^{1+(\ell-1) \varepsilon}<1
$$

has only a finite number of solutions, and Schmidt's theorem follows by an obvious inductive argument.

The proof of Schmidt's second theorem is essentially identical and therefore will be omitted.

REFERENCES

[1] J.W.S. CASSELS - An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1957.
[2] K. MAHLER - On Compound Convex Bodies I., Proc. London Math. Soc., (3) $\underline{5}$ (1955), 358-379.
[3] E. WIRSING - On Approximations of Algebraic Numbers by Algebraic Numbers of Bounded Degree, Proc. Symposia Pure Math., XX (1969), 213-247.

Schmidt's proof appears in three papers
W. M. SCHMIDT - Zür simultanen Approximation algebraischer Zahlen durch rationale, Acta Math., 114 (1965), 159-209.

- On simultaneous approximations of two algebraic numbers by
rationals, Acta Math., 119 (1967), 27-50.
- Simultaneous approximation to algebraic numbers by rationals, Acta Math., 125 (1970), 189-201.

