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I. Introduction

Let N(T) be the number of zeros of the Riemann zeta-function ~(s) ,
s = a + it , in 0  t ~ T , and let N (T) be the number of such zeros with

real part o’ = ? . It is well-known that ’

and the Riemann hypothesis says that we have N o (T) = N(T) .
It was proved for the first time by Hardy [1] in 1914 that ~( s ~ has infi-

nitely many zeros on the critical line a = ~r , thus

Hardy’s qualitative result was given a quantitative form

for some A > 0 , by Hardy and Littlewood [2] in 1921, and later, with an expli-
cit value of A , the same result was obtained by Siegel [~3] in 1932 with a

rather different method.

The next essential progress on the problem of getting a lower bound for

N (T) was done by Selberg [4] in 1942, who succeeded in proving the result

for some A > 0 .

Recently, Selberg’s result has been put into a quantitative form by

Levinson [5] who obtained

THEOREM.- For T ~ T , we have



While Selberg’s method followed the Hardy and Littlewood approach,

Levinson’s method is close to Siegel’s ideas. In both cases the improvement

over the previous results has been obtained using Selberg’s fundamental idea

of the use of "mollifiers" to dampen the oscillations of + it) I on the

critical line.

In this exposé, because of the complexity of calculations, I will limit

myself to a presentation of the main ideas, referring to the original work for

details.

II. The basic idea

Let h(s) = rr T ( 2 S ~ . The functional equation for ~(s~ can be expres-

sed in the form

It was shown by Riemann in his unpublished notes (see Siegel [3]), that one has

a formula

where f(s) is the entire function

where L is the line with slope 1 through w = t with Im w decreasing.

By moving the contour to the right, one then finds that inside the critical

strip f(s) is approximated by a finite sum

which gives rise to the so-called approximate functional equation for C(s) .

This formula can be used to get information about N (T) in the following

way (Siegel [3]). Clearly the zeros of h(s)C(s) on the line 03C3 = 1 2 will occur

when

or in other words when

If we denote by AC arg the variation of the argument from t to ? + iT , it



will follow easily that

since Stirling’s formula yields

Now let R be the closed rectangle with vertices at c , + iT ,

-2- where c > 1 . The variation of the argument of f(s) on C is easily

bounded by 0(log T) and thus it follows that

where NR(T; f) is the number of zeros of f(s) in the rectangle R , zeros

on aR being counted with half multiplicity. Thus

and the problem becomes that of obtaining a good upper bound for the number of

zeros of f(s) in the rectangle R . It is also clear-that our choice of f(s)
is not limited to the one appearing in the classical Riemann-Siegel formula ;

the only thing we need is ( 1 ) and a good bound arg f ( s ) , which is

usually not difficult to obtain.

III. The upper bound f or NR( T ; f)

Here one uses a familiar lemma of Littlewood :

PROPOSITION.- Let R~ be a rectangle. Then for f regular in R~ , we have

where the summation is over the zeros of f(s) in R and dist denotes the

distance cf a zero from the left-side of The argument of the log is

obtained by ccntinuous variation starting at the lower left corner and going
counter-clockwise.

If we take for R I the rectangle with vertices at c , c + iT ’ a + iT ’

a where a  ’2’ , and use simple estimates on log!f(s)! or arg f(s) on the

horizontal and right-side of R~ , we easily get a bound



The last integral is estimated using a convexity inequality, and the pro-

blem is reduced to give good estimates for mean values of the type

for suitable b . If however we work on this suggestion, for example with the

function f(s) in the Riemann-Siegel formula, the final result will be only

which is achieved only if we work with asymptotic estimates.

The new idea that has to be introduced at this stage is due to Selberg. If

we note that

for every * regular in the rectangle R , we may as well estimate the integral

and this in turn means that we will have to deal with mean values

and we may hope to choose 03C8 so that the integral will be made much smaller. Of

course, we have to check that the introduction of the mollifier ~r will not

change the evaluation of f dt on the horizontal and right-side of R~ ,
and in order to this it is sufficient to have ~t near to 1 on the right side

of R , and have 03C8 of polynomial growth in the critical strip. Hence a finite

Dirichlet polynomial 
-- ,

with b = 1 , 0(1~ , ~ - 0(‘~-~ , will be an admissible choice.

IV. The final estimate

We start with (1) taking for f(s) a function which has an asymptotic

expansion

in the critical strip. Here R is not too large (in the final choice, X ~ 2n



and a is near to 1 , say
n

this is essentially Levinson’s choice. Since we want ~f to be "small", we

take f o~ ~r an approximate inverse of f(s) t and noting that for a > 1 we

have

where is the Mobius function, it is natural to choose

Here the factor 1 - log n log Y appears for "smoothing" reasons, while the factor

n 
-(1 2 - 03C3) 

is essentially 1 since we will work on o = a with a = ’2’  - ---
X bounded. The final choice of the parameter Y is somewhat smaller than T

It remains to estimate

Levinson’s result is :

It should be pointed out at this stage of the argument that without the

introduction of the mollifier , one would have obtained on estimate which would

have been larger by a factor log T , and this would have been of no use for our

purposes. It is also worthwhile to remark that in Selberg’s proof of

N o (T) > AT log T it is only the gain of the factor log T which matters,



while in Levinson’s proof one should also end up with a not too large value

for F(X) . Most of the difficulties in the proof arise from the fact that we
want to compute explicity.

Using Levinson’s Lemma and the basic inequalities (3) and (4), we find

for every fixed ~ > 0 . We choose B = 1.2869 and find

for T 2: T , as we wanted.

We conclude with the remark that, while it is certainly possible to improve

Levinson’s explicit estimate by using other choices of functions f(s) and

mollifiers ~r(s~ , it seems very difficult to reach the asymptotic result

No(T) ~ T 203C0 log T . The main reason seems to be in the method we have used to
estimate NR(T,f), using Littlewood’s lemma and a convexity inequality for the
estimation of  log|f(s)|dt . Here an interesting point arises.- In fact, the

success of the introduction of a mollifier shows that something has been lost in

the convexity estimate, probably only partially restored by the factor, . . On

the other hand, if we deal with functions which like ç(s) satisfy functional

equations, but have no Euler products, while it is still possible to show that

N o (T) > AT , we have no reason to expect that N (T) > AT log T in this case.

The existence of an Euler product implies the existence of a good mollifier

~(s) , , so that the proof of N o (T) >AT log T does make use of the arithmetic

properties of ~(s~ , though in an imperfect way. A more direct study of the
zeros of the functions f(s) arising in the Riemann-Siegel formula (l) is
needed in order to reach essentially better results.
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