@incollection{SB_1975-1976__18__69_0, author = {Morgan, John W.}, title = {The rational homotopy theory of smooth, complex projective varieties}, booktitle = {S\'eminaire Bourbaki : vol. 1975/76, expos\'es 471-488}, series = {S\'eminaire Bourbaki}, note = {talk:475}, pages = {69--80}, publisher = {Springer-Verlag}, number = {18}, year = {1977}, mrnumber = {454967}, zbl = {0361.32009}, language = {en}, url = {http://archive.numdam.org/item/SB_1975-1976__18__69_0/} }
TY - CHAP AU - Morgan, John W. TI - The rational homotopy theory of smooth, complex projective varieties BT - Séminaire Bourbaki : vol. 1975/76, exposés 471-488 AU - Collectif T3 - Séminaire Bourbaki N1 - talk:475 PY - 1977 SP - 69 EP - 80 IS - 18 PB - Springer-Verlag UR - http://archive.numdam.org/item/SB_1975-1976__18__69_0/ LA - en ID - SB_1975-1976__18__69_0 ER -
%0 Book Section %A Morgan, John W. %T The rational homotopy theory of smooth, complex projective varieties %B Séminaire Bourbaki : vol. 1975/76, exposés 471-488 %A Collectif %S Séminaire Bourbaki %Z talk:475 %D 1977 %P 69-80 %N 18 %I Springer-Verlag %U http://archive.numdam.org/item/SB_1975-1976__18__69_0/ %G en %F SB_1975-1976__18__69_0
Morgan, John W. The rational homotopy theory of smooth, complex projective varieties, dans Séminaire Bourbaki : vol. 1975/76, exposés 471-488, Séminaire Bourbaki, no. 18 (1977), Exposé no. 475, 12 p. http://archive.numdam.org/item/SB_1975-1976__18__69_0/
[1] Théorie de Hodge mixte, II, Publ. Math. IHES 40 (1971), 5-57. | Numdam | MR | Zbl
,[2] Real homotopy theory of Kähler manifolds, Inventiones 29 (1975), 245-274; | MR | Zbl
, , , and ,[3] Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. USA 41 (1955), 641-644. | MR | Zbl
,[4] The Theory and Application of Harmonic Integrals", Cambridge University Press, Cambridge, G.B., 2nd edition 1959. | Zbl
,[5] The homotopy theory of open, smooth, varieties, (to appear)
,[6] Infinitesimal calculations in topology, (to appear) Ann. of Math. | MR
,[7] L'Introduction à l'Etude des Variétés kählerienne", Hermann, Paris, 1958.
, "[8] Differential Analysis on Complex Manifolds", Printice-Hall, Englewod Cliffs, N.J., 1973. | MR | Zbl
, "[9] Homotopy limits, completions, and localizations", Lecture Notes in Mathematics 304, Berlin-Heidelberg-New York, Springer, 1972. | MR | Zbl
and , "