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Seminaire BOURBAKI

29e annee, 1976/77, n° 497 Fevrier 1977

THE COMBINATORIAL FORMULA OF GABRIELOV, GELFAND AND LOSIK

FOR THE FIRST PONTRJAGIN CLASS

by Robert MacPHERSON

The problem addressed here is to find a formula for the Pontrjagin classes of a

polyhedral manifold X in terms of the combinatorial structure of X . The exis-

tance of these classes was first established by Thom [18] by a nonconstructive argu-
ment. One motivation for wanting an explicit formula is the hope of extending the

deep results on signatures of elliptic operators which relate to the curvature for-

mula for the Pontrjagin classes to the framework of difference operators on polyhe-

dra [16]. Another motivation is the question of whether there exists a purely local

formula for the Pontrjagin numbers i.e. a formula using only the set of stars of

vertices of X, not how they are put together. It is known that no topological inva-

riants other than the Pontrjagin numbers or the Euler characteristic can be given

by a purely local formula [10].

Combinatorial formulas exist for the other characteristic classes of X . For

the Euler class, Euler’s formula 03A3(-1)i f. where f. is the number of i dimen-

sional faces is a solution (see also [1]). The Poincaré dual of the total Stiefel-

Whitney class in H.(X ; ZZ/2ZZ) is the sum of all the i simplices in the barycen-

tric subdivision ([17], [19], [2], [8]). Also there are other approaches to the

Pontrjagin class than the one described here ([ 9~ , [ 1 1 ~ , C 12] , [ 13~ , [14]).

We report here on the remarkable formula of Gabrielov, Gelfand, and Losik for

the first Pontrjagin class of a simplicial manifold [4-7], [3]. This is the first

general, explicitely computable formula for a Pontrjagin class.

Let X be a simplicial complex and let o be a simplex in X . The link of

o , is the subcomplex of M consisting of simplices a’ such that

1) a’ n o = ~ , ,
2) for some a", o’ 

The cone over the link of 0, CLa , has a natural structure as a simplicial com-

plex. A flattening of X at a is a homeomorphism t from to a neighborhood

of the origin in Rk for some k which is linear on each simplex and which takes

See note 1, p. 497-18.



the cone point to the origin. The integer k is called the codimension of a .

A flattening of a .

DEFINITION.- A simplicial manifold is a simplicial complex which admits a flattening

at each simplex.

(Note : there exist in dimension 4 and higher simplicial complexes that are piecewise

linear manifolds but are not simplicial manifolds. However some barycentric subdi-

vision of them will always be a simplicial manifold.)

For any simplicial manifold X we will construct a cell

complex r over X

and a cellular 4-cochain P in r so that



1) 
B 

r and P are locally determined : for any open set ~(U) and

P restricted to depend only on the combinatorial structure in U .

2) n* : H4(X) ~ H4(r) is injective.

3) P = where P (x) is the first Pontrjagin class of X .

The situation is analogous to the differentiable case. If X is a smooth mani-

fold, the Pontrjagin class is represented by a natural differential form ? on

certain bundles over X , for example on the bundle of two jets of exponential maps.

To get a representative differential form on X one must choose a section s and

take s~P . There is a fundamental difference, however. In the smooth case there is

no canonical section - one must choose an additional structure such as a connection

in order to induce one. In the simplicial case a rational homological section

(see § 3) can be chosen canonically. This provides an affirmative answer to the

question of the existance of a purely local formula in this case.

§ 1. The hypersimplicial complex

In order to define r , we must first construct two other cell complexes over X .

In this section we construct the hypersimplicial complex à ; in the next, the con-

figuration complex K . r will the be a subcomplex of the fiber product of K

and 0394 over X .

For any finite set A , denote by the number of elements of A .

DEFINITION.- Let Z and A be disjoint sets and let n be an integer such that

n ~ )Z U A)-2 . The hypersimplex 0394n (Z,A) is the set of all functions

h : Z U A - R so that

1 ) 0 ~ h ( e) s; 1 if e E Z

2) h(e) = 1 if e E A

If n+ 1 , then 0 (A) denotes the function which is identically one on A .
n

The hypersimplex A (Z,A) is said to be of type p, q where
n

p = IZ U 2 - n and q = n - 

The following facts about hypersimplices will be useful :

1 ) The hypersimplex pn(Z,A) , of type p, q , t is a convex polyhedron in Eucli-



Hypersimplices

Vertices are labeled with the set S. The four dimensional figures are

projected into R’ .



dean p + q + 1 space. (Relations 2) and 3) of the definition define the space ;

relation 1) gives the polyhedron.)

2) The geometry of A (Z,A) depends only on p and q . This is clear from the

fact that A n (Z,A) is canonically isomorphic to (Z , ,~) .

3) The vertices of are the where A c S c Z U A . ( an(S) is con-

tained in à (Z,A) by extension by zero.)

4) The faces of positive dimension of A (Z,A) are the n(Z’ ,A’ ) where A C A’

and Z’ U A’ c Z U A . . (Agai-n b (Z’,A’) is contained in n(Z,A ) by extension

by zero.)

5) An orientation of p (Z,A) is a parity class of orderings of Z . This is

because A (Z,A) is subspace of the simplex obtained by replacing condition 1 with

and Z corresponds to the vertices of this simplex.

From now on we consider A (Z,A) to be a cell complex whose cells are its

faces as a convex set as described in 3) and 4) above.

For any simplicial complex Y , denote by v Y the set of vertices of Y .

DEFINITION.- The hypersimplicial complex p , a subcomplex of ~~ , is

the union of the cells

where a is a simplex of X and n is the dimension of X .

A cell of 6 then is of the form a (Z,A) where Z U A is a subset of

the vertices of the star of a and A contains the vertices of a .

§ 2. The configuration complex

In this section, we construct a cell complex over X out of its flattenings. We

think of a flattening $ : h as being given by the images 

the vertices of the link of a .

The set of flattenings, : Rk forms a topological space on which

the general linear group GL(k) acts by composition. The quotient or orbit space

of this action is called the configuration 

A flattening of X at a codimension k simplex a is c-f old degenerate if

exactly c of the k element subsets of v L a are mapped into a linearly depen-



dent set in represents the subspace of the configuration space

consisting of orbits containing c-fold degenerate flatte-

nings. We call 03A3c1(03C3) ,..., ,... the connected components of E (c) ; there

are finitely many of them because £c (a ) is a semialgebraic set. It can be shown

that every connected component of S (o) lies in the closure of exactely two con-

nected components of (The determination of the set {03A3cj(03C3)} in terms of the

triangulation of Its is the only part of the construction that is not purely com-

binatorial i.e.programmable on a computer.)

For each a of codimension ~ 4 , we construct a cell complex K(o) .

If a is of codimension 4 , K(o) is a 0-complex with a point for each

connected component of 03A3o(03C3) . Denote by K 03A3oj(03C3) the point for 03A3oj(03C3) .
If o is of codimension 3 , K(o) is a graph. For each Eo. (Q ) it has a

vertex and for each 03A31j(03C3) it has an edge connecting the two

vertices representing components of S (0) whose closures contain E.(a) .
If a is of codimension 2 , K(O) is a 2-complex. The 1-skeleton is cons-

tructed just as for codimension 3 . It is easily seen that each E2(a) is in the

closure of four components of E°(Q) and four of E (o) whose corresponding ver-

tices and edges form a square. Fill this in wich a disk KE2 (Q ) . The following

figure illustrates the situation. Near each cell of K(a ) a flattening is drawn

whose orbit is in the corresponding component of E(Q) .



If a has codimension 1 or 0 , K(a) is a point.

Suppose o’ , of codimension k’ is contained in a . . Then a map

a , : E(or’) -* E(a) is defined to take the orbit of f to the orbit of . in

the following diagram :

where the isomorphism ~ is chosen arbitrarily. This map takes any 03A3cj,(03C3’)
~ _ 

J
to some E.(o) for c ~ c’ . If 4 , a cellular map a , ,o, : K(03C3’) ~ K(Q )

exists taking to whenever a (03A3c’j,(03C3’)) ~ 03A3cj(03C3) .

J J " " j J

For any or in X , the dual cell denoted by Dcy is defined to be the union of

all simplices in the barycentric subdivision of X whose intersection with a is

the barycenter of or . The dual cells form a regular cell decomposition of X

called the dual cell decomposition ; we call X with this cellulation X . The
dimension of DQ is the codimension of o ; if then Da c DQ’ .

DEFINITION.- The configuration complex K is the cell complex constructed as

follows : we take the disjoint union U Da X K(o) over all simplices o

of codimension s 4 and for each a’ c: o we perform the identifications

where i : Do’ is the inclusion.

K projects cellularly to the 4-skeleton of XD .

§ 3. Homological sections

First we define our fundamental object r ~ X . The hypersimplicial complex à

projects cellularly to X and the configuration complex K projects cellularly

to The fiber product K Xx d has an obvious cell decomposition that projects

cellularly to X’ , the common refinement of X and X . A cell in X’ has the

form a n Do’ where a ’ ca . . A cell in will have the form

where b (Z,A) is a face of b (v La , vO) . We denote this cell by
n n - -

Y (° ’ , C , j , ° , Z , A) .



DEFINITION.- r is the subcomplex of consisting of those cells

y(a’ , t Z,A) such that if 0394n(S) is a vertex of A (Z,A) and , : 

is a flattening whose orbit is in ~~ (Q ’ ) , then the n S ) is a
J 

-

linearly independent set of vectors in Rk .

We note that if c = 0 , y (0’ , c , j , a , Z , A) will always be in r .

Denote by i(X) the X cellular i-chains,

by the X cellular i-cochains,

by C’(x) the X’ cellular i-chains,

and by r : j(X) -* the refinement map.

DEFINITION.- If R is a ring, an R-homological j-section of r 03C0 ~ X is a

homomorphism s : C.(r , R) for each i S j so that

1 ) os = so ( s is a chain map),
2) r ,

3) support s(c) c 03C0-1 support c .

A homological j-section shares many of the properties of an ordinary section.

We may define s* C1(r) -. by the formula s* k(c) = k s(c) for k E 

and any c E This induces a map s* on cohomology so that is the

identity. In particular if a homological section exists, n* is an injection.

PROPOSITION 1.- n : r - X admits an integral homological 4-section.

This follows from the

Lemma.- Let a be a simplex of X of codimension ~ 4 and let b D a denote

the boundary of Do , i.e. the union of its proper faces. Then any integral or

rational homological section s of n bDa b D a extends to the same on

n Do Do .

The proof, which we omit, uses that K(o) is 1-connected for o of codimen-

sion 3, (see Note 2,p.497-18)and that g(Q ) is 2-connected for a of codimension

2 , which can be seen by direct analysis since configurations in R 2 are so simple.

Note that r is locally determined in the sense that rr Do depends only on

the geometry of the star of a . A homological section is called locally determined

if its value on a chain with support in Da is given by a canonical procedure in



terms of the star of a .

PROPOSITION 2.- r has a locally determined rational 4 section s .

Proof. We may define s in the following canonical if ad hoc manner. We proceed

by induction on the dimension k of the dual cell Da . For k = 0 , there is a

unique homological section since -n is a homeomorphism. For k > 0 , assume s is

already defined as a rational section of 03C0-1 bDa 03C0 ~ b D a . Then S , the set

of rational extensions to n Do --~ Do , is nonempty. Choose a generator [Do]
of the integral chains For s ( S , let j(s) be the smallest inte-

ger j’ so that the rational chain can be written with coefficients whose

denominators are all divisors of j’ . Let j be the minimum of j(s) for all s

and define Sj to be the set of s ( S so that j(s) = j . Define the norm of s

to be the sum of the absolute values of all the coefficients of s(~D a~ ) . Let m

be the minimum of the norms of s for s E S . and define c: S. to be the set
J J J

of elements with norm m .

Clearly, S. is independent of the choice of ~D c~~ . Because r is a finite

cell complex, S. is a nonempty, finite set. Now define s on D a to be the ave-

rage of the elements of Sm
J 
_

§ 4. The formula

We define a cellular 4 cochain - P on i’ . For each c , j , Q , Z , A)
and for each orientation (Y~ of that 4-cell, we must give a number 

P([~~ ~ - 0 unless , c _ 0, and is of type 2 , 1 or 1 , 2 . t

0 , j , Q , Z , A) where is of type 2, 1 , let the orbit of

: C L (Q ~ -~ Rk be in E~(Q ~ and call 8 the composition
J

V will be two dimensional. Pick arbitrarily an orientation 0’ of A2y .
Pick an ordering  of Z that gives the orientation (y] . Let i be the number

of ordered pairs z ~ , z , of elements of Z so that z fi  z2 and e z1 A 9 z agrees
in sign with (~ . . Then



For ’( (0 , 0 , j , a , Z , A ~ is of type 1 , 2 , define e : Z ~ V

analogously ; now V is three dimensional. Let i be the number of ordered tri-

ples z ~ , z2 z3 of elements of Z so that z i  z2  z 
and 8 Z1 Z3

agrees in sign with 0 . Then

Note that P([y]) is independent of the choice of + and 0" , and changes

sign when (yJ does, i.e. when the ordering of Z is subjected to an odd permuta-

tion.

THEOREM.- P represents ~r~’P~ (~) , the pull up of the first Pontrjagin class

of X .

A proof of this theorem is sketched in § 5-§ 8.

COROLLARY 1. P1(X) = s~P for any homological 4-section s of r .

W e may choose s to be an integral homological 4-section and obtain a formula

with 48 in the denominator. Or we may choose s of Proposition 2 and obtain a

canonical formula without control on the denominators.

Suppose that X is oriented and that for each simplex a of codimension 4

generators [0] E C n-4 (Q ; ~ ) and E Z; ) are chosen so that [o]
and have intersection multiplicity + 1 .

COROLLARY 2.- The Poincare dual class to P~(X) is given by

where s is any homological section.

If in corollary 2 s is chosen to be s, we have a purely local formula :

the coefficient of ~Q~ depends only on the combinatorial structure of La .

Remarks.- 1) With more work, one can have a formula with at most 12 in the

denominators.

2) The cells of X need not be simplices. A simple cell is a convex polyhedron

in Euclidean space whose faces meet mutually transversely. (A solid cube is one,

a solid octahedron isn’t.) The formula holds for a manifold decomposed into simple
cells so that the inclusions preserve the affine structure ; it is just slightly



harder to define r .

§ 5. The idea of the proof

If M is a smooth n-manifold embedded in Euclidean space RN , it has a Gauss map

g : M - G , where G is the Grassman variety of n-planes in which associa-

tes to each point x on M the tangent space to M at x . There is an invariant

differential form P on G so that P~ (M~ - g*P .. So the Pontrjagin class is a
particular measure of how g(x) changes as x moves in M , i.e. of the curvature

of M .

Now suppose X were embedded in Euclidean space in such a way that it could be

approximated by a smooth manifold M .

As the approximation becomes better, the Gauss map for M becomes discontinuous.

Intuitively in the limit it will be constant along the n-simplices, and will take

a k dimensional set of values at a codimension k simplex a . Motivated by this,

we will construct a homological Gauss map which assigns to Do a k dimensional

set of "virtual" tangent planes. But first we need a digression on Grassmannians.

§ 6. Structure of the Grassmannian

In this section, we show that a point in a Grassman manifold is determined by a

projective configuration and a point in a hypersimplex.

Let Z and A be disjoint finite sets and let RZ U A denote the |Z U A)



dimensional vector space generated by Z U A . The Grassman manifold G (Z,A) is

the space of n+ 1 dimensional planes in which contain FT . Note that
G n (Z,A ) identifies canonically with Gn- ~A’ (Z , ~

The most convenient way to think of a point in G (Z,A) is as a (Z ,A , n)
n

vector configuration w . This is defined to be the choice of a vector w(e) in a

vector space V of dimension n + 1 for every e in Z U A such that V is the

direct sum span w(Z) (B span w(A) and the vectors w(a) , a E A , are linearly inde-

pendent. We consider two (Z, A , n) vector configurations w : Z U A -*- V and

w’ : Z U A - V’ equivalent if there is a linear isomorphism V - V’ taking

w(e) to w’(e) for all e E Z U A . Given a point p in G (Z,A) , the associa-

ted (Z ,A , n) vector configur.ation is obtained by orthogonally projecting the

unit vectors in RZ U A to the plane V representing p .

Let R+ be the positive real numbers and let P be the abelian group of
functions a : Z U A - R 

+ 
whose group law is pointwize multiplication. RZ + U A

acts on G (Z,A) by multiplying the vectors of the configurations :

The quotient space G 
U A 

is called the space of (Z,A,n) enhanced pro-

jective configurations Pn(Z,A) ; the quotient map is called T . This space is

To but not T 
1 

or Hausdorff. One may identify a point in P n (Z,A) with an ordi-

nary projective configuration in R Pn of points indexed by a set S where

A c S c Z U A enhanced by a lift to the double cover of Note that P (Z,A)
n

identifies canonically with P n - tA’ I 1 (Z , ~) .
Our aim is to reconstruct Gn(Z,A) from Pn(Z,A) is as efficient a way as

possible. To this end we define a map p : as follow : let

w : Z U A -~ V be a point in G (Z,A) . Choose an invariant measure p. on V .
n

For any n + 1 element subset S of Z U A denote by S~’ the measure of the

parallelogram spanned by w(S) , i.e.

Note that S  is the absolute value of the S Plucker coordinate. Now p(w) = h

where

for e E Z U A . One may check that h(e) is independent of ~ and satisfies the



three conditions of the definition of 0394n(Z,A) .
If P is in P (Z,A) , let w be any lift to a (Z,A,n) vector configuration.

Then 6 n (Z,A,P) is defined to be that subset of the hypersimplex 0394n(Z,A) which

is the convex hull of the vertices pn( S ) for which S’ > 0 .

is itself a polyhedron possibly of smaller dimension.

is the interior of 0394n (Z,A,P) , that is 0394n (Z,A,P) minus its proper

faces. (Z,A) then P is called generic ; the set of generic

enhanced projective configurations is denoted P (Z,A) .
PROPOSITION.- For any PEP (Z,A) , p takes the R ZUA orbit given by P homeo-

morphically f and takes the closure of the orbit homeomorphically

onto A (Z,A,P)
n

is an embedding.

§ 7. The homological Gauss map

Embed X in by sending each vertex to the corresponding basis vector and

extending linearly. In this section we construct a homological 4-map from r to

G ( v~ , ~ ) , , i . e . a chain map C . ( r ) -~ C.(G ( vX , ~ ) ) for i ~ 4 . Then for any

homological section s of r , g o s will be our candidate for a Gauss map as

in § 5 in the sense that if VC ~X represents a point in the support of

g 0 s([Da]) , then we consider V fl ~ x , 1 ... , 1} to be a "virtual"

tangent plane to X at a .

Consider a cell y = Y (a ’ , c , j , o , Z ,A) in r where A (Z,A) is of type

p , q . The cell y determines a connected component 03BE03B3 of

Pgenn(Z,A) ~ Pgenp(Z , ~) in this way : let + : CL(a’) - Rk be a flattening

whose orbit is in E?(d’) , then

gives a (Z , §# , p) vector configuration T of which is generic, I.e. in

jl$) , by the defini tion of r . All such choices of t lead to the same
P
connected component 03BE of §) .

Y P

NOW if p = 0 or q = 0 , §) is a discrete set, since there are no
P



moduli for q + 2 points in projective 0 space or p + 2 generic points in pro-

jective p space (the latter because such a system of p + 2 points can be used

to coordinatize the space). So we can define a map g from Y , the interior of

-Y , to G (vX, ~) by requiring commutativity of this diagram :

g defines a homomorphism g = g* : Ci(0393) ~ Ci(Gn(vX , ~)) where, if Ci(Gn(vX , 
is interpreted as i-currents on ,~) , to a chain in Cir we assign integra-

tion of an i-form over g of that chain. One may check that g extends conti-

nuously to the boundary of y so g~ is a chain map defined on cells Y E r such

that p = q = 0 . Since we want a homological 4-map, it remains to consider types

(1,1) , (2,1) and (1,2) .

If p = q = 1 , Sy will be a connected component of generic enhanced configu-

rations of four points on the projective line. These configurations have a conti-
nuous modulus, the cross-ratio, which we avoid by choosing modulus free configura-

tions in the closure of ~ . Suppose the elements of Z are labeled z , z2 t
z~ , z4 in such a way that a configuration in Sy is a lift of an ordinary projec-

tive configuration that looks like this

Here the circle represents the real projective line. Then there are unique elements

of the closure of 03BE03B3 that are lifts respectively of these



We define two maps g 1 and g~ on the interior of Y by requiring commutativity :

Wishing to be canonical, we define g on y to + g~~~ . Since both
g and g2 extend our previous definitions continuously, g is still a chain

map.

We observe that and g~~y ~ together bound a very interesting 4-cell

in G2(Z, ~~ which is itself 4-dimensional. This cell, which we call



N , has as its interior ~-~( ) . If we choose proper orientations ~N~~ and
Y ~ Y

lYl then ~~ ~CY) - 
If p = 2 and q - 1 , we proceed in a similar way taking the configurations

determined from ~ by the following list. - _

and ?§ for I  I  5 is the same but with the indices of the z’s cyclically
i

permuted. Define g, as before. But now the question of continuity becomes mort
i

interesting. If the cell with p = q = I described above is called y’ , then one

easily verifies that g 1 and g 4 on y extend continuously to g 2 on y’ , and

) , 2 g 5 and g 5 on y extend to g 1 on y’ . Therefore we are forced to define

g on y with correction terms

where the second sum is over all five faces of type 1 , 1 of Y ; ( - 1 10 = 2 - 3 ) .
The story for type 2, 1 is entirely parallel : in fact there is a formal dua-

lity for L1 , G , and P reversing p and q .

PROPOSITION.- g*P = P where P is the unique 0(|vX|)-invariant differential
4-form on G (vX , representing the Pontrjagin class of the tautological

bundle ? . .

Essentially the reason for this is that P integrates to zero on all the types

of 4-cells in ,~j involved in the construction of g except for the N
where it integrates to ~~ . (The Grassmannian of 2-planes in 4-space decomposes

into 24 cells congruent to 0 . 24 - 4~ . °
The cell ~P has another distinguishing trait : all the other surfaces in

Gn(’~~ , ~~ involved in the construction of g were orbits of the R+~ action



corresponding to projective configurations without continuous moduli. Thus we have

the following interpretation of the proof : the first Pontrjagin class is the obs-

truction to finding a homological Gauss map using only

T _1 (the discrete part of C G (vX , ~) .

§ 8. Microbundles and vector bundles

All that remains in order to prove the theorem is that g o s deserves to be called

a Gauss map.

Let S c r x G be the union of the sets y x support g([y]) .

PROPOSITION.- On S , the tautological bundle ? of identifies as a

topological microbundle with TX ae 1 , the tangent microbundle to X plus a tri-

vial line bundle.

Then since the Pontrjagin class extends to topological microbundles [15] and is

unchanged by ~ 1 , we have g*P = n*P1(X) and we’re done.

To establish the proposition, let A be the union of the following sets in

r x 0)

where P , . is any element of ~r (~~ (a ~ ~ ~ . . Using the fact that is
~ ~ J J

connected, we can find a section X of A over r . Now for each point in S we

have three subsets of ~~ . The first is the fiber to TX ~ 1 : this embeds on

the TX factor by the inclusion of X and on the 1 factor by the line connec-

ting to the origin. The second is the fiber of ? and the third is the fiber of

~ pulled back by the section X . Orthogonal projection takes the third homeomor-

phically onto both the first and the second.



Note 1

This question has been answered affirmatively by Levitt and Rourke [20]. However

their method does not give an explicit formula.

Note 2

That the space is connected for a of codimension 3 follows from Theorem

1 of [21]. This eliminates the need for the condition [A] of [4-7] on the poly-

hedron X . I am greatful to R. Porter for pointing out the reference to me.

Note 3

Gabrielov has reportedly found a generalization of this work to the higher

Pontrjagin classes.
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