
SÉMINAIRE N. BOURBAKI

A. VAN DE VEN
Some recent results on surfaces of general type
Séminaire N. Bourbaki, 1978, exp. no 500, p. 155-166
<http://www.numdam.org/item?id=SB_1976-1977__19__155_0>

© Association des collaborateurs de Nicolas Bourbaki, 1978, tous
droits réservés.

L’accès aux archives du séminaire Bourbaki (http://www.bourbaki.
ens.fr/) implique l’accord avec les conditions générales d’utilisa-
tion (http://www.numdam.org/conditions). Toute utilisation commer-
ciale ou impression systématique est constitutive d’une infraction
pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SB_1976-1977__19__155_0
http://www.bourbaki.ens.fr/
http://www.bourbaki.ens.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


155

Séminaire BOURMKI

29e année, 1976/77, nO 500 Février 1977

SOME RECENT RESULTS ON SURFACES OF GENERAL TYPE

by A. VAN DE VEN

1. Introduction

The problem behind this whole talk is the problem of classifying compact complex

surfaces, i.e. compact 2-dimensional complex manifolds.

If we start by looking at the case of (smooth, compact, connected) complex
curves X, then the classification is according to their genus which can

have all values 0,1,2,... and then (apart from the simple cases 03C0 = 0,1 ) there

is for each genus n a Teichmuller space, the points of which parametrise the

curves X with n(X) = n .

For complex surfaces (here always to be taken compact and connected) we look

for something similar : first a coarse classification according to the value of

some basic numerical invariants, and then for each coarse class a certain number

of parametrising families (not necessarily finitely or even countably many, and

not necessarily as good as a Teichmuller space).

Many numerical invariants are available : topological ones (e.g. betti numbers),

analytic ones (e.g. dimensions of cohomology groups of coherent sheafs) and mixed
ones like Chern numbers. It has become customary to take as a first numerical

invariant the Kodaira dimension, which is defined in the following way.

Let X be a connected, compact complex manifold, of dimension n, L a holo-

morphic rank-one vector bundle (line bundle, invertible sheaf) on X , r(X,f) the

space of sections N = dim r (X,~ ) and S c X the analytic subset where

all elements of vanish. If N > 0 , there is associated with t a map

f : X - S - P.. N-*1 4 . The closure of the image is an algebraic variety of dimen-

sion ( f~ is not uniquely determined, but two of these maps differ by a

projective transformation of P~-~ ) . ~ is the pullback of the hyperplane bundle

of P i on X - S .

Now let ~~~ be the canonical bundle on X , i.e. the determinant bundle of

the covariant tangent bundle. Then the Kodaira dimension Kod(X) is defined by



We have always that Kod(X) s n .

Examples.- 1 ) For curves we have : KOd(X) == - - if n(X) = 0 , Kod(X) = 0 if

1 and Kod(X) = 1 if 2 .

2) Kod(P~) == - ~ , Kod(torus) = 0 , Kod(product of an elliptic curve with a curve

of genus 3: 2) = 1 , Kod(non-singular surface of degree ~ 5 in P ) = 2 .
The surfaces X with 1 are called special surfaces. Their classifi-

cation has been completed, at least in principle, except for two types (K -surfaces
and surfaces of class VII). We shall not consider this classification here. The si-

tuation is completely different, however, for surfaces X with Kod(X) = 2 . These

surfaces, the analogues of curves with genus 1 2 , are called surfaces of general

type. They are all known to be projective algebraic ()l1], p. 415).

To get an idea of how it may be possible to classify surfaces of general type,

we first look again at curves of general type, i.e. curves X with n(X) ~ 2 . For

these curves we have by Riemann Roch and a vanishing theorem that

dim r (R , ~’~’ ® n ) - (2n - 2)n - n + 1 for n ~ 2 . Furthermore, the map

fK~n : X -* P(2 2)n _ n is always an isomorphism if n ~ 3 . Taking n = 3

we see that we can classify smooth curves of genus rr z 2 in the following way :

we take the Chow scheme in dimension 1 and degree 6n - 6 in P5n-6 (very
roughly, the Chow scheme is the algebraic variety that parametrises all positive

algebraic cycles L n. V. , with n. > 0 and V. varieties of a given dimension

in P , such that 03A3 n. deg(V.) is fixed), and then the subscheme formed by
those smooth curves X of genus n for which the hyperplane bundle is jB, -
Now two such curves are isomorphic if and only if they are projectively equivalent,

hence we still have to divide by the action of PGL(5TT - 6 , C) . This is one approach

to the Teichmuller spaces.

Now fixing the genus of a curve means fixing the (first) Chern number

(c~ (~.) _ 2 - 2r~(~C)) . Therefore it is natural to try to find a rough classification

of surfaces of general type X according to their Chern numbers c~ 1 (X) and

c2(X) . This approach works, but first a few remarks.
First of all, we can restrict ourselves to minimal surfaces of general type.

In fact, if X is a 2-dimensional complex manifold, and x 6 X , then you can



blow up x E X , i.e. replace x in a specific way by a curve E, f such that the

result X is again a complex manif old of dimension 2 . The converse is blowing

down E in X to a point. These curves E are called exceptional curves (of the

first kind) ; they are precisely the non-singular rational curves E with E~ - -1 ,
and no other irreducible curves can be replaced by a point such that the result is

smooth. A complex surface is called minimal if there are no exceptional curves

on X . Every surface can be obtained from a minimal one by blowing up a finite

number of times. In the case of surfaces of general type the minimal model is uni-

quely determined, and blowing up or down in a surface of general type gives again

such a surface. So for classification purposes it is reasonable to consider minimal

surfaces of general type only.

For these surfaces we cannot have, like in the case of curves, that there is

always an n such that 

f qn 
is an isomorphism, for there are many minimal sur-

faces of general type with (-2)-curves, i.e. rational curves C with C2 - -2 ,
and the restriction ~X ~ t C is trivial.

Nevertheless, there exists a good theory, which I shall sketch now (compare

~2j, in particular Theorem 1 and Theorem 3). This theory also works in the case

of a closed field of characteristic 0 .

THEOREM 1.1.- Let X be a minimal surface of general type. Then for n X 4 the

bundle is spanned by its global sections, i.e. 
n 

is an everywhere

defined map.

Next, it can be proved that on a surface of general type there is only a finite

number of (-2)-curves. Let U be their union (as a subset of X), and let

U = U U ... U U(k) be the decomposition of U into connected components ( k

depends on X ).

We consider the line bundle K- , n ~ 2 . By Riemann Roch and suitable
vanishing theorems we have that

c (X)) - N(n , c~(x) ~ G (~)) . °
THEOREM 1.2.- Let X be a minimal surface of general type, and let n ~ 5 . Then

f .0, n = f maps X onto a surface of degree in P 
R (n , c21 (X) , c2 (X) ) 

.

The surface f(X) has k singular points : x1,...,xk . The restriction f |X - U



is an isomorphism onto f(X) - U x. , and f(U ) = x. , i = 1,...,n .20142014201420142014201420142014201420142014201420142014201420142014 

i=1 1 
~ 20142014 ~

Taking n = 5 it follows from this theorem that we can obtain all (isomorphism
classes of) minimal surfaces of general type X with given Chern numbers 

and c2(X) as follows : we take in P 

N~5 ~ c, 2 ~~) ~ c2~~~~ 
the Chow scheme in dimen-

sion 2 and degree 25c (X) . In this Chow scheme we take the subscheme of surfa-

ces Y , with isolated singularities only, for which on a minimal desingularisation

Y the bundle ~"t.~ 5 is the pullback of the hyperplane bundle on P . Finally we
divide by the action of PGL(N, C) . It has been proved by Popp ([12], p. 72) that

the result is an algebraic C-space of finite type. Roughly we can say : "for a

given c c2 we have a finite number of families of minimal surface of general

type".

So we are faced with two problems :

a) For which pairs of integers (m,n) does there exist a minimal surface of

general type X with c21(X) = m , c2(X) = n ? We shall call such a pair (m;n)
representable.

b) Find for a given representable pair the structure of the algebraic space
described before.

We shall mainly be concerned with problem a).

The following properties of represen-

table pairs are known :

1) m + n = 0(12) (this follows from

Riemann Roch, or from topology)

2) m, n > 0 ([1] , P~ 415 ; [16],

p. 285)

3) n ~ 5m + 36 . There is an infinity

of representable pairs on the line

5m - n + 36 = 0 (see [7], Part. I )

4) There is an infinity of represen-
table points on the line m = 3n 

Since nobody ever found a representable pair with m > 3n , there was for years

the



CONJECTURE.- For every surface of general type X the inequality c2 (~) s ~c~ (~)
holds. 

""~~*

Remark.- If the conjecture is proved for minimal surfaces of general type, then it

is true for all surfaces of general type, because blowing up increases c2 by 1

and i t decreases by 1 .

Partial results had been obtained. In 1966 I proved that (( 15~ ,
~ 1 C~ ) , and a year ago Bogomolov (( 14~ ) obtained the inequality 4c~ (X) .
Finally, last November, Miyaoka (~ 1 1~ ) proved the conjecture. It should be said

immediately that, although Bogomolov did not prove the conjecture, his reflections

have very much inspired Miyaoka’s proof. Bogomolov’s considerations remain very

interesting, because he relates the problem to the stability of vector bundles,

thus obtaining a promising outlook and several nice applications.

I would like to present here a simplified version of Miyaoka’s proof. I think

it works for a closed field of characteristic 0 , but not in the case of positive

characteristic.

2. Miyaoka’ s proof

To start with, some notations. A divisor on a surface X is a finite sum

D = L n.C. , , with C. an irreducible curve on X. D is non-negative
11 i i 2014201420142014s2014201420142014

if all 0 , and it is positive (effective) if it is non-negative and not zero.

If D~ and D2 are two divisors, then D D will be the intersection number of

their divisor classes (or homology classes, if you wish).

Script letters : 5 , .~ ,... will denote vector bundles or their locally free
**"*~2014’ 

A

sheafs of sections. P(~ ) will be the projective bundle, associated to ~r

will be the dual bundle of if , Sn~ the n-fold symmetric product of ~ . Final-

ly, ci(F) will be the i-th Chern class of 1° . 03A91X is the. sheaf of holomor-

phic 1-forms on X , i.e. the cotangent bundle of X .

The dimension of 1 ) = will be denoted by 

Given a divisor D , there is one line bundle, to be denoted by 0-(D) which

has a rational section with divisor D . In this way there arises an isomorphism

between the group of divisor classes and the group of line bundles. The divisors,

corresponding to K~n X are the n-canonical divisors, to be written as 

PROPOSITION 2.1.- If on the surface X there are two linearly independent holomor-

phic 1-forms tu. , w2 ’ such that w1 A w2 = 0 , then there exists a curve Y ,



a connected holomorphic map f: X ... Y , and holomorphic 1-forms ~~ , 82 on Y

with w. = f*(9.) , i - 1 , 2 .

For a proof see [16], p. 286.

PROPOSITION 2.2 (Bogomolov).- If on the algebraic surface X there is a line bundle

~ with h (Rom(JE ,n~)) ~ 0 , then there is a constant c , such that

ho (~~ k ) ~ ck f or al l k ~ 1 .

Proof. If h°(~® k ) ~ 1 for all k ~ 1 , the result is obvious. So we may assume

8k
that h (f  ) ~ 2 for some 1 . We start with the case k = 1 . Let s1
and s2 be linearly independent sections of 1, , and let h be a homomorphism

from I into , h ~ 0 . Then h(s1) and h(s2) are linearly independent 1-forms

on X with h(S2) = 0 , so we can apply Proposition 2.1. It follows that if

s~ vanishes on a curve, then this curve is contained in some fibre of f . Conse-

quently, ~ - where every component of the non-negative divisor D is con-

tained in some fibre of f . Let F be a fibre of f . Then there exists a natural

number c such that on X there are no non-negative divisors homologous to

k(D - cF) for all k ~ 1 . Let the divisor F consist of ck general (hence non-

singular) fibres of f . Then from the standard exact sequence

o -. F~ ) -. oX ( kD ) -. 
we find : OF ) - ck for all k ~ 1 . As to the

general case, by the "branched covering trick" there exists an algebraic surface

Y and a regular surjective map f : Y - X , such that f*(!) has two independent

sections. Since f~) ) ~ 0 implies f1~) ~ 0 , we can apply
to Y and f~(,~) the result just proved for k - 1 . Thus there exists a cons-

tant c , such that for all k 2 1 the inequality ho ( f~ (~ )® k ) S ck holds. But

h (.C ) ~ h°(f~(.~)~ k ) , , and the proposition is proved.

PROPOSITION 2.3.- Let X be an algebraic surface, 0 (D) a line bundle on X ,

and ~ a locally free, rank-two sub sheaf of such that

~n

(i) for some no > 0 the line bundle (det 4) 
° 

is generated by global sec-

tions ;

Then c (~)D ~ 0) .



Remark.- Equivalently, ~ can be seen as a rank-two sector bundle, admitting a

homomorphism into , which is generically an isomorphism on the fibres.

Proof. Let s be a section of s ~ ~ . There is a non-negative
divisor S on X , such that ~ ~ 0~(-D-S~ admits a section with isolated zeros

only.

Hence

S)n
Since 

° 
is generated by global sections we have c (~p)S ~ 0 . Conse-

quently, the proposition is already clear in the case that (D + S)~ ~ 0 . on the
other hand, if (D + S)~ > 0 , then application of the Riemann Roch theorem to
0~(n(D + S)) yields :

h°(0 A. (n(D + s) ) ) + h~ (o x (n(D + s) ) ) ~ dn~
for some constant d > 0 , provided that n is large enough. By Serre duality,

+ S))) = h°(OX(KX - n(D + S))) , and we find that either for an infinite
number of values of n have that h °(OX(n(D + S) ) ) > 1 2 dn 

2 
or that for an

infinite number of values of n we have that h°(OX (lL-n(D+S))) > 1 2 d . The
first possibility is excluded by Proposition 2.2 + S),F)) ~ 0)
and in the second case we have c (*t )(K- - n(D + S)) a: 0 for arbitrarely large

values of n, that is, )(D + 0 , i.e. c~ (‘~ )D s -c~ (’~ )S S 0 .

PROPOSITION 2.4.- Let X be an algebraic surface, 0-(D) a line bundle on X ,

and fh a locally free, rank-two subsheaf of Q* , such that~ 

8)n

(i) for some n > 0 the line bundle 
° 

is generated by global sec-

tions ;

(ii) Sn~ ) ) ~ 0 .

Then c ( ~ )D s 0) . ~

Proof. Let p : X be the projection. Then (~ 5~ , p. 68 ) there is a

divisor class H = R,~ on P(’~ ) such that for any divisor E on X there is a

canonical isomorphism between r (op(~ ) (r~ + p*(E))) and 0~(R ) ) ) *

So in our case there is a positive divisor G on P(’~ ) with

s(G) = B(nE - p*(D)) . By the "branched covering trick" there is a sur-
face Y , together with a surjective map f : Y - X (of degree k, say) such that
under the induced bundle map from P(f~’(~ )) onto P(~ ) the pull-back of G



decomposes into a sum of n positive divisors, of divisor class q*(Di)’
i = 1,..,n respectively. 

( q denotes the projection from P~f~~~ ~ ~ onto ~’ ~ . Hence for each i we have that

h°(Ho~n(oY(Di),f*(~) ) ) ~ O . Since f*(~ ) is a subsheaf of n~ , Proposition 2.3
yields :

Proof of the conjecture. We may assume that X is minimal. As was already men-

tioned before (property 2) of representable pairs) we then have c (x), c2(X) > 0 .
We shall derive a contradiction from the assumption that

Let )3 = -(1 - 3o’) , and let n be a natural number such that n(a + S) E ZZ .
4

We consider the vector bundle S~h’ 0 0 (-n(a + ~ )I~) . Then the cohomology of this
bundle vanishes in dimensions 0 and 2 , provided n is sufficiently large. In

fact, the vanishing of is an immediate consequence of

Proposition 2.4 : you and D = n(o’ and you use the fact

that (det = T~ - ~ is generated by global sections for n ~ 4 (Theorem 1.1).

And to see that also vanishes for n sufficiently large

you first use Serre duality and the fact that f~ - 0~(-I~) ; ; this gives

+ ~ )~) ) - + P) + 1 ~~) ) -
+ P - 1) + , and then you observe that this last dimension

vanishes because of Proposition 2.4, provided n is large enough.

We conclude that

for n sufficiently large.

But, on the other hand the Riemann Roch theorem expresses this Euler characte-

ristic as a polynomial of degree 3 in n :

x(X , + &#x26;)K~)) = -L3(a + e)~-3(a + 6)-~+1~n~ + 



with stricly positive leading coefficient. This gives the contradiction.

As an application I mention the following

THEOREM 2.5.- Let X be a surface with a positive definite topological intersec-

tion form. Then b2(X) = 1 , and b~(~) - 0 . °

Proof. Firstly we observe that 0 , for the only surfaces with

c2(X)  0 are certain ruled surfaces ((2~ , p. 214) and these cannot have a posi-
tive intersection form.We then conclude from the index formula =

~(~) _ ~ 3 ( c2 1 (X) - 2c 2 (~) ) that c2 1 (X) > 0 . ° Hence ([9], p. 958) X is an alge-

braic surface with c2 (X) ~ 0 . It is known ([15], p. 1625) that for all these sur-

faces the inequality 3C2(X) holds. So we have :

There are many examples of minimal surfaces of general type X with

c2(X) 
small, but it seems more difficult to produce examples with nearer

to 3 . In fact, I can only mention the following two types of examples with

c~ (~) ~ 
2 (i.e. minimal surfaces of general type with non-negative index) :

1 ) Kodaira surfaces : surfaces X with a connected map f : J~ ~ Y onto a curve

Y , which is everywhere of maximal rank, but such that the complex structure of the

fibres f ~ (y) varies with y E Y (see for example ~8~ ) . These surfaces have

somewhere between 2 and 21 2 , depending on the surface.

2) Quotients of bounded domains : quotients of a 2-dimensional bounded symmetric

domain D by a discontinuous transformation group, acting without fixpoints and

with compact quotient. Hirzebuch (~6~~ proved that their Chern numbers are propor-
tional to those of the compact symmetric space D’ dual to D . There are two

cases :

(i) D is the polydisk {(z1,z2) E C2 , 1 , l) . . Here D’ = P1  P1 ,
hence for all these examples we have .In this class we find the product
of two curves of genus ~ 2 , and furthermore the examples recently constructed by

([4]), among which there is a "false quadric" (c ~ (x) = 8 , c~(X~ - 4 ,



b~ (X) = o) . °

(ii) D is the unit ball ~ ( z , z~ ) E C~ , ( + )z )  1) , , with D’ = P . Here

we have only the Borel-Hirzebruch examples, mentioned before. It is known that an

infinity of values of c ? (x) = 3c2 (X) occurs, but not which ones.

All these examples have infinite fundamental group ; in fact there is the

CONJECTURE (Bogomolov).- Every surface of general type with 2c-(x) has an

infinite fundamental group.

The bound 2c-(x) is sharp in any case, for there are simply-connected
minimal surfaces of general type with ’" /-B arbitrarily near to 2 , e.g. com-

plete intersections or Hilbert modular surfaces.

The conjecture implies that a surface, homeomorphic to P , is also isomorphic
to P~ . This famous special case has recently been solved by Yau who has proved
that on a surface with ample canonical bundle there exists a Kahler-Einstein

metric [17]. This implies (use [3]) that surfaces X with c2 1 (X) - 3c (X) with

ample canonical bundle have the unit ball as universal covering. Question : is

the universal covering of a minimal surface of general type with c2 ~ 2c topo-

logically the unit ball ?

3. Some other results

In this section I give a few examples of other recent results, which illustrate

the preceding sections. Needless to say that many other important results remain

unmentioned.

1) In section 1. the inequality c2(X) ~ 5c21(X) + 36 was stated for minimal sur-

faces of general type. It follows from Noethers inequalities ([2], p. 208) :

In two recent papers ([7 I], (7 II]) Horikawa has greatly extended our knowledge
about surfaces with equality. For c even, he proves that all these surfaces

can be obtained as desingularisations of 2-fold branched coverings of P2 or

Hirzebruch surfaces E , showing exactly which curves in which divisor classes
occur as branch loci. He then goes on to study the moduli and deformation types

of these surfaces, obtaining as a corollary that all these surfaces are simply-

connected. The results for c21 odd are of similar nature.



2) Another type of "extreme" surfaces are those with c2 1 (~~ - 1 , c~(X) = 11 .
It was known ([2], p. 212) that for all these surfaces q(X) = 0 , and that

the order of H1(X,Z) was at most 6. Until recently, only one type was known, the

Godeaux surfaces. A t the moment, the situation is as follows. Kiyaoka proved ([10])
that the order of H,(X,Z) is at most 5, and that if H 1(X,Z) ~ 2 , then X is

a Godeaux surface. Reid ([13]) not only showed the existence of surfaces X with

H1(X,Z) = Z 3 or Z4 , but also the case Z2 + Z2 does not occur. Finally, it is not

yet known whether H1(X,Z) can be Z2 or 0 .
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