Faisceaux amples et très amples
Séminaire Bourbaki : vol. 1976/77, exposés 489-506, Séminaire Bourbaki, no. 19 (1978), Exposé no. 493, p. 46-58
@incollection{SB_1976-1977__19__46_0,
     author = {Raynaud, Michel},
     title = {Faisceaux amples et tr\`es amples},
     booktitle = {S\'eminaire Bourbaki : vol. 1976/77, expos\'es 489-506},
     author = {Collectif},
     series = {S\'eminaire Bourbaki},
     publisher = {Springer-Verlag},
     number = {19},
     year = {1978},
     note = {talk:493},
     pages = {46-58},
     zbl = {0412.14019},
     mrnumber = {521759},
     language = {fr},
     url = {http://http://www.numdam.org/item/SB_1976-1977__19__46_0}
}
Raynaud, Michel. Faisceaux amples et très amples, dans Séminaire Bourbaki : vol. 1976/77, exposés 489-506, Séminaire Bourbaki, no. 19 (1978), Exposé no. 493, pp. 46-58. http://www.numdam.org/item/SB_1976-1977__19__46_0/

[1] E. Bombieri - Canonical models of surface of general type, Publ. I.H.E.S., 42(1973), p. 171-220. | Numdam | MR 318163 | Zbl 0259.14005

[2] K. Kodaira - Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan, 20(1968), p. 170-192. | MR 224613 | Zbl 0157.27704

[3] D. Lieberman and D. Mumford - Matsusaka's big theorem, Proc. of the AMS Summer Institute 1974, Arcata, | Zbl 0321.14004

[4] T. Matsusaka - On canonically polarized varieties II, Amer. Journ. Math., 92(1970), p. 283-292. | MR 263816 | Zbl 0195.22802

[5] T. Matsusaka - Polarized varieties with a given Hilbert polynamial, Amer. Journ. Math., 94(1972), p. 1027-1077. | MR 337960 | Zbl 0256.14004

[6] T. Matsusaka and D. Mumford - Two fundamental theorems on deformations of polarized varieties, Amer. Journ. Math., 86(1964), p. 668-683. | MR 171778 | Zbl 0128.15505

[7] A. Mayer - Families of K3 surfaces, Nagoya Math. Journ., 48(1972), p. 1-17 | MR 330172 | Zbl 0244.14012

[8] M. Raynaud - Faisceaux amples sur les schémas en groupes, Lecture Notes in Math., n° 119, Springer, 1970. | MR 260758 | Zbl 0195.22701

[9] B. Saint-Donat - Projective models of K-3 surfaces, Thèse

[10] A. Weil - Variétés kählériennes, Paris, Hermann, 1958. | MR 111056 | Zbl 0137.41103