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REPORT ON M. GROMOV’S ALMOST FLAT MANIFOLDS (*)

by Hermann KARCHER

Seminaire BOURBAKI

31e annee, 1978/79, n° 526 Novembre 1978

1. Introduction

A basic theme in Riemannian geometry is the following question : To what extend do

assumptions on local invariants determine global properties ? Very important such

assumptions are bounds for the curvature of the metric - recall that in Riemann’s

normal coordinates the curvature tensor is obtained as the second derivative of the

metric. Examples of known results are :

(i) The only surfaces which carry positive curvature metrics are S2 and 

because 203C0.x(M) = M Kd03B8 .

(ii) A complete simply connected Riemannian manifold Mn of nonpositive curvature

is diffeomorphic to Rn , because the Riemannian exponential map exp has maximal
P

rank on the tangent space T M and is in fact a covering map.

(iii) More specifically, if Mn has zero curvature ("flat") then exp is an iso-
P

metric aovering map, i.e. the fundamental group rr (M,p) operates as a discrete -

and for compact M : uniform - group of isometries on Rn . From Bieberbach’s classi-
fication of such groups it follows that compact flat manifolds are covered by flat

tori.

(iv) If Mn is complete, noncompact and has positive curvature then convexity argu-

ments show that Mn is diffeomorphic to Rn .

(v) If Mn is simply connected, complete and has curvature bounds 4  K ~ 1 then

Mn is homeomorphic to Sn . For even dimensions ~ 4 the result is sharp since

P (C) carries a metric 1 .

(vi) If Mn is complete and has curvature bounds 0.7 ~ K ~ 1 then the following

holds : The universal covering M is diffeomorphic to Sn in such a way that the

action of t’ti(M,p) on M is conjugate to an orthogonal action on sn, i.e. M
is diffeomorphic to a space of constant curvature.

(*) This work was done under the program "Sonderforschungsbereich Theorethische
Mathematik" at Bonn. Discussions with Gromov during the Arbeitstagung 1977 were
very helpfull. Since early 1978 I am working jointly with Peter Buser.



(vii) In principle similar results hold if the model space Sn is replaced by

any of the other symmetric spaces of compact type, but the precise formulation is

more elaborate.

The purpose of this lecture is to explain the proof of the following theorem

of M. Gromov [6] which differs from all the previous results by the fact that the
model space is not known a priori but has to be constructed in the proof. ([6J is

a general reference throughout the paper.)

1.1. THEOREM.- Let M be a compact n-dimensional Riemannian manifold, assume that

the sectional curvatures K of M are bounded in terms of the diameter d(M) :

Then there is a finite - at most 2. (6’t’r) 

" 

fold - covering of M which is

diffeomorphic to a compact quotient of a nilpotent Lie group.

There are many more manifolds than the compact flat ones which allow for

every E > O an E-flat metric, i.e. one which satisfies E . d(M) 2 .
O a,

. lj
1.2. Example.- On the nilpotent Lie algebra g = (A= 

~ 

. 

. 

; aij E R ,

O 

, 

O 

ij

’! s i  j s n ~ define the following family of scalar products :

and extend them by left translation to the corresponding nilpotent Lie group G

of upper triagular matrices. From the estimate 2 ’ ( n - 2 ) 

one derives the following q-independant bound for the curvature tensors R 
q 

of

these left invariant metrics



Each compact quotient can be given an arbitrarily small diameter by

appropriate choice of q ; therefore r~G is E-flat for each E > 0 . If one

takes for r the integer subgroup of G , then F is not a Bieberbach group

since the rank of its free Abelian subgroups is too small and therefore does

not carry any flat metric.

1.3. The first steps of Gromov’s proof. Because of the strong curvature assumptions

the maximal rank radius r of the Riemannian exponential map is much larger than
m

the diameter of M . Therefore many short geodesic loops exist and Gromov defines

a product between short loops at p which satisfies the relations of a group where

it is defined. From this torso one can generate the fundamental group TI1(M,p)
abstractly : by generators and relations. Each short loop at p is mapped onto

its holonomy motion and this map is almost compatible with the Gromov product since

small curvature implies that parallel translation varies only slightly with the

change of the path. Therefore commutators of loops almost behave as commutators of

motions, i.e. iterated commutators converge to the identity if the rotational part

of the corresponding holonomy motion is small ( ~ 3 ). Every set consisting of
loops with rotational parts ~ 1 3 will therefore generate a nilpotent subgroup of

if the homotopy errors are not too large. Moreover the degree of nilpotency

of all such subgroups has the a priori bound d = 13 
2n(n+1) 

which is derived

by a counting argument in the group of motions. - We continue this summary in

2.15 after the more detailled explanations of chapter 2 have been given.

2. Products of short loops

From Riemannian geometry we have

2.1. Rauch’s THEOREM [5].- Curvature bounds - ~2 S K ~ ~~ imply for the Riemannian

exponential map exp at p (for v , w t T M )
P

(d exp) 
tv 

has maximal rank if tv~  
-1 1 

(~ TT* E 
1 f 2 

’d(M) in 1 . 1 ) .

2.2 Klingenberg’s Long-Homotopy-lemma [5].- Let r 
m 

be the maximal rank radius of

exp ; assume exp v = exp w . Then any homotopy which joins the geodesic arcs
P P P

exp tv and exp tw t ~ 1) contains a curve of length 2 r .



2.3. DEFINITION.- A homotopy which contains only curves shorter than the maximal

rank radius rm of the exponential map is called a short homotopy. The correspon-

ding equivalence classes are called short homotopy classes.

From 2.2 and the standard shortening process by geodesic segments we have

2.4. Every short homotopy class of closed curves at p contains exactly one geodesic

loop at p .

2.5. DEFINITION.- Let 03B1 and S be geodesic loops at p ; assume that the sum of

their lengths is less than the maximal rank radius r , e.g.

|03B1| + S I  --!/2 *d(M) . Let be the closed curve "first a then P ",I

as usual. Gromov’s product ~ * tY is the unique (!) geodesic loop in the short

homotopy class of 

If one lifts the curve to T M by exp , then the ray to the
endpoint of this curve is mapped by exp onto the loop p * cx . Clearly tx is

the loop cx parametrized backwards and associativity holds as long as the sum of

the lengths of the factors is  r E 
-1 /2 

d(M) ) . Every closed curve can be
m

decomposed ( in n ~ ( M, p ) ) into a product of curves shorter than 2d(M) + ~ ( ’~ > O

chosen) ; therefore is generated by geodesic loops ~ 2d(M) + ~ . Under

the mild additional condition 5 ~ ~. E 
1~2 

it can already be proved that all rela-

tions in are products of relations which are given by short homotopies

between loops of length  5 . d(M) . Therefore the short loops ( 5 . d(M)) with

Gromov product generate a group isomorphic to n,(M,p) .

2.6. DEFINITION.- Let c be a curve and let a vectorfield X along c satisfy

the differential equation D dt X(t) - c(t) . The map m(c) : Tc(O) ~ Tc(1)M
given by X(O) ~ X(1) is called affine translation along c . m(c) is a

motion, since its linear part is Levi-Civita translation along c .

2.7. Path dependence of translations (2~. Let c~ , c2 be two curves from

c,(O) - p to c.(1) - q ; assume the existence of a smooth homotopy from c1 to C2
with area ~ F and longest curve ~ L . Let X.(t) be Levi-Civita parallel along

c 
I 

and X,(0) = X.(0) ; ; let Y.(t) be affine parallel along c, 
I 

with Y.(0) = o.

Let be a bound for the curvature tensor along the homotopy. Then



Our most important application of 2.7 is to homotopies which are given by geodesic

segments spanned in geodesic triangles. L is the sum of two edgelengths and F is

obtained from

2.8. Aleksandrow’s area comparison (1~. Consider a geodesic triangle and span any

surface with geodesic segments. Assume a curvature bound K s A along the surface.

Consider a triangle with the same edgelengths as the given one in the plane of cons-

tant curvature A ( if A2 > 0 this requires a circumference  203C0039B-1 ). Then the

area of the spanned surface is not larger than the area of this constant curvature

triangle. In particular, if two edgelengths, a, b are ~ 03C0 2022 (3A) 1 then

F ~ 0.7ab ( s 0.5ab if A = O ).

To conveniently express how closely the Gromov product P * a and the compo-

sition of the holonomy motions 0 m(0f) are related we use the following Finsler

metrics :

2.9. DEFINITION.- For A, B E SO(n) define d(A,B) = max( I ~ 
the corresponding norm in the tangent space TidSO(n) of skew symmetric matrices

is !st I = X E Rn , Ixl = 1 } . For motions A , i ( X ) - Ai 8 X + a, define

d(A1 , A ) = max(d(A , A ) , 3A 8 a1 - a2I ) . . ( n2 should be thought of as a

curvature bound ; the factor 3 A makes the definition independent of renormaliza-

tions of the metric of M ; it is also convenient in 2.12.) Abbreviate

d(A, id) = ; d(A, id) = 

2.10. Homotopy errors. Let be geodesic loops with ~ * a defined. Let r(a)

and be rotational and translational part of the holonomy motion 2.6. Assume

curvature bounds ~K~  A2 . Then

For commutators better estimates are true than follow from 2.10. One needs

2.11. Comparison of Riemannian and Euclidean translation [9]. Let w(t) be a parallel

vector field along the geodesic c(t) = exp tv . Assume A2 . Then



First the translational part of the commutator (&#x26;,C~~ - ~ ~ * ~c ~ * a is esti-

mated directly with 2.1 and 2.11 ; then this information is used to get a good

bound on the homotopy error of the rotational part from 2.7 and 2.8. Gromov does not

seem to use 2.11.

2.12. Commutator estimates [2]. Let be short geodesic loops (2.5) at p

and assume A . Then

This result is very powerful. It shows that - after handling the homotopy

errors - one can work with commutators of loops almost in the same way as with commu-

tators of motions (we recall B] I[ ~ 2 This use of commutators

seems to go back to Margulis who derived from 2.12-type estimates a lower bound for

the volume of a compact negatively curved Riemannian manifold. Gromov uses 2.12

to generate nilpotent subgroups of the fundamental group. Very surprisingly the

following holds :

2.13. A priori estimate [2]. The degree of nilpotency of all subgroups of 

which are generated from sets of loops which satisfy I~m(cx) ~~ ~ 3 has a bound

Proof. Choose economic generators as follows: «~ is such that is

minimal (in the generating set U ). If a~,...,~ 7 are already chosen, then consi-

der the set U 
> 

of Gromov-products of these and choose a 
j+~ 1 

in U ~ U, 7 such that

~~ +~)~~ is minimal. After finitely many steps one has a so called short basis

~~,...,~k for U . Because of 2.12 one can show by induction that the degree of

nilpotency of the generated group (a~,...,ak~ cannot be larger than k . From the

construction follows

and with 2.10



There are at most as many motions which pairwise satisfy these inequalities as there

are unit vectors (Finsler length) in the tangent space of this group which satisfy

|wi - wj| ~ 26 27. The balls of radius 13 27 around such wi are disjoint and contai-

ned in a ball of radius 40 27 . The volume ratio (40 13) t ï + 1) 
of the balls

gives an upper bound for the number of vectors w..

2.14. We have formulated 2.13 for the generated group. It is important to observe,

that the inductive proof in fact shows : if d is the length of a short basis, and

if a d-fold commutator of loops is defined in the sense of 2.5, then this d-fold

commutator is already O as a loop (while 2.13 only says that this loop is O in

’~t 1 ( M ) ) .

2.15. The next steps of Gromov’s proof. We have constructed nilpotent subgroups of

’t’t1(M) ; next, one has to find one such subgroup which can be embedded as a uniform

discrete subgroup r into an n-dimensional nilpotent Lie group G . Observe that

such a Lie group can be identified with Rn such that the product is given by

Malcev’s polynomials [,11] of degree ~ n . These polynomials are uniquely determined

if one knows their values on sufficiently many points of an uniform discrete sub-

group of G . Gromov shows that a selected set of short loops, called f P1 , can be

found and (in 3.4) be identified with so large a ball of an integer lattice in Rn
that the products of these loops determine Malcev polynomials [11] which define a

product on R turning it into a nilpotent Lie group G . The mentioned set F 
1

of loops is such that the Gromov product behaves almost as the translational parts

of the loops do (3.2.5). Therefore one can choose a basis in the same way as in a

translational group and express the short loops in F 1 as words in the basis

elements ; these words allow the identification of the short loops with the lattice

points of a large ball, even in such a way that loop length and lattice length

almost coincide (3.4.2). - The set 
1 

of loops is constructed in 3.2 ; this cons-

truction requires curvature assumptions (see 3.2.3) which are so strong that homo-

topy errors at all other parts of the proof turn out to be almost neglegible.



3. Small retational parts

3.1. A Dirichlet choice. We have to find a radius P with the following proper-

ties : for every v E TpM , Ivl = 3p , one has a loop Of with

~ t(®t) - vl S po + d(M) and ~1 - (2.6n) d (recall d = 1 .76n(n + 1 )

from 2,13).

The smallness of ’~1 is explained in 3.2. To estimate the index of the cons-

= n(n - 1)
tructed subgroup in n1(M) one needs po z 2 . (6n) . d(M) (see 3.3).

One can find 4 N . 2(6tt) 2 n(n - 1 ) 
.d(M) with N s .

Proof. First, a lifting argument shows that the translational parts of loops at p

are d(M)-dense within the ball of radius r (Z ’rt£ 1~2 d(M)) in which exp
m p

has maximal rank. However the nearest loop to a given v t T M need not have small
P

rotational part, but it suffices if its rotational part occurs ~1-almost among loops
of length ~ p . (Homotopy errors are neglected since they cause a neglegible con-

tribution.) Let 

B1 2~ 1 
be a (Finsler-) ball of radius 1 2~ 1 in SO(n) ; , . there are

at most N = 
vol 

B1 2~ 1 
S 2 ( 

SO ( n ) 
 exp(exp n ) rotations 

in

O(n) with pairwise distance ~ ~1 . Therefore, if po . ,1 - 2 . (6rt) 2 n(n- 1) . d(M)
does not have the desired property, one tries == 4. % after at most N

such 4-fold increases one must have found a suitable P , since it cannot be true
o

at each step that one finds a rotational part for a loop of length between 2p

and 4po which does not 111-almost occur among the loops ~ P o .

3.2. The almost translational set of loops. Consider the set 039303C1 1 
of loops with

lengths ~ p1 - e3n 
2 

p and rotational parts 5 3 . . (The large ratio p2 p 1 is

needed in 4.1 to have sufficiently many products available to determine the Malcev

polynomials.) Under the curvature assumption 311p~ S 3 we have 2.14 for ,

i.e. a short basis of length ~ d = 1.76 n(n + 1 ) 
so that all d-fold commutators 1

vanish. Let 
1 

be the set of all Gromov products of elements in 
1 

such that



the products are inductively defined and have lengths S p1 . We claim :

3.2.1. All rotational parts in r p are in fact s 2 d , . in particular T’p = r . .
Proof. Let 8 E 039303C1 

1 

be a loop with 8 > 2 d . Because of the inductive

definition of 039303C11 it is sufficient to assume 6 S 3 . We choose a vector v E T 
P 
M

with ( 5 (r(ô)8v,v) I = 8 and with 3 . 1 find a loop at such that I r (cx ) (1 ~ ~ 1 and

I t ( Cx ) - v ~ s Po . . Consider the d-fold ; 2 . 14 shows

that it is trivial ; on the other hand we can estimate its translational part directly

and after some computation find it ~ O if the following is true :

From ’~ 1 ~ ( 2 . 6n ) ~d follows that 3.2.2 i s true for 0 C ~ 2 d , 3 ~ , therefore
these 6 cannot occur in rp .

In the proof of 3.2.2 one has to use the estimates of homotopy errors from

chapter 2’; in particular one needs 3 A!t(y)! ( ~)!r(y)t) I or

6 A 4~ * (6TT) ~n(n _ 1 ) . d(M) s ~1 - (2.6Tf) _ d (compare 3. 1 ) .

More explicitly,

3.2.3. I12. *exp(exp(exp 2n2)) S 1 is a sufficient curvature assumption.

We repeat : this assumption is so strong that homotopy errors at all other parts

of the proof do not significantly change the estimates.

An immediate consequence of 3.2.1 is (since at least 
1 

iterations

of cx are possible in rp ) : :

Therefore we have the following almost translational behaviour ( E« 1 con-

tains the homotopy error)..

3.2.5. If 6 r then |t(03B1* P) - t(03B1)- t(P) I : 2 -’2014201420142014’20142014’2014201420142014L. (1 +~) .
~1 ’ ’ ~1

Moreover we have from 2.12 (as a consequence of 2.11) already at this point a

commutator estimate which Gromov derives only later.



3.2.6. if 03B1 , p e r then t([03B1,03B2])| : 2.2-d.|t(03B1)|.|t(03B2)| p1 .(1 + e)

3.3. The index estimate. We estimate the index of the group r generated by r P1 1
in as follows :

(i) The finitely many loops at p of length ~ 2*d(M) generate ’t’r1 (M,p) .
(ii) If all the words of wordlength = l+ 1 in these generators occur already

in equivalence classes mod r P1 1 of the words of wordlength ~ l , then there are no

further equivalence classes in longer words.

(iii) Two short loops (~ p ) are in the same equivalence class mod 039303C1 1 

if their

rotational parts have a distance S 3 in O(n) (homotopy errors neglected).

Therefore there are at most W = 
vol 

B1 
2 . (6n) dim SO(n) different

3

equivalence classes among the short loops.

(iv) Words of wordlength K W are still short as loops (2W.d(M) ~ 2p ) .
Therefore (ii) must occur among the words of wordlength ’ W , so that there are

not more than W equivalence classes mod r in TT1(M) .

3.4. The lattice identification. The almost translational behaviour 3.2.5 allows to

pick generatbrs in 
1 

in the same way as in a discrete translational subgroup

of Let 5 1 be the shortest loop in I’p 
1 

; s1 commutes with all other

loops because of 3.2.6. For each 6 E r 
03C11 

consider the orbit (6 * 8) C: ip . .
Scalar products (t(03B41) , t(03B4i1 * 8)~ and lengths * S)) along the orbit can

be controlled with 3.2.5 to find a unique representative 6 in the orbit determined

by (t ( 8 1 ) , > 0 , (t ( S 1 ) , t(8" 1 * 8 ) ~ s 0 . Starting from 6 one needs at

most ( 1 + (1 - 2 d) ° (~) multiplications by 6. to reach ~b .

Let f’ be the set of orthogonal projections of representatives 6 onto the

orthogonal complement of t(6 ) in T M and define for cx’ , f’ the

product ot’ * 03B2’ to be the projection of the representative of a * p . Starting

from ~8’) ~ 1.5 ’ 6’t one proves that the inequalities 3.2.5 and 3.2.6 hold

in r’ with 2 d replaced by 8. 2 d ; ; note that even 8 . n 2 d is still much

smaller than needed for the present arguments. To define a product cy’ * ~’ one



/~~ ~~

needs the product ~ * j3 of somewhat longer elements in r , but for ~’ , , r’

with ’ !p* ~ ?* ~1 1 the product is clearly defined. Therefore one is ready

for an induction which for dimension reasons terminates after at most n steps :

If inductively the basis 8’ ~...~ 8’, for F* is already selected then choose

~. , **~*’ ~. ,..., ’~ 6 ~ as basis for , Since the loops from r are P -dense in
1 2 n’ P~ P o

the 4P -ball in P (see 3.1), and since we do not lose significantly from this

relative denseness through n inductive steps (recall d = 1.76 ), we will

obtain exactly n generators 8 ,...,6 n for F which is Gromov’s "normal basis".

3.2.6 shows at each inductive step that the shortest element is in the center ; i

therefore all loops 
k 

8 of length ’ 3 * p have a unique representation

as a normal word 03B41 *...*&#x26; . . (The factor 3 
-n 

stems from || ~ 1.5 8’ ; 
.

it could be almost removed since for 8 » 0 a much sharper inequality is

k~j k

true.) Clearly we can identify the loop 8. 
1 

* 

... 
* 8 n 

n 
with the n-tuple

(k,,...,k ) or even with the lattice in T M. This identifica-

tion is much better than one might expect since the inductive choice of the normal

basis gives

From 3.2.5 and 3.4.1 we prove that the lattice-identification is very close

to the translational part, namely (if |t(03B4k11 * ... * 03B4knn)| ~ 3-n * 03C11 ) :

We interpret now Gromov’s product of loops as a product between the lattice

points 03A3ki.03B4i 
of T M and since lattice length and loop length almost coincide

by 3.4.2 we have :

3.4.3. Inequalities 3.2.5 and 3.2.6 hold for lattice vectors of length ~ 3-n . p1
if loop length t(&#x26;k1 * 

... 
* is replaced by lattice length |03A3 k..6. t

and E is increased slightly.

Finally we note that at each inductive step the shortest vector is S 2p ,
o



therefore we have for the normal basis

4. The nilpotent Lie group

4.1. The Malcev polynomials. 3.4.3 shows that commutators ~8i , b~~ are generated

by 03B41,...,03B4min(i,j)-1 . Therefore the product of two words

03B4k11 * 
... * * 03B4l11 * 

... 
* 03B4lnn is a new word 03B4p11 * 

... 
* where the p.

are polynomials of degree ~ n + 1 - i in the exponents k 1 , ... , kn , l1,...,ln [11].
(Commutators are so much shorter than their factors that the rearranging of the

product into its normal form does not change its length very much ; therefore the

rearranging can be considered an algebraic procedure as in [11].) We want to use

these so called "Malcev polynomials" to extend the product from a ball in the

lattice ~ k..8, to all of Rn and thus obtain the desired n-dimensional
i i

nilpotent Lie group G . If one knows associativity, inverses and the nilpotency

relations on sufficiently many lattice points then the polynomials expressing these

relations are satisfied on all of Rn and therefore define the nilpotent Lie group

structure on P

The inverse is given by a polynomial of degree ~ n , associativity is

expressed by a polynomial of degree n3 and the vanishing of the various n-fold

commutators is expressed by polynomials of degree ~ n3n . . Since commutators are

shorter than their factors one stays in the domain where products are defined.

Together with max ( ( 2- ; |ki| ~ N} ~ n* N* 2p ’ 1 .5n 1 it follows that

it is sufficient to have products defined for all loops of length

s 2n*n ’ 1.5 * p o . This leads to p 1 = e . p o , the assumption made in 3.2.

Therefore the Malcev polynomials are uniquely determined by the Gromov products of

loops in r 1 and they satisfy all relations to define a nilpotent Lie group

structure on 

’ 

Rn ! The set 039303C11 of loops ~ p ’ with rotational part ~ 1 3 is

identified in a product preserving way with a subset of this Lie group G, and

the group r (which is abstractly generated from r 
~1 

with the short relations

(2.5) between its elements) is identified as an uniform discrete subgroup of G via

the integer lattice points 03A3ki.03B4i in 



4.2. Injectivity. Obviously r has a natural homomorphic image in ; we

need this to be an isomorphic one. Therefore one has to exclude the possibility

that the other short loops, i.e. those with rotational parts > 3 , generate (in
additional relations between the elements of r. To achieve this we iden-

tify (in 4.2.1) all loops ~ 3-n. p bijectively anlproduct preserving with trans-

formations of some set S. Clearly, the group generated from the loops is isomor-

phic to the group generated from the transformations ; therefore there are no

further identifications in the generated group. Recall, that all relations in 

are generated from the short relations between loops of length ~ 5d(M) - which is

S 3*~* p I ; this proves that the natural image of r in is an isomorphic

one. -

4.2.1. The definition of the set S . Consider two loops ~ 3 -n . 
p1 equivalent if

they differ by a loop in r p , then take A as a set of shortest representatives

from these equivalence classes and put S = A x r~ To define the action of

any loop b ( s 3 n . P) on (a,6) E A x r write b * a = a’ * 6 ’ ( a’ t A ,

8’ E f) and put b. (a,6) = (a’ , 8’ * 6) . To check that this identifies the loops

3 n! p1 injectively and product preserving with transformations on S, one uses

that rp 1 
is fairly dense among all loops ~ 3-n03C11 (see 3.4, in particular 3.4.2)

and that rp 
1 

can be identified with its left actions on r (see end of 4.1).

4.3. The left invariant metric on G. We lift the "normal basis" bl,...,8n E G
with the exponential map Exp of G to a basis of the tangent space T G and use

e

this basis for an isometric identification of T G with T M ; then we left
2014201420142014201420142014 e p

translate this metric to all of G. Next, the curvature tensor of this metric

- or equivalently the norm of the Lie bracket - has to be estimated. We do not

understand Gromov’s "interpolation argument" , but we estimate the third order

remainder term of the Campbell-Hausdorff power series inductively over the subgroups

spanned by ~i/-..f~. : t

4.3.1. If H(X,Y) is defined by Exp X *Exp Y - Exp H(X,Y) , then we have

where X E TeG is arbitrary, Y E and E depends on the norm

of the Lie bracket on Tespan ( a 1, ... , 8 i _ 1 ) ,

Consequently we have (side conditions as in 4.3.1) :

Because of 4 . 3 . 2 and Exp X8Exp Exp -Y) we can



use the commutator estimates 3.4.3 to get, inductively over the subgroups

span(6.,...,6.) , estimates for the Lie bracket which are about as good as 3.2.6.
(In other words : the elements s~,...,8n are indeed so close to the identity in

G that the higher than second order terms in the Campbell-Hausdorff series can be

neglected for the computation of commutators.) In particular, the curvature of G

is very small. (We do not give any more numbers, since the curvature assumption we

were forced to make in 3.2.3 makes all estimates ridiculously small compared to

what the present arguments would need.)

4.4. The r-equivariant diffeomorphism. ~’ acts isometrically by left translations

on G and - as the deck group of a finite covering of M - r also acts isometri-

cally on the universal covering M . From the "normal basis" 03B41,...,03B4n in r and

the exponential maps of G and M we obtain natural basis for T G and T M ;
e p

therefore, after left translation by r , we have corresponding natural basis in

the tangent spaces of all "lattice points" in G and M which identify these tan-

gent spaces almost isometrically. Then, with the exponential maps of G and M

we obtain maps from large balls around the lattice points in G onto corresponding

balls in M. These local maps are compatible with the action of r and they are

very close to isometries since the curvatures of G and M are so small (see 2.1).

Moreover, their differentials can be described by Jacobi fields, hence, again

because of the small curvatures, these differentials are close to the identity (if

we identify different tangent spaces by Levi-Civita parallel translation). Therefore

a center-of-mass-average [9] of these local maps will produce a r-equivariant map
-

of maximal rank from G to M , i.e. a i-equivariant diffeomorphism.
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