SÉminaire N. Bourbaki

Michael Schneider
 Holomorphic vector bundles on \mathbb{P}_{n}

Séminaire N. Bourbaki, 1980, exp. n ${ }^{0}$ 530, p. 80-102
http://www.numdam.org/item?id=SB_1978-1979__21__80_0
© Association des collaborateurs de Nicolas Bourbaki, 1980, tous droits réservés.
L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The classification of holomorphic (= algebraic) vector bundles on complex projective space P_{n} could be tried along the following lines :
I) Classify the topological complex vector bundles on \mathbf{P}_{n}.
II) Determine which topological bundles admit an analytic structure.
III) Classify for fixed topological bundle all possible analytic structures.

This is a survey of some of the main results concerning I) - III) as well as a guide to the literature. We included only a few open problems. But in fact most of the work has still to be done.

Notation.- No distinction will be made between holomorphic vector bundles and locally free coherent analytic sheaves. $\mathcal{O}(1)$ is the line bundle having a holomorphic section vanishing precisely on a hyperplane. $\mathrm{E}(\mathrm{k}):=\mathrm{E} \otimes \mathcal{O}(1)^{\otimes \mathrm{k}}$,
$h^{i}\left(\mathbf{P}_{n}, E\right):=\operatorname{dim}_{C} H^{i}\left(\mathbb{P}_{n}, E\right)$ for a vector bundle E on \mathbf{P}_{n}. The total Chern class of E will be denoted by $c(E)=1+c_{1}(E)+\ldots+c_{r}(E)$. The Chern classes $c_{i}(E) \in H^{2 i}\left(P_{n}, \mathbb{Z}\right) \simeq \mathbb{Z}$ will be regarded mostly as integers. The holomorphic tangent bundle of \mathbf{P}_{n} will be denoted by $\mathrm{T}_{\mathbb{P}_{\mathrm{n}}}$ •

1. Topological classification

Let $\operatorname{Vect}_{\text {top }}^{r}\left(\mathbf{P}_{n}\right)$ be the isomorphism classes of topological complex vector bundles of rank r on \mathbb{P}_{n}. It is well known that $\operatorname{Vect}_{\text {top }}^{r}\left(\mathbb{P}_{n}\right) \simeq \operatorname{Vect}{ }_{\text {top }}^{n}\left(\mathbb{P}_{n}\right)$ for all $r \geq n$.

Schwarzenberger [53] noticed that the Chern classes of $E \in \operatorname{Vect}_{\text {top }}^{r}\left(\mathbb{P}_{n}\right)$ satisfy the condition
$\left(S_{n}\right) \quad \sum_{i=1}^{r}\binom{\delta_{i}}{k} \in \mathbb{Z} \quad$ for $\quad 2 \leq k \leq n$.
Here the δ_{i} are as usual related to the Chern class of E by

$$
c(E)=\prod_{i=1}^{r}\left(1+\delta_{i}\right)
$$

The conditions (S_{n}) for $r=2$ are as follows :
$\left(S_{2}\right)$ no condition
$\left(S_{3}\right) \quad C_{1} C_{2} \equiv 0 \quad$ (2)
$\left(S_{4}\right) \quad c_{2}\left(c_{2}+1-3 c_{1}-2 c_{1}^{2}\right) \equiv 0 \quad$ (12)
$\left(S_{5}\right)$ is equivalent to $\left(S_{4}\right)$.
For $r=3$ one gets for instance $\left(S_{3}\right): c_{3} \equiv c_{1} c_{2}$ (2).
A. Thomas [60] proved that the Schwarzenberger condition $\left(S_{n}\right)$ classifies stable bundles on \mathbf{P}_{n} i.e.

$$
\operatorname{Vect}_{\text {top }}^{n}\left(\mathbb{P}_{n}\right) \simeq\left\{\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}^{n}:\left(c_{1}, \ldots, c_{n}\right) \text { satisfy }\left(S_{n}\right)\right\} .
$$

For \mathbb{P}_{2} this gives

$$
\operatorname{vect}_{\text {top }}^{r}\left(\mathbb{P}_{2}\right) \simeq \mathbb{Z} \times \mathbb{Z} \quad \text { for } r \geq 2
$$

For \mathbb{P}_{3} there remains the classification of 2 -bundles. This has been done by Atiyah and Rees [2]. They showed that for c_{1}, c_{2} with $c_{1} c_{2} \equiv 0$ (2) and c_{1} odd there exists exactly one 2 -bundle with these c_{i} as Chern classes. For c_{1} even there are exactly two 2-bundles with these c_{i} as Chern classes. These two bundles are distinguished by a certain mod 2 invariant $\boldsymbol{\alpha}$.

On P_{4} there remains the classification of bundles of rank 2 and 3 . Switzer [55], complementing the results of Atiyah and Rees, showed

$$
\operatorname{vect}_{\text {top }}^{2}\left(\mathbb{P}_{4}\right) \simeq\left\{\left(c_{1}, c_{2}\right) \in \mathbb{Z} \times \mathbb{Z}:\left(S_{4}\right) \text { is true }\right\}
$$

Switzer [55] recently pushed the classification of 2 -bundles up to \mathbb{P}_{6}. As a sample let us state his results on \mathbb{P}_{5} because this is the first case where not all c_{1}, c_{2} satisfying the Schwarzenberger conditions arise as the Chern classes of a vector bundle of rank 2 . Set $\Delta=\frac{c_{1}^{2}-4 c_{2}}{4}$. Then for c_{1}, c_{2} satisfying $\left(S_{5}\right)$ there exists at least one 2 -bundle with these c_{i} as Chern classes if c_{1} is odd or if c_{1} is even and $\Delta^{2}(\Delta-1) \equiv 0$ (24) (if c_{1} is even and $\Delta^{2}(\Delta-1) \not \equiv O$ (24) there is no 2 -bundle with these c_{i} as Chern classes). For $c_{2} \not \equiv c_{1}^{2}$ (3) there exists exactly one 2-bundle and for $c_{2} \equiv c_{1}^{2}$ (3) there are exactly three 2 -bundles.

2. Construction of holomorphic vector bundles on \mathbb{P}_{n}

In this section we will give some general procedures to construct holomorphic bundles. These will be applied to show that all topological vector bundles on $\mathbf{P}_{\mathrm{n}}, \mathrm{n} \leq 3$, admit an analytic structure.

Let us start by recalling that all line bundles on ${ }_{n}$ are of the form $\mathcal{O}(k)$, $k \in \mathbb{Z}$. To convince the reader that the difficulties arise only if rank and dimension are bigger than 1 we include a short proof of the fact that all holomorphic vector bundles on \mathbb{P}_{1} split into line bundles (see [19]).

THEOREM (Grothendieck [21]).- Any holomorphic vector bundle E on \mathbf{P}_{1} is of the form $E=\mathscr{O}\left(a_{1}\right) \oplus \ldots \oplus \mathcal{O}\left(a_{r}\right)$.

Proof. The proof is by induction on $r=r k E$. We may assume $r \geq 2$. Choose $k \in \mathbb{Z}$ minimal with $H^{\circ}(E(k)) \neq O \quad(k$ exists by Serre's results on the cohomology of coherent sheaves on P_{n}). We may assume $k=0$. Any nonzero $\sigma \in H^{\circ}(E)$ has zeroes only in codimension 2 . Hence a nonzero $\sigma \in H^{\circ}(E)$ gives a trivial line subbundle of E
(*) $\quad 0 \rightarrow 0 \xrightarrow{\sigma} \mathrm{E} \longrightarrow \mathrm{F} \longrightarrow 0$.
By induction we have $F \simeq \mathscr{O}\left(a_{2}\right) \oplus \ldots \oplus \mathcal{O}\left(a_{r}\right)$. From (*) one gets the exact sequence

$$
\rightarrow \quad H^{\circ}(E(-1)) \quad \rightarrow \quad H^{\circ}(F(-1)) \quad \rightarrow \quad H^{1}(O(-1))=0 .
$$

This shows $H^{\circ}(F(-1))=0$ and therefore $a_{i} \leq 0$ for alli. The obstruction to split (*) lies in $H^{1}\left(F^{*}\right)=\underset{i}{\oplus} H^{1}\left(O\left(-a_{i}\right)\right)=0$, since $a_{i} \leqslant 0$ for all i.

Hence (*) splits and we get

$$
\mathrm{E} \simeq O \oplus O\left(a_{2}\right) \oplus \ldots \oplus \mathcal{O}\left(a_{r}\right) .
$$

2.1. Vector bundles of rank $n-1$ on \mathbb{P}_{n}

Tango [58] constructed indecomposable holomorphic ($n-1$)-bundles on P_{n} for each $n \geq 3$ using the following generalization of a general position argument of Serre's.

PROPOSITION 2.1.- Let E be a holomorphic vector bundle on \mathbb{P}_{n} generated by global sections. If $c_{i}(E)=O$ for some $i \leq r=r k E$ then E has a trivial subbundle of rank r - i + 1 .

COROLLARY 1.- For $n \geq 3$ there is an indecomposable ($n-1$)-bundle on \mathbb{P}_{n}.
Proof. $\Omega^{1}(2)$ is generated by global sections. Let

$$
\varphi: H^{o}\left(\mathbf{P}_{n}, \Omega^{1}(2)\right) \times \mathbf{P}_{n} \longrightarrow \Omega^{1}(2)
$$

be the canonical surjection and put $E=(\operatorname{ker} \varphi)^{*}$. One calculates $c_{n}(E)=0$. Hence
E has a trivial subbundle such that the quotient F is of rank $n-1$. The indecomposa-
bility of F can be proved by inspecting its cohomology groups.

COROLLARY 2.- For n odd there is a $(n-1)$-bundle N on e_{n} with Chern class

$$
c(N)=1+h^{2}+h^{4}+\ldots+h^{n-1}
$$

Here $h=c_{1}(O(1))$ is the canonical generator of $H^{2}\left(\mathbb{P}_{n}, \mathbb{Z}\right)$.
Proof. $\Omega^{1}(2)$ is generated by global sections and $c_{n}\left(\Omega^{1}(2)\right)=0$ for n odd. This shows the existence of a trivial line subbundle of $\Omega^{1}(2)$. This gives a surjection

$$
T(-1) \quad \longrightarrow \quad O(1)
$$

Let N be the kernel of this map. Then

$$
\begin{aligned}
c(N) & =c(T(-1))(1+h)^{-1} \\
& =(1-h)^{-1}(1+h)^{-1} \\
& =1+h^{2}+h^{4}+\ldots+h^{n-1}
\end{aligned}
$$

Remarks.- 1) N is the Null-correlation bundle.
2) The tangent bundle T_{n} is indecomposable.
3) Maruyama [38] has shown that for each $r>n$ there exist indecomposable r bundles on P_{n} if $n \geq 2$.

2.2. Subvarieties of \mathbb{P}_{n} of codimension 2 and holomorphic vector bundles of rank 2

In this section we will explain the connection of locally complete intersection subvarieties of codimension 2 and holomorphic bundles of rank 2 . This correspondence essentially goes back to Serre [49] and has been rediscovered and reformulated many times [28], [9], [18], [23], [25]. Here we follow mainly Hartshorne's presentation.

Let E be a holomorphic 2-bundle on P_{n} and suppose E has a holomorphic section σ vanishing in codimension 2 only (this can always be achieved by replacing E by $E(k)$ with $k \in \mathbb{Z}$ minimal with respect to $H^{\circ}(E(k)) \neq O$). Then $Y=\{\sigma=0\}$ is of codimension 2 and locally a complete intersection. Y is in general neither reduced nor irreducible. The Koszul complex of σ is

$$
\mathrm{O} \rightarrow \operatorname{det} \mathrm{E}^{*} \longrightarrow \mathrm{E}^{*} \longrightarrow J_{Y} \longrightarrow 0
$$

This implies

$$
E^{*} \mid Y \simeq J / J^{2}
$$

Hence E is an extension of the normal bundle $\left.N_{Y}\right|_{n}=\left(J / J^{2}\right)^{*}$ of Y in P_{n} to the whole of \mathbb{P}_{n}. Inserting

$$
E^{*} \simeq E \otimes \operatorname{det} E^{*}
$$

into the Koszul complex gives.

$$
\mathrm{O} \longrightarrow 0 \xrightarrow{\sigma} \mathrm{E} \longrightarrow J_{\mathrm{Y}} \otimes \operatorname{det} \mathrm{E} \rightarrow 0 .
$$

It is clear that

$$
\begin{aligned}
& c_{2}(E)=\text { dual of } Y . \\
& c_{2}(E)=\operatorname{deg} Y .
\end{aligned}
$$

Hence
The interesting point is the reversal of this procedure. Take a locally complete intersection $Y \subset \mathbf{P}_{\mathrm{n}}$ of codimension 2 . We would like to construct a 2 -bundle E together with a $\sigma \in H^{\circ}\left(\mathbb{P}_{\mathrm{n}}, \mathrm{E}\right)$ giving $\mathrm{Y}=\{\boldsymbol{\theta}=0\}$. By what we have seen it is natural to try getting E^{*} as extension of J_{Y} by some line bundle.

PROPOSITION 2.2.1.- Let Y be a locally complete intersection of codimension 2 in $\mathbf{P}_{\mathrm{n}}, \mathrm{n} \geq 3$. Assume that $\operatorname{det} \mathrm{N}_{\mathrm{Y} \mid} \mathbf{P}_{\mathrm{n}} \simeq \mathscr{O}_{\mathrm{Y}}(\mathrm{k})$. Then there exists a holomorphic 2bundle E on \mathbb{P}_{n} with a holomorphic section $\boldsymbol{\sigma} \in \mathrm{H}^{\mathrm{O}}\left(\mathbb{P}_{\mathrm{n}}, \mathrm{E}\right)$ such that

$$
Y=\{\sigma=0\} .
$$

In particular $c_{1}(E)=k, \quad C_{2}(E)=\operatorname{deg} Y$.
Proof. The extensions of J_{Y} by $\mathcal{O}(-\mathrm{k})$ are classified by Ext ${ }_{\sigma}^{1}\left(\mathrm{~J}_{\mathrm{Y}}, \mathcal{O}(-\mathrm{k})\right)$. The exact sequence
$O \rightarrow H^{1}\left(\mathbb{P}_{n}, \operatorname{Hom}\left(J_{Y}, \mathcal{O}(-k)\right)\right) \rightarrow \operatorname{Ext}_{0}^{1}\left(J_{Y}, \mathcal{O}(-k)\right) \longrightarrow H^{\circ}\left(\mathbb{E}_{n}, \operatorname{Ext}_{\mathcal{O}}^{1}\left(J_{Y}, \mathcal{O}(-k)\right)\right) \longrightarrow$

$$
\left.\rightarrow H^{2}\left(\mathbb{P}_{\mathrm{n}}, \underline{\operatorname{Hom}\left(J_{Y}\right.}, \mathcal{O}(-\mathrm{k})\right)\right)
$$

gives for $n \geq 3$ an isomorphism

$$
\operatorname{Ext}_{\bigcirc}^{1}\left(J_{Y}, O(-k)\right) \stackrel{H^{\circ}}{\sim}\left(\mathbb{P}_{\mathrm{n}}, \operatorname{Ext}_{\bigcirc}^{1}\left(J_{Y}, \odot(-\mathrm{k})\right)\right)
$$

since $\underline{H o m}\left(J_{Y}, \mathcal{O}(-k)\right)=\mathcal{O}(-k)$ and $H^{i}\left(P_{n}, \mathcal{O}(-k)\right)=O$ for $1 \leq i \leq n-1$ and all $k \in \mathbb{Z}$. Using

$$
\begin{aligned}
\operatorname{Ext}^{1}\left(J_{Y}, \sigma(-k)\right) & \simeq \operatorname{Ext}^{2}\left(\sigma_{Y}, \sigma(-k)\right) \\
& \simeq \underline{E x t}^{2}\left(\sigma_{Y}, \sigma(-n-1)\right) \otimes \sigma(-k+n+1) \\
& \simeq \omega_{Y} \otimes \sigma_{Y}(-k+n+1) \\
& \simeq \sigma_{Y}(-n-1) \otimes \operatorname{det} N \otimes \sigma_{Y}(-k+n+1) \\
& \simeq \sigma_{Y},
\end{aligned}
$$

one finally gets an isomorphism

$$
\operatorname{Ext}_{0}^{1}\left(J_{Y}, \mathcal{O}(-k)\right) \simeq H^{\circ}\left(Y, \theta_{Y}\right) .
$$

The canonical section $\bar{\xi}$ in $H^{\circ}\left(Y, \Theta_{Y}\right)$ therefore gives an extension

$$
0 \rightarrow \mathcal{O}(-\mathrm{k}) \longrightarrow \mathcal{F} \longrightarrow \mathrm{J}_{\mathrm{Y}} \longrightarrow 0
$$

of J_{Y} by $O(-k)$ through a coherent sheaf. Since δ locally generates each stalk of $\operatorname{Ext}^{1}\left(J_{Y}, \mathcal{O}(-k)\right)$ it follows from [49] that \mathcal{F} is locally free. $E:=\mathcal{F}^{*}$ is the desired bundle.

Remarks.- 1) Barth, Larsen and Ogus [36], [45] have shown that $\operatorname{Pic}\left(\mathbb{P}_{\mathrm{n}}\right) \xrightarrow{\sim} \operatorname{Pic}(\mathrm{Y})$ for $n \geq 6$ and nonsingular Y. Thus each nonsingular submanifold $Y \subset P_{n}, n \geq 6$, of codimension 2 gives a holomorphic vector bundle of rank 2 on \mathbf{e}_{n}.
2) The above construction does not work without further considerations on \mathbf{P}_{2}. But if $k \leq 2$ the group $H^{2}\left(\mathbf{P}_{2}, O(-k)\right)$ still vanishes and the proposition 2.2.1 remains valid in that case. For arbitrary k see [51], [18].

Let us apply this proposition to produce many holomorphic 2 -bundles on \mathbf{P}_{2} and P_{3} -

Examples.

1) Take Y to be the union of d simple points in \mathbb{P}_{2}. Then $\operatorname{det} N_{Y \mid \mathbb{P}_{2}}=\mathcal{O}_{Y}(2)$ and we get a holomorphic 2-bundle E on P_{2} with $c_{1}=2$ and $c_{2}=d$. This shows the existence of 2 -bundles with $c_{1}=0, c_{2} \geq 0$.
2) Take Y to be the union of d disjoint lines in \mathbb{P}_{3}. Then $\operatorname{det} N_{Y} \mid \mathbb{P}_{3}=\sigma_{Y}(2)$ and we get a 2-bundle with $c_{1}=2, c_{2}=d$. Normalizing gives $c_{1}=0, c_{2} \geq 0$ arbitrary.
3) Take Y to be the union of r disjoint nonsingular conics in P_{3}. Then $\operatorname{det} \mathrm{N}_{\mathrm{Y} \mid \mathbf{P}_{3}} \simeq \widehat{\mathrm{O}}_{\mathrm{Y}}(3)$ and we get a 2-bundle with $\mathrm{c}_{1}=3, \mathrm{c}_{2}=2 \mathrm{r}$. This shows the existence of 2 -bundles with $c_{1}=-1, c_{2} \geq 0$ even.
4) Horrocks [28]

Let $p \geq 2$ be an integer and $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ with $0<m_{i}<p$. Choose r disjoint lines $L_{i} \subset \mathbb{P}_{3}$ and give them a nilpotent structure through $J_{L_{i}}=\left(x^{m_{i}}, y^{p-m_{i}}\right)$. Here x, y are equations for L_{i}. Take y to be the union of these fattened lines. Then $\operatorname{det} N_{Y \mid} \simeq \sigma_{Y}(p)$ and we get a 2-bundle with

$$
c_{1}=p, c_{2}=\sum_{i=1}^{r} m_{i}\left(p-m_{i}\right) .
$$

A short calculation shows that all $c_{1}, c_{2} \in \mathbb{Z}$ with $c_{1} c_{2} \equiv 0$ (2) are of this form (modulo twisting). Therefore all c_{1}, c_{2} with $c_{1} c_{2} \equiv o$ (2) are the Chern classes of a holomorphic 2-bundle on \mathbb{P}_{3}.

Atiyah and Rees [2] showed that for a holomorphic 2-bundle E with even c_{1} the α-invariant can be given by

$$
\alpha(E)=h^{\circ}\left(E_{\text {norm }}(-2)\right)+h^{2}\left(E_{\text {norm }}(-2)\right) \quad \text { mod. } 2 .
$$

Here $E_{\text {norm }}$ denotes $E\left(-c_{1} / 2\right)$ for c_{1} even and $E\left(\left(-\left(c_{1}+1\right)\right) / 2\right)$ for c_{1} odd. Note that $h^{2}\left(E_{\text {norm }}(-2)\right)=h^{1}\left(E_{\text {norm }}(-2)\right)$ by Serre-duality.

It takes some arithmetic [2] to show that by the above Horrocks construction one can achieve both values of α. This implies

$$
\operatorname{vect}_{\text {hol }}^{2}\left(\mathbb{P}_{3}\right) \longrightarrow \operatorname{vect}_{\text {top }}^{2}\left(\mathbb{P}_{3}\right)
$$

is surjective.
5) Take Y to be the disjoint union of a plane nonsingular cubic curve and a nonsingular elliptic space curve of degree d. Y gives a 2-bundle on \mathbf{P}_{3} with Chern classes $c_{1}=4, c_{2}=d+3$. A short calculation shows $\alpha=1$. Normalizing one gets the invariants

$$
c_{1}=0, \quad c_{2}=d+1, \quad \alpha=1
$$

Note that in Example 2) one has $\alpha=0$.
6) Horrocks, Mumford [32]

These authors show the existence of a 2-bundle on \mathbf{P}_{4} which comes from an abelian surface $Y \subset P_{4}$. Suppose you have shown the embedding of an abelian surface Y into \mathbb{P}_{4}. The exact sequence

$$
\circ \rightarrow \sigma_{\mathrm{Y}}^{2} \rightarrow \mathrm{~T}_{\mathbf{P}_{4}} \mid \mathrm{Y} \rightarrow \mathrm{~N}_{\mathrm{Y} \mid \mathbf{P}_{4}} \rightarrow 0
$$

gives

$$
\operatorname{det} N_{Y \mid \mathbf{P}_{4}}=\sigma_{Y}(5) \quad \text { and } \quad \operatorname{deg} Y=10
$$

Hence we get a 2 -bundle with $c_{1}=5, c_{2}=10$. This is essentially the only known indecomposable 2-bundle on \mathbb{P}_{4}.

Problem 1. Are there any holomorphic 2-bundles on $\mathbb{P}_{\mathrm{n}}, \mathrm{n} \geq 5$, which do not split into line bundles ?

Let us ciose this section by some remarks on the connection of 3 -bundles on \mathbf{P}_{n} and locally complete intersections $\mathrm{Y} \subset \mathbf{P}_{\mathrm{n}}$ of codimension 2 .

PROPOSITION 2.2.2 (Van de Ven, Vogelaar [64]).- Let Y be a locally complete intersection of codimension 2 in $\mathbb{P}_{\mathrm{n}}, \mathrm{n} \geq 3$. Suppose there is a holomorphic line bundle L on Y together with holomorphic sections $\sigma_{1}, \sigma_{2} \in H^{\circ}(Y, L)$ such that $\left\{\sigma_{1}=0\right\} \cap\left\{\sigma_{2}=O\right\}=\varnothing$. If furthermore $\left.\operatorname{det} N_{Y}\right|_{P_{n}} \otimes L^{*} \simeq \sigma_{Y}(k)$ then there is a holomorphic 3-bundle E on P_{n} with

$$
c_{1}(E)=k, \quad c_{2}(E)=\operatorname{deg} Y, \quad c_{3}(E)=\operatorname{deg}\left(\sigma_{i}=0\right)
$$

Remark. - One gets E as an extension

$$
0 \rightarrow o^{2} \rightarrow E \rightarrow J_{Y}(k) \rightarrow 0
$$

As an application it is shown that all $c_{1}, c_{2}, c_{3} \in \mathbb{Z}$ with $c_{3} \equiv c_{1} c_{2}$ (2) occur as the Chern classes of a holomorphic 3-bundle on P_{3}. Combining with 4) one obtains the surjectivity of the map

$$
\operatorname{vect}_{\text {hol }}^{r}\left(\mathbf{P}_{3}\right) \rightarrow \text { vect }_{\text {top }}^{r}\left(\mathbf{P}_{3}\right)
$$

for all r.

2.3. Monads

The description of holomorphic vector bundles on P_{n} by monads is due to Horrocks [27], [29], [31] and was recently put into a general frame by Beilinson [11]. In specific cases they have been studied by Barth, Hulek, Drinfeld and Manin [5], [8], [33], [12].

DEFINITION 2.3.1.- A monad is a complex of holomorphic vector bundles

$$
\mathrm{O} \rightarrow \mathrm{~A} \xrightarrow{\mathrm{a}} \mathrm{~B} \xrightarrow{\mathrm{~b}} \mathrm{C} \rightarrow \mathrm{O}
$$

which is exact except possibly at B.
Remark.- $E:=$ ker $b / i m a$ is a holomorphic vector bundle with
$r k E=r k B-r k A-r k C$ and Chern class

$$
c(E)=c(B) c(A)^{-1} c(C)^{-1}
$$

The following version of the Beilinson construction I learned from Verdier.

THEOREM 2.3.2 (Beilinson [11]). Let E be a holomorphic vector bundle on P_{n}. There exists a spectral sequence with

$$
\begin{aligned}
& E_{1}^{p q}=H^{q}\left(\mathbb{P}_{n}, E \otimes \Omega^{-p}(-p)\right) \otimes \otimes(p) \\
& E_{\infty}^{p q}=0 \quad \text { for } p+q \neq 0
\end{aligned}
$$

and a filtration of E whose associated graded module is $\underset{p}{\oplus} E_{\infty}^{P},-p$.
Proof. Let $\mathbb{P}_{n}=P(V)$, V a complex vector space of dimension $n+1$. Consider the canonical exact sequence

$$
\mathrm{O} \rightarrow \mathrm{O}(-1) \rightarrow \mathrm{P}(\mathrm{~V}) \times \mathrm{V} \rightarrow \mathrm{Q} \rightarrow \mathrm{O}
$$

Here $Q=T(-1)$ and $H^{O}\left(\mathbb{P}_{n}, Q\right)=V$. On $\mathbb{P}_{n} \times \mathbb{P}_{n}$ we look at $Q \boxtimes O(1):=\mathrm{pr}_{1}^{*} Q \otimes \mathrm{pr}_{2}^{*} O(1)$. There is a canonical section $\theta \in H^{\circ}\left(\mathbb{P}_{n} \times \mathbb{P}_{n}, Q \mathbb{Q}(1)\right)=V \otimes V^{*}$ corresponding to $i d_{V}$. This section vanishes precisely and transversally at the diagonal Δ of $\mathbf{P}_{\mathrm{n}} \times \mathbf{P}_{\mathrm{n}}$. Hence we have the Koszul complex
$0 \rightarrow \Omega^{n}(n) \boxtimes \mathcal{O}(-n) \rightarrow \ldots \Omega^{1}(1) \boxtimes \odot(-1) \rightarrow \mathcal{O}_{\mathrm{n}} \times \mathbb{P}_{\mathrm{n}} \rightarrow \mathcal{O}_{\Delta} \rightarrow 0$.
This gives

$$
R^{i} \operatorname{pr}_{2 *}\left(C^{*} \otimes \operatorname{pr}_{1}^{*} E\right)=\left\{\begin{array}{l}
0 \text { for } i \neq 0 \\
E \text { for } i=0
\end{array}\right.
$$

where $C^{\nu}=\Omega^{-\nu}(-\nu) 区 O(\nu)$ for $\nu \leq 0$ and $C^{\nu}=0$ for $\nu>0$. The spectral sequence for the hypercohomology of $\mathrm{pr}_{2 *}$ now gives the result.

Remark. - Interchanging pr_{1} with pr_{2} in the above proof gives a spectral sequence with

$$
\mathrm{E}_{1}^{\mathrm{pq}}=H^{\mathrm{q}}\left(\mathbb{P}_{\mathrm{n}}, \mathrm{E}(\mathrm{p})\right) \otimes \Omega^{-\mathrm{p}}(-\mathrm{p})
$$

satisfying the same properties as the one in the theorem.
Applications (compare [8] and [31] for a different approach)

1) Let E be a holomorphic r-bundle on \mathbb{P}_{2} with $H^{\circ}\left(\mathbf{P}_{2}, E(-1)\right)=H^{\circ}\left(\mathbb{P}_{2}, E^{*}(-1)\right)=$ $=0$. Then E is the cohomology of a monad

$$
H^{1}(E(-2)) \otimes O(-1) \rightarrow H^{1}\left(E \otimes \Omega^{1}\right) \otimes \odot \rightarrow H^{1}(E(-1)) \otimes O(1) .
$$

If $c_{1}(E)=0$, then $h^{1}(E(-2))=h^{1}(E(-1))=C_{2}(E)$ by Riemann-Roch. In case E is orthogonal or symplectic (i.e. we have a nondegenerate symmetric or skew bilinear form on E), one can give the bundles in terms of linear algebra. Let H and K be complex vector spaces of dimension n and $2 n+r$. K should be equipped with an orthogonal or symplectic nondegenerate form. $G L(H) \times O(K)$ acts on the linear mappings $L(H, K)$ by

$$
(f, g) \cdot \varphi=g \varphi f^{-1} .
$$

Using the above description of bundles by monads it is easy to show that the isomorphism classes of orthogonal (symplectic) holomorphic r-bundles on $\mathbf{P}_{2}=\mathbf{P}(\mathrm{V})$ with $H^{\circ}\left(P_{2}, E(-1)\right)=0$ and $C_{2}(E)=n$ correspond one to one to the orbits of $\mathrm{GL}(\mathrm{H}) \times \mathrm{O}(\mathrm{K})$ on the set of all linear maps $\alpha: \mathrm{V} \rightarrow \mathrm{L}(\mathrm{H}, \mathrm{K})$ with
(i) $\alpha(v)$ is injective for all $v \neq 0$
(ii) $\alpha(v)(H)$ is for all $v \in V$ a totally isotropic subspace of K.

Remark.- $H^{\circ}(E)=O$ is equivalent to the surjectivity of the map $H \otimes V \longrightarrow K$ induced by α.
2) Let E be a holomorphic r-bundle on $\mathbf{P}_{2}=\mathbb{P}(V)$ with $H^{\circ}\left(\mathbf{P}_{2}, E\right)=H^{\circ}\left(\mathbf{P}_{2}, E^{*}(-1)\right)=0$. Then E comes from a monad

$$
H^{1}(E(-2)) \otimes O(-1) \xrightarrow{a} H^{1}(E(-1)) \otimes \Omega^{1}(1) \xrightarrow{b} H^{1}(E) \otimes \odot .
$$

One can make explicit the maps a and b [37] :
for $z \in V^{\star}=\Gamma\left(\mathbb{P}_{2}, \mathscr{O}(1)\right)$ denote the maps

$$
H^{1}(E(-2)) \rightarrow H^{1}(E(-1)) \quad \text { and } \quad H^{1}(E(-1)) \rightarrow H^{1}(E)
$$

given by the multiplication with z by $\alpha(z)$ and $\beta(z)$. At the point $x \in \mathbb{P}_{2}$ the map a is given by

$$
\left(z^{\prime} \wedge z^{\prime \prime}\right) \otimes h \rightarrow z^{\prime \prime} \otimes \alpha\left(z^{\prime}\right) h-z^{\prime} \otimes \alpha\left(z^{\prime \prime}\right) h .
$$

Here $z^{\prime}, z^{\prime \prime} \in \Omega^{1}(1)_{x}$ (note that $\mathcal{O}(-1)=\operatorname{det} \Omega^{1}(1)$). The map b is given at $x \in \mathbb{P}_{2}$ by

$$
\mathrm{z} \otimes \mathrm{k} \longmapsto \beta(\mathrm{z}) \mathrm{k} .
$$

The injectivity of a is equivalent to :
for each nonzero $h \in H^{1}(E(-2))$ the map $z \longmapsto \alpha(z) h$ from v^{*} to $H^{1}(E(-1))$ has rank at least 2 .

Now let E be of rank 2 and $c_{1}(E)=-1$. Serre-duality gives a symmetric nondegenerate form on $H^{1}(E(-1))$ and an isomorphism $H^{1}(E(-2))^{*} \simeq H^{1}(E)$. In this case $\beta(z)=\alpha(z)^{t}, z \in V^{*}$. From this one can deduce as in 1) a bijective correspondence (see [37]) between the isomorphism classes of holomorphic 2-bundles E on \mathbf{P}_{2} with $C_{1}(E)=-1, H^{\circ}(E)=O, C_{2}(E)=n$ and the orbits of $G L(H) \times O(K)$ on the set of all linear maps $\alpha: V^{*} \rightarrow L_{(}(H, K)$ satisfying
(i) $\quad \alpha\left(z^{\prime}\right)^{t} \alpha\left(z^{\prime \prime}\right)=\alpha\left(z^{\prime \prime}\right)^{t} \alpha\left(z^{\prime}\right) \quad$ for $z^{\prime}, z^{\prime \prime} \in v^{*}$
(ii) the map $z \longmapsto \alpha(z) h$ from V^{*} to K is for all nonzero $h \in H$ of rank at least 2 .

Here H and K are complex vector spaces of dimension $n-1$ and n. Furthermore K is equipped with a nondegenerate symmetric bilinear form.

The case $c_{1}(E)=0$ is different. Here Serre-duality gives

$$
H^{1}\left(\mathrm{P}_{2}, \mathrm{E}(-2)\right)^{*} \simeq \mathrm{H}^{1}\left(\mathrm{P}_{2}, \mathrm{E}(-1)\right)
$$

and for $z \in V^{*}$ the map

$$
\alpha(z): H^{1}(E(-2)) \longrightarrow H^{1}(E(-2))^{*}
$$

is symmetric. It takes some work (see [5], [37]) to show that the isomorphism classes of 2-bundles E with $c_{1}(E)=O, H^{\circ}(E)=O$ and $c_{2}(E)=n$ are in bijective correspondence with the orbits of $G L(H)$ acting on the set of all linear maps
$\boldsymbol{\alpha}: \mathrm{V}^{*} \longrightarrow \mathrm{~S}^{2} \mathrm{H}^{*}$ satisfying
(i) the map $z \longmapsto \alpha(z) h$ from V^{*} to H^{*} is for all nonzero $h \in H$ of rank at least 2
(iif there is a base $\left(z_{0}, z_{1}, z_{2}\right)$ of v^{*} such that $\alpha\left(z_{0}\right)$ is invertible and the map $H \rightarrow H^{*}$ given by $\alpha\left(z_{1}\right) \alpha\left(z_{0}\right)^{-1} \alpha\left(z_{2}\right)-\alpha\left(z_{2}\right) \alpha\left(z_{0}\right)^{-1} \alpha\left(z_{1}\right)$ is of rank 2.

Here H is a complex vector space of dimension $n(\geq 2)$. Monads of this type have been used by Barth [5] to classify stable 2-bundles on \mathbf{P}_{2} with $c_{1}=0$.
3) Let E be a holomorphic r-bundle on \mathbf{P}_{3} with $H^{\circ}(E(-1))=O, H^{1}(E(-2))=0$ ("instanton condition"), $E \simeq E^{*}$ and $c_{2}(E)=n$. Then E comes from a monad

$$
H^{1}(E(-3) \otimes T) \otimes O(-1) \rightarrow H^{1}\left(E \otimes \Omega^{1}\right) \otimes \theta \rightarrow H^{1}(E(-1)) \otimes O(1)
$$

In particular this shows that $H^{1}\left(\mathbb{P}_{3}, E(-\nu)\right)=0$ for all $\nu \geq 2$. Using the notation of the first application one gets in the some way a bijection between isomorphism classes of orthogonal (symplectic) r-bundles on $P_{3}=P(V)$ satisfying the
conditions $H^{\circ}(E(-1))=0, H^{1}(E(-2))=0, \quad C_{2}(E)=n$ and the orbits of $\mathrm{GL}(\mathrm{H}) \times \mathrm{O}(\mathrm{K})$ acting on the linear maps $\alpha: \mathrm{V} \rightarrow \mathrm{L}(\mathrm{H}, \mathrm{K})$ with
(i) $\alpha(v): H \longrightarrow K$ is injective for all $v \neq 0$
(ii) $\alpha(\mathrm{v})(\mathrm{H})$ is for all $\mathrm{v} \in \mathrm{V}$ a totally isotropic subspace of K .

Remark. - The condition $H^{\circ}\left(P_{3}, E\right)=O$ is equivalent to the surjectivity of the map $\mathrm{H} \otimes \mathrm{V} \rightarrow \mathrm{K} \quad$ induced by $\boldsymbol{\alpha}$.

Monads of this type have been used to describe instantons [1], [22].
4) Let E be a holomorphic r-bundle on P_{3} with $H^{\circ}(E)=H^{1}(E(-2))=O$ and $E \simeq E^{*}$. Then E comes from a monad

$$
H^{2}(E(-3)) \otimes \odot(-1) \rightarrow H^{1}(E(-1)) \otimes \Omega^{1}(1) \rightarrow H^{1}(E) \otimes \varnothing .
$$

3. Stable bundles

DEFINITION 3.1.- A holomorphic r-bundle E on P_{n} is said to be stable if for all proper coherent subsheaves \mathcal{F} of E of rank s we have the inequality

$$
\frac{c_{1}(F)}{s}<\frac{c_{1}(E)}{r}
$$

If we have only " $\leq "$ instead of $"<"$ then E is called semi-stable. A bundle which is not semi-stable is usually called unstable.

Remarks.- 1) This definition is due to Mumford and Takemoto [56]. Recently Gieseker [17] suggested a slightly different definition. He calls E stable if

$$
\frac{p_{F}(m)}{s}<\frac{p_{E}(m)}{r}
$$

for $m \gg 0$. Here $P_{\mathcal{F}}(m)=X\left(\mathbf{P}_{n}, F(m)\right)$ is the Hilbert polynomial of \mathcal{F}. With this definition one generally gets more stable but fewer semi-stable bundles than before.
2) It is straightforward [56] that stable bundles E are always simple, i.e. $H^{\circ}\left(E^{*} \otimes E\right)=C$, and therefore indecomposable.
3) $T_{\mathbb{E}_{n}}$ is stable [35].

PROPOSITION 3.2 [4].- The stable 2-bundles on P_{n} are precisely the simple ones. Proof. Assume E to be simple. We can choose $k \in \mathbb{Z}$ minimal with $H^{\circ}(E(k)) \neq 0$. Take a nonzero $\sigma \in H^{\circ}(E(k))$ and put $Y=\{\sigma=0\} . Y$ is of codimension 2 and we get an exact sequence

$$
\mathrm{O} \rightarrow 0 \xrightarrow{0} \mathrm{E}(\mathrm{k}) \rightarrow \mathrm{J}_{\mathrm{Y}}\left(\mathrm{C}_{1}(\mathrm{E})+2 \mathrm{k}\right) \rightarrow 0 .
$$

If $c_{1}+2 k \leq O$ we get a "non-trivial" endomorphism of $E(k)$ by composing

$$
\mathrm{E}(\mathrm{k}) \longrightarrow \mathrm{J}_{\mathrm{Y}}\left(\mathrm{C}_{1}+2 \mathrm{k}\right) \longleftrightarrow \mathcal{O}\left(\mathrm{c}_{1}+2 \mathrm{k}\right) \longleftrightarrow 0 \xrightarrow{\sigma} \mathrm{E}(\mathrm{k}) .
$$

Hence $\quad c_{1}+2 k>0$.
Now let $\mathcal{O}(\ell)$ be a subsheaf of E. By minimality of k we get $-\ell \geq k$ and therefore $\ell<c_{1} / 2$. This shows the stability of E.

Remark.- It is easy to see that a 2-bundle E on \mathbb{P}_{n} is stable if and only if $H^{\circ}\left(P_{n}, E_{\text {norm }}\right)=0$. For 3-bundles with $c_{1}=O$ stability is equivalent to $H^{\circ}(E)=H^{\circ}\left(E^{*}\right)=0$.

Problem 2. Give a similar criterion of stability for bundles of higher rank.

Schwarzenberger has shown [52] that Riemann-Roch implies that the Chern classes of a stable 2 -bundle on \mathbb{P}_{2} have to satisfy $c_{1}^{2}-4 c_{2}<0$ (for a semi-stable 2-bundle one has $c_{1}^{2}-4 c_{2} \leq 0$). In fact $c_{1}^{2}-4 c_{2}=-4$ cannot occur for a stable 2-bundle on \mathbf{P}_{2} [38].

It is a general fact, proved by Maruyama [43], that the restriction of a semistable r-bundle on $P_{n}, r<n$, to a general byperplane is semi-stable again (Barth [4] showed the same to be true for stable 2-bundles on $\mathbf{P}_{\mathrm{n}}, \mathrm{n} \geq 3$, with the exception of the Null-correlation bundle). Hence for a semi-stable 2-bundle E on \mathbb{P}_{n} we have

$$
c_{1}^{2}-4 c_{2} \leq 0
$$

and for stable 2 -bundles one necessarily has

$$
c_{1}^{2}-4 c_{2}<0 .
$$

Problem 3. Determine similar necessary conditions for stable (semi-stable) holomorphic bundles of higher rank.

We show next how stability of a 2-bundle E on ${ }_{n}$ coming from a locally complete intersection $\mathrm{Y} \subset \mathbb{P}_{\mathrm{n}}$ of codimension 2 is reflected by Y .

Let $Y \subset \mathbf{P}_{\mathrm{n}}, \mathrm{n} \geq 2$, be a locally complete intersection of codimension 2 and $\operatorname{det} N_{Y \mid \mathbb{P}_{n}}=\sigma_{Y}(k)$. Then we can find an extension E of $\left.N_{Y \mid}\right|_{n}$ as in 2.2.1. PROPOSITION 3.3 (see [25]).- E is stable if and only if $k>0$ and Y is not contained in any hypersurface of degree $d \leq k / 2$.

Proof. We have an exact sequence

$$
\mathrm{O} \rightarrow 0 \rightarrow \mathrm{E} \rightarrow \mathrm{~J}_{\mathrm{Y}}(\mathrm{k}) \rightarrow 0 .
$$

If E is stable then $C_{1}(E)=k>0$.

Assume k to be even. The sequence

$$
0 \rightarrow 0(-k / 2) \rightarrow E_{\text {norm }} \rightarrow J_{Y}(k / 2) \rightarrow 0
$$

gives

$$
\mathrm{H}^{\mathrm{O}}\left(\mathrm{E}_{\text {norm }}\right) \xrightarrow{\sim} \mathrm{H}^{\mathrm{O}}\left(\mathrm{~J}_{\mathrm{Y}}(\mathrm{k} / 2)\right)
$$

Stability of E is equivalent to $H^{\circ}\left(E_{\text {norm }}\right)=0$. Therefore $H^{\circ}\left(J_{Y}(k / 2)\right)=0$, which is equivalent to the fact that Y is not contained in any hypersurface of degree $\leq k / 2$. Assume on the other hand $k>0$ and $H^{\circ}\left(J_{Y}(k / 2)\right)=0$. This gives $H^{\circ}\left(E_{\text {norm }}\right)=0$ which is the stability of E. The case c_{1} odd is treated in a similar way.

Using this criterion we re-examine the examples of 2.1.
Examples.- 1) If E comes from d simple points in \mathbf{P}_{2}, E is stable if and only if the points do not all lie on a line. This shows the existence of stable 2 -bundles on P_{2} with $c_{1}=0, c_{2} \geq 2$.
2) If E comes from d disjoint lines in P_{3} then E is stable if and only if these lines are not contained in a plane. This is the case for $d \geq 2$. This gives stable 2-bundles on \mathbb{P}_{3} with $c_{1}=0, c_{2} \geq 1, \alpha=0$.
3) For bundles coming from disjoint nonsingular conics we have the some result as in 2). One gets stable bundles with $c_{1}=-1, c_{2} \geq 2$ even.
4) If E comes from a plane cubic and a disjoint elliptic curve of degree d then E is stable if $d \geq 4$. This gives stable bundles on \mathbb{P}_{3} with

$$
c_{1}=0, \quad c_{2} \geq 5, \quad \alpha=1
$$

5) The 2-bundle of Horrocks and Mumford on \mathbb{P}_{4} is stable since an abelian surface Y can neither lie in some P_{3} (because of $\pi_{1}(Y) \neq 0$) nor in some hyperquadric Q (consider normal bundles).

Here we wish to draw the attention of the reader to an example of a stable 3-bundle on P_{5} constructed by Horrocks [30] using representation theory.

Let us close this section by giving the following
Conjecture.- Each 2-bundæe on $\mathbb{P}_{\mathrm{n}}, \mathrm{n} \geq 5$, which is not stable is a direct sum of line bundles.

In [20] a "proof" for this was given even for $n \geq 4$. Unfortunately there is a gap in that paper.

The conjecture has nice consequences [20], [50] :

1) Each topological 2-bundle on $\mathbb{P}_{n}, \mathrm{n} \geq 5$, which is not the direct sum of two line bundies and satisfying $c_{1}^{2}-4 c_{2} \geq 0$ cannot have an analytic structure. By [46],

530-14

[54], [55] there are many topological 2 -bundles with $c_{1}^{2}-4 c_{2} \geq 0$ and which do not split.
2) Each holomorphic 2-bundle on \mathbb{E}_{5} which can be extended topologically to \mathbb{P}_{n}, n arbitrarily large, is the direct sum of line bundles.

This sharpened the theorem of Barth and Van de Ven [9] on Babylonian vector bundles (see also [48], [61]).
3) Each nonsingular submanifold $Y \subset \mathbb{P}_{\mathrm{n}}$ of codimension 2 is a complete intersection if $n \geq 6$ and $n \geq \frac{1}{3} \sqrt{\operatorname{deg}(Y)}+1$. This would improve some results in [3].

One can even show, for example, that a nonsingular 4-dimensional submanifold $\mathrm{Y} \subset \mathbf{P}_{6}$ is a complete intersection if $\operatorname{deg} \mathrm{Y} \leq 514$.
4) Furthermore one could improve the results of Barth and Van de Ven in [10].

4. Moduli of stable bundles

So far we commented the points I and II of the introduction. To deal with III one would like to introduce on the set of isomorphism classes of stable holomorphic r-bundles on \mathbf{P}_{n} with fixed topological type a "good" analytic structure.

Consider the functor

$$
\Sigma\left(c_{1}, \ldots, c_{r}\right): \underline{A n} \longrightarrow \underline{\text { Ens }}
$$

from analytic spaces to sets given by
$\boldsymbol{\Sigma}\left(c_{1}, \ldots, c_{r}\right)(S):=\left\{\right.$ bundles E on $\mathbb{P}_{n} \times S$ of fixed rank with $E(s)$ stable and $c_{i}(E(s))=c_{i}$ for $i=1, \ldots, r$ and $\left.s \in S\right\} / \sim$.
Here $E_{2} \sim E_{1}$ if $E_{2} \simeq \operatorname{pr}_{S}^{*}(L) \otimes E_{1}$ for a holomorphic line bundle L on S.
Σ is contravariant in an obvious way.
DEFINITION 4.1.- $M=M\left(C_{1}, \ldots, c_{r}\right) \in \underline{A n}$ is a coarse moduli space for $\Sigma\left(c_{1}, \ldots, c_{r}\right)$ if there is a morphism of functors

$$
\Sigma \longrightarrow \operatorname{Hom}(-, \mathrm{M})
$$

with

$$
\Sigma(p t) \xrightarrow{\sim} M .
$$

Furthermore M should be minimal with respect to these properties, i.e. if N is another analytic space satisfying the above then there should be a unique morphism $M \longrightarrow N$ making the diagram
commutative.

If a coarse moduli space exists one has put in a functorial way an analytic structure onto the stable bundles on P_{n} with fixed Chern classes and fixed rank.

If M represents Σ then M is said to be a fine moduli space. This is equivalent to the existence of a universal family over $M \times \mathbf{P}_{n}$.

It seems much easier to construct a coarse moduli space M in the analytic category than to do it in the algebraic category. In the algebraic category the existence was proved by Maruyama [39], [40], [41] by using Mumford's geometric invariant approach. Maruyama could not show that M is always of finite type. For $n=2$ and arbitrary rank this was shown to be true by Gieseker [17]. For arbitrary n and rank ≤ 4 it was verified recently by Maruyama [43].

These authors also study compactifications of M and it turns out that one has not only to admit semi-stable bundles but also semi-stable torsion free coherent sheaves.

Our object here is only to mention some specific results for the moduli spaces M of bundles over P_{2} and P_{3}.

By deformation theory the Zariski tangent space of M at m is H^{1} (End(E)) if E is the bundle corresponding to m. If $H^{2}(E n d(E))=O$ then M is smooth at m. In particular the moduli spaces of stable bundles on P_{2} are nonsingular. By Riemann-Roch we get

$$
\operatorname{dim} M_{2}\left(c_{1}, c_{2}, r\right)=(1-r) c_{1}^{2}+2 r c_{2}-r^{2}+1
$$

For rank 2 we get

$$
\operatorname{dim} M_{P_{2}}\left(c_{1}, c_{2}\right)=4 c_{2}-c_{1}^{2}-3
$$

Let us summarize the properties of $M_{\mathbf{P}_{2}}\left(c_{1}, c_{2}\right)$.
THEOREM 4.2.- $M_{2}\left(c_{1}, c_{2}\right)$ is a smooth, quasi-projective manifold of dimension $4 C_{2}-c_{1}^{2}-3 . \quad M^{2}$ is connected and rational. M is a fine moduli space if and only if $4 c_{2}-c_{1}^{2} \not \equiv 0$ (8).

Remarks. - The rationality and connectedness was proved by Barth [5] for C_{1} even and by Hulek [33] for c_{1} odd using monads. Maruyama [42] showed that M is connected, unirational (and in some cases rational) and that M is a fine moduli space if $4 c_{2}-c_{1}^{2} \not \equiv \mathrm{O}(8)$. Le Potier [37] proved the nonexistence of a universal family for $4 \mathrm{c}_{2}-\mathrm{c}_{1}^{2} \equiv \mathrm{O}(8)$ using monads. He showed that in this case there are topological obstructions to the existence of the universal family. In doing this he calculated

$$
\pi_{1}\left(M\left(O, c_{2}\right)\right)=\left\{\begin{array}{cl}
\mathbb{Z} / 3 \mathbb{Z} & \text { for } c_{2}=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

530-16

$$
\pi_{2}\left(M\left(O, c_{2}\right)\right)= \begin{cases}\mathbb{Z} / 2 \mathbb{Z} & \text { for } c_{2}=2 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} & \text { for } c_{2}>2, c_{2} \text { even } \\ \mathbb{Z} & \text { for } c_{2} \text { odd. }\end{cases}
$$

To conclude this section we give the simplest examples of moduli spaces on \mathbf{P}_{2} and \mathbf{P}_{3} which can be deduced quickly from the description of bundles by monads.

Examples.- 1) $\quad M_{\mathbf{P}_{2}}(-1,1)=\left\{\Omega^{1}(1)\right\}$.
This follows immediately from Application 2 of 2.3.
2) $\quad M_{\mathbf{P}_{2}}(-1,2)=s^{2} \mathbf{P}_{2} \backslash \Delta($ see $[37])$.

The application 2 of 2.3 shows that

$$
\begin{aligned}
M(-1,2)= & \left\{\alpha: V^{*} \rightarrow C^{2} \text { linear and surjective }\right\} \text { modulo the action } \\
& \text { of } \mathbb{C}^{*} \times O\left(C^{2}\right) .
\end{aligned}
$$

Here C^{2} is equipped with a nondegenerate symmetric bilinear form. A linear algebraic calculation identifies the righthand side to $(\mathbb{P}(V) \times \mathbb{P}(V)) \backslash \Delta$ modulo $\mathbb{Z} / 2 \mathbb{Z}$. This finally gives $M(-1,2) \simeq s^{2} \mathbb{P}_{2} \backslash \Delta$.
3) $\quad M_{P_{2}}(0,2)=\left\{\right.$ nonsingular conics in $\left.\mathbb{P}_{2}\right\},[5]$.

By application 2 of 2.3 one has

$$
M(O, 2)=\operatorname{Isom}\left(V^{*}, S^{2} H^{*}\right) / G L(H) .
$$

H is of dimension 2 . Let $C:=\left\{q \in S^{2}\left(H^{*}\right): \operatorname{det} q=0\right\}$; for $\alpha \in \operatorname{Isom}\left(V^{*}, S^{2} H^{*}\right)$ the inverse image $\alpha^{-1}(\mathrm{C})$ will be a nonsingular conic. $\alpha^{\prime}, \alpha \in \operatorname{Isom}\left(\mathrm{V}^{*}, \mathrm{~S}^{2} \mathrm{H}^{*}\right)$ with $\alpha^{-1}(C)=\alpha^{-1}(C)$ differ by an automorphism $\gamma \in \operatorname{Aut}\left(S^{2} H^{*}\right)$ with $\gamma(C)=C$. But these γ^{\prime} s come from automorphisms of H. This proves our claim.
4) $\quad M_{\mathbf{P}_{3}}(0,1)=\operatorname{PGL}(3, C) / \operatorname{Sp}(2, C) \quad$ (see $\left.[4]\right)$.

By application 3 of 2.3 we have

$$
M(0,1)=\operatorname{Isom}\left(C^{4}, C^{4}\right) / C^{*} \times \operatorname{Sp}(2, C)=\operatorname{PGL}(3, C) / \operatorname{Sp}(2, C) .
$$

In particular $\operatorname{PGL}(3)$ operates transitively on $M(0,1)$. The Null-correlation bundle belongs to $\mathrm{M}(0,1)$.

Hartshorne [25] gives a description of $M_{\mathbb{P}_{3}}(0,2)$. In particular $M_{\mathbf{P}_{3}}(0,2)$ is still connected. For $C_{2} \geq 3$ the space $M_{3}\left(O, c_{2}\right)$ will be divided into 2 components by the α-invariant. The following example due to Barth and Hulek [8] (see also [25]) shows that $M_{3}\left(O, C_{2}\right)$ is reducible if C_{2} is odd and at least 5 .

Consider the monad

$$
O(-m-1) \xrightarrow{a} O(m) \oplus \oplus \oplus O \oplus O(-m) \quad b \quad O(m+1)
$$

on P_{3}. The map a $\in H^{\circ}(O(2 m+1) \oplus O(m+1) \oplus O(m+1) \oplus O(1))$ has to be chosen such that the a_{i} have no common zero. On $\mathscr{O}(m) \oplus \oplus \oplus \odot \oplus \mathscr{O}(-m)$ take the sympletic form

$$
q=\left(\begin{array}{cccc}
& 0 & & 1 \\
& & 1 & \\
-1 & -1 & & 0
\end{array}\right)
$$

and put $\mathrm{b}=\mathrm{a}^{\mathrm{t}}$.
The stable 2-bundles defined by these monads have Chern classes $c_{1}=0$, $c_{2}=2 m+1$.

This family of bundles depends effectively on

$$
\#_{a}{ }^{\prime} s-\operatorname{dim}\left(C^{*} \times O(q)\right)
$$

parameters (compare 2.3).
One checks that $\operatorname{dim} O(q)=4+2\binom{m+3}{3}+\binom{2 m+3}{3}$ and thus gets that the family depends on

$$
3 m^{2}+10 m+8
$$

parameters.
For $m \geq 2$ this number is bigger than $16 m+5=8 c_{2}-3$ which is the dimension of the Zariski-open smooth part of bundles E with $H^{2}\left(\mathbb{P}_{3}\right.$, End(E)) $=0$.

Questions.- 1) Are $M_{\mathbb{P}_{3}}(0,3)$ and $M_{\mathbb{P}_{3}}(0,4)$ nonsingular and do they have only two components (given by α) ?
2) What can be said about $M\left(O, c_{2}\right), c_{2}^{-}$even ?
3) Is the Zariski-open part of mathematical instanton bundles of $M_{\mathbb{P}_{3}}\left(0, c_{2}\right)$, i.e. the bundles E with $H^{1}\left(\mathbb{P}_{3}, E(-2)\right)=0$, nonsingular ?

5. Jumping lines and uniform bundles

If E is a holomorphic r-bundle on \mathbb{P}_{n} the restriction of E to a projective line $L \subset \mathbb{P}_{n}$ is by the theorem of Grothendieck of the form

$$
E \mid L \simeq \mathscr{O}\left(a_{1}\right) \oplus \ldots \oplus \mathscr{O}\left(a_{r}\right) .
$$

The integers a_{i} depend on L but are the same for the general line L. Lines for which $E \mid L$ is different from the generic form are called jumping lines. The set of jumping lines will be denoted by $S(E)$. It is a closed analytic subset of $\operatorname{Gr}(1, n)$.

One of the main tools in studying stable 2-bundles on P_{n} is the theorem of Grauert and Mülich [18], [4].

THEOREM 5.1.- For a stable normalized 2-bundle E on \mathbf{p}_{n} the restriction of E to the general line is

$$
\mathrm{E} \left\lvert\, \mathrm{L} \simeq \begin{cases}\odot \oplus \odot & \text { for } c_{1}=0 \\ 0 \oplus \mathcal{O}(-1) & \text { for } c_{1}=-1\end{cases}\right.
$$

To study stable bundles of higher rank it would be desireable to solve the following Problem 4. Let E be a stable r-bundle on P_{n}. Is it true that for the general line L one has

$$
E \mid L \simeq O\left(a_{1}\right) \oplus \ldots \oplus \mathcal{O}\left(a_{r}\right)
$$

with $a_{1} \geq a_{2} \geq \ldots \geq a_{r}, a_{i-1}-a_{i} \leq 1$ for $i=2, \ldots, r$?
For $r=2$ it is true by the Grauert-Muilich theorem. For $r=3$ and $n=2$ it is true by [43].

For stable 2-bundles E with c_{1} even one can say more about $S(E)$. The Grauert-Mülich theorem implies for a normalized stable 2-bundle E on P_{n} :

$$
S(E)=\left\{L: H^{\circ}(L, E(-1) \mid L) \neq O\right\} .
$$

Suppose now $n=2$ and $c_{1}=0$. The exact sequence

$$
O \rightarrow H^{\circ}(E(-1) \mid L) \rightarrow H^{1}(E(-2)) \xrightarrow{\alpha(L)} H^{1}(E(-1))
$$

shows that

$$
S(E)=\left\{L \in \mathbb{\mathbb { P }}_{2}^{*}: \operatorname{det} \alpha(L)=0\right\},
$$

because $h^{1}(E(-2))=h^{1}(E(-1))=c_{2}(E)$. Hence $S(E)$ is a curve of degree $c_{2}(E)$. Barth [4] has shown that this remains true if $n>2$, ise. $S(E)$ is a divisor of degree $C_{2}(E)$ in $\operatorname{Gr}(1, n)$.

For C_{1} odd $S(E)$ is not a hypersurface. For example look at $\mathrm{E} \in \mathrm{M}_{2}(-1,2)=\mathrm{S}^{2} \mathbf{P}_{2} \backslash \Delta$. If E corresponds to 2 different points $\mathrm{p}_{1}, \mathrm{p}_{2} \in \mathbf{P}_{2}$ then there is only one jumping line : the line containing p_{1} and p_{2}. In order to associate geometric objects to $M_{\mathbf{p}_{2}}\left(-1, c_{2}\right)$ Hulek [33] gives the following DEFINITION 5.2.- Let E be a normalized 2-bundle on \mathbf{P}_{2}. A line $L \subset \mathbb{P}_{2}$ is called a jumping line of the second kind if $H^{0}\left(E \mid L^{2}\right) \neq 0$. Here L^{2} denotes the first infinitesimal neighborhood of L in \mathbb{e}_{2}.

Hulek shows that for stable 2 -bundles on \mathbb{P}_{2} with $c_{1}=-1$ the set $C(E)$ of jumping lines of the second kind is a curve in \mathbf{P}_{2}^{*} of degree ${ }^{2 c} C_{2}(E)-2$. Furthermore
and in general one has equality.

Holomorphic bundles E on \mathbf{P}_{n} with $\mathrm{S}(\mathrm{E})=\varnothing$ are called uniform.
Van de Ven [63] showed that a uniform 2-bundle on P_{n} either splits into line bundles or is of the form $T_{\mathbf{P}_{2}}(k), k \in \mathbb{Z}$. This was generalized by Sato [47] to r-bundles on P_{n} with $r \leq n$. Elencwajg [14] proved that uniform 3-bundles E on \mathbb{P}_{2} (and therefore on \mathbf{P}_{n} for all n by Sato's result) are homogeneous, i.e. $\sigma^{*} E \simeq E$ for all $\sigma \in \operatorname{PGL}(n)$. This gave much evidence to the old conjecture [51] that uniform bundles of arbitrary rank on \mathbb{P}_{n} are homogeneous.

Recently Elencwajg [15] gave an example of a uniform 4-bundle on \mathbb{P}_{2} which is not homogeneous. In fact he uses a monad of the type described in application 2 of 2.3 .

Problem 5. Does every uniform unstable bundle on \mathbb{P}_{n} split ?
For rank two this is true (and easy to see).

Finally we recommend to consult a recent problem list (26 problems) on vector bundles on ${ }_{n}$ compiled by Hartshorne [26]. There one can especially find many problems related to instantons which we have almost completely neglected due to limited space and knowledge.

BIBLIOGRAPHY

[1] M.F.ATIYAH, N.J.HITCHIN, V.G. DRINFELD, Ju. MANIN - Construction of instantons, Physics Letters, 65 A (1978), 185-187.
[2] M. F. ATIYAH, E. REES - Vector bundles on projective 3-space, Inventiones math., 35 (1976), 131-153.
[3] W. BARTH - Submanifolds of low codimension in projective space, Proc. I.C.M. Vancouver (1975), 409-413.
[4] W. BARTH - Some properties of stable rank -2 vector bundles on N_{n}, Math. Ann., 226 (1977), 125-150.
[5] W. BARTH - Moduli of vector bundles on the projective plane. Inventiones math. 42 (1977), 63-91.
[6] W. BARTH - Stable vector bundles on ${ }_{3}$, some experimental data, Preprint 1978.
[7] W. BARTH, G. ELENCWAJG - Concernant la cohomologie des fibrés algébriques stables sur $\mathbb{P}_{\mathrm{n}}(\mathbb{C})$. In Variétés Analytiques Compactes, Nice 1977, Lecture Notes in Math., 683 (1978), 1-24.
[8] W. BARTH, K. HULEK - Monads and moduli of vector bundles, Manuscripta math. 25(1978), 323-347.
[9] W. BARTH, A. VAN DE VEN - A decomposability criterion for algebraic 2-bundles on projective spaces, Inventiones Math., 25 (1974), 91-106.
[10] W. BARTH, A. VAN DE VEN - On the geometry in codimension 2 of Grassmann manifolds, In classification of algebraic varieties and compact complex manifolds, Lecture Notes in Math., 412 (1974), 1-35.
[11] A. BEILINSON - Coherent sheaves on \mathbb{N}^{N} and problems of linear algebra, J. of functional analysis and its applications, 12 (1978), 68-69.
[12] V.G.DRINFELD, Ju. MANIN - On locally free sheaves over \mathbb{P}_{3} connected with Yang-Mills fields, Uspechi, 33 (1978), 165-166.
[13] V. G. DRINFELD, Ju. MANIN - J. Functional Analysis and its applications, 12(1978), 78-79.
[14] G. ELENCWAJG - Les fibrés uniformes de rang 3 sur $\mathbf{P}_{2}(C)$ sont homogènes, Math. Ann., 231 (1978), 217-227.
[15] G. ELENCWAJG - Des fibrés uniformes non homogènes, Preprint 1978, Nice.
[16] D. FERRAND - Courbes gauches et fibrés de rang 2 , C. R. Acad. Sci. Paris, 281 (1975), A 345-347.
[17] D. GIESEKER - On the moduli of vector bundles on an algebraic surface, Ann. of Math., 106 (1977), 45-60.
[18] H. GRAUERT, G. MÜLICH - Vektorbuindel vom Rang 2 iber dem n-dimensionalen komplex-projektiven Raum, Manuscripta math., 16 (1975), 75-100.
[19] H. GRAUERT, R. REMMERT - Zur Spaltung lokal-freier Garben uiber Riemannschen Flächen, Math. Z., 144 (1975), 35-43.
[20] H. GRAUERT, M. SCHNEIDER - Komplexe Unterräume und holomorphe Vektorraumbündel vom Rang zwei, Math. Ann., 230 (1977), 75-90.
[21] A. GROTHENDIECK - Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., 79 (1956), 121-138.
[22] A. GROTHENDIECK - Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki, Exposé 149, Mai 1957, W. A. Benjamin-AddisonWesley, New York, 1966.
[23] R. HARTSHORNE - Varieties of small codimension in projective space, Bull. Amer. Math. Soc., 80 (1974), 1017-1032.
[24] R. HARTSHORNE - Stable vector bundles and instantons, Comm. Math. Phys., 59 (1978), 1-15.
[25] R. HARTSHORNE - Stable vector bundles of rank 2 on \mathbb{e}^{3}. Math. Ann., 238(1978), 229-280.
[26] R. HARTSHORNE - Algebraic vector bundles on projective spaces : a problem list, Preprint 1978.
[27] G. HORROCKS - Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3), 14 (1964), 689-713.
[28] G. HORROCKS - A construction for locally free sheaves, Topology, 7 (1968), 117-120.
[29] G. HORROCKS - Letter to Mumford (1971).
[30] G. HORROCKS - Examples of rank three vector bundles on five-dimensional projective space, J. London Math. Soc. (2), 18 (1978), 15-27.
[31] G. HORROCKS - Construction of bundles on \mathbb{P}^{n}, Preprint 1978.
[32] G. HORROCKS, D. MUMFORD - A rank 2 vector bundle on P^{4} with 15,000 symmetries, Topology, 12 (1973), 63-81.
[33] K. HULEK - Talk at Oberwolfach 1978.
[34] W. HULSBERGEN - Vector bundles on the complex projective plane, Thesis, Leiden (1976).
[35] S. G. LANGTON - Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math. (2), 101 (1975), 88-110.
[36] M. E. LARSEN - On the topology of complex projective manifolds, Inventiones math., 19 (1973), 251-260.
[37] J. LE POTIER - Fibrés stables de rang 2 sur $\mathbf{P}_{2}(\mathbb{C})$, Preprint 1978, Paris VII.
[38] M. MARUYAMA - On a family of algebraic vector bundles, Number theory, algebraic geometry and commutative algebra, in honor of Y . Akizuki, Kinokuniya, Tokyo (1973), 95-146.
[39] M. MARUYAMA - Stable vector bundles on an algebraic surface, Nagoya Math. J., 58 (1975), 25-68.
[40] M. MARUYAMA - Openness of a family of torsion free sheaves, J. Math. Kyoto Univ., 16 (1976), 627-637.
[41] M. MARUYAMA - Moduli of stable sheaves, I. J. Math. Kyoto Univ., 17 (1977), 91-126.
[42] M. MARUYAMA - Moduli of stable sheaves, II. J. Math. Kyoto Univ., to appear.
[43] M. MARUYAMA - Boundedness of semi-stable sheaves of small ranks, Preprint 1978.
[44] G. MU̇LICH - Familien holomorpher Vektorraumbïndel iber \mathbb{P}_{1} und unzerlegbare holomorphe 2-Bündel über der projektiven Ebene, Thesis, Göttingen, 1974.
[45] A. OGUS - On the formal neighborhood of a subvariety of projective space, Amer. J. Math., 97 (1976), 1085-1107.
[46] E. REES - Some rank two bundles on $\mathbb{P}_{n}(C)$ whose Chern classes vanish, In Variétés analytiques Compactes, Nice 1977, Lecture Notes in Math., 683 (1978), 25-28.
[47] E. SATO - Uniform vector bundles on a projective space, J. Math. Soc. Japan, 28 (1976), 123-132.
[48] E. SATO - On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties, J. Math. Kyoto Univ., 17 (1977), 127-150.
[49] J.-P. SERRE - Sur les modules projectifs, Séminaire Dubreil-Pisot, (1960/61), Exposé 2.
[50] M. SCHNEIDER - Mannigfaltigkeiten der Codimension zwei im projektiven Raum, Private Notes.
[51] R. L.E. SCHWARZENBERGER - Vector bundles on algebraic surfaces, Proc. London Math. Soc. (3), 11 (1961), 601-622.
[52] R.L.E. S®HWARZENBERGER - Vector bundles on the projective plane, Proc. London Math. Soc. (3), 11 (1961), 623-640.
[53] R. L. E. SCHWARZENBERGER - Appendix I of Topological Methods in Algebraic Geometry by F. Hirzebruch, Springer 1966.
[54] L. SMITH - Complex 2-plane bundles over CP(n), Manuscripta Math., 24 (1978), 221-228.
[55] R. SWITZER - Complex 2-plane bundles over complex projective space, Preprint 1978, Göttingen.
[56] F. TAKEMOTO - Stable vector bundles on algebraic surfaces, Nagoya Math. J. 47(1972), 29-48.
[57] H. TANGO - On ($n-1$)-dimensional projective spaces contained in the Grassmann variety $G r(n, 1)$, J. Math. Kyoto Univ., 14 (1974), 415-460.
[58] H. TANGO - An example of indecomposable vector bundle of rank $n-1$ on P^{n}, J. Math. Kyoto Univ., 16(1976), 137-141.
[59] H. TANGO - On morphisms from projective space \mathbf{p}^{n} to the Grassmann variety $\operatorname{Gr}(\mathrm{n}, \mathrm{d})$, J. Math. Kyoto Univ., 16(1976), 201-207.
[60] A. THOMAS - Almost complex structures on complex projective spaces, Trans. Amer. Math. Soc., 193 (1974), 123-132.
[61] A. N. TJURIN - Finite dimensional vector bundles over infinite varieties, Math. U.S.S.R. Isvestija 10 (1976), 1187-1204.
[62] G. TRAUTMANN - Moduli for bundles on \mathbb{P}_{n}, Preprint 1978, Kaiserslautern.
[63] A. VAN DE VEN - On uniform vector bundles, Math. Ann., 195(1972), 245-248.
[64] A. VAN DE VEN, J. VOGELAAR - A construction for vector bundles of rank 3 , Preprint 1978, Leiden.

