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HOLOMORPHIC VECTOR BUNDLES ON Pn

by Michael SCHNEIDER

Séminaire BOURBAKI

31e annee, 1978/79, n° 530 Novembre 1978

The classification of holomorphic (= algebraic) vector bundles on complex projective

space P could be tried along the following lines :

I) Classify the topological complex vector bundles on P
n

II) Determine which topological bundles admit an analytic structure.

III) Classify for fixed topological bundle all possible analytic structures.

This is a survey of some of the main results concerning I) -III) as well as a guide

to the literature. We included only a few open problems. But in fact most of the

work has still to be done.

Notation.- No distinction will be made between holomorphic vector bundles and locally

free coherent analytic sheaves. is the line bundle having a holomorphic sec-

tion vanishing precisely on a hyperplane. E(k) : = E @ O(1)®k , ,
E) : = dim ,E) for a vector bundle E on P . . The total Chern class

of E will be denoted by c(E) = 1 + c,(E) + ... + cr(E) . The Chern classes

c. (E) ~ H (P ,2Z) will be regarded mostly as integers. The holomorphic tan-

gent bundle of P n will be denoted by T P .
n .

1. Topological classification

Let Vect top (P ) n be the isomorphism classes of topological complex vector bundles

of rank r on Pn . . It is well known that Vect (Pn) ~ Vect for all

r ~ n .

Schwarzenberger [53J noticed that the Chern classes of E ~ Vectrtop (P ) n satis-

fy the condition

Here the 6, are as usual related to the Chern class of E by
i __

The conditions (S ) for r = 2 are as follows :
n



(S ) no condition -

(S3) clc2 
= 0 (2)

(S4) c2(c2 + 1 - 3c1 - 2c~) - O {12)

(S5) is equivalent to (S4).
For r = 3 one gets for instance (S3) : c3 - clc2 (2). °

A. Thomas [60] proved that the Schwarzenberger condition (S ) classifies
stable bundles on P i.e.

n

For P this gives

For P there remains the classification of 2-bundles. This has been done by

Atiyah and Rees ~2~. They showed that for c’,c2 with c~c2 - 0 (2) and c odd

there exists exactly one 2-bundle with these ci as Chern classes. For c~ 1 even

there are exactly two 2-bundles with these c. as Chern classes. These two bundles

are distinguished by a certain mod 2 invariant &#x26;’ .

On P 4 there remains the classification of bundles of rank 2 and 3 . Switzer F551, ’
complementing the results of Atiyah and Rees, showed

Switzer [55] recently pushed the classification of 2-bundles up to ~&#x26; . . As a sam-

ple let us state his results on ~P5 because this is the first case where not all

c1 , c2 satisfying the Schwarzenberger conditions arise as the Chern classes of

a vector bundle of rank 2. Set A = c 1 _ 4 4c2 . Then for c, , , c2 satisfying

(S5) there exists at least one 
2-bundle with these ci as.Chern classes if c, ~ is

odd or if c1 is even and ~2(d - 1) = 0 (24) (if c1 is even and 

1) ~ 0 (24) there is no 2-bundle with these c. as Chern classes). For

c2 ~ c 2 (3) there exists exactly one 2-bundle and for c 2 (3) there are

exactly three 2-bundles.



2. Construction of holomorphic vector bundles on P

In this section we will give some general procedures to construct holomorphic bundles.

These will be applied to show that all topological vector bundles on e , n ~ 3 ,

admit an analytic structure.

Let us start by recalling that all line bundles on Pn are of the form ®(k) ,

k ~ ZZ . To convince the reader that the difficulties arise only if rank and dimen-

sion are bigger than 1 we include a short proof of the fact that all holomorphic

vector bundles on tP1 I split into line bundles (see [19]).

THEOREM (Grothendieck [21]).- Any holomorphic vector bundle E on P1 1 is of the

form E = D(a.) C ... ~ (D(a ) .

Proof. The proof is by induction on r = rk E . We may assume r ~ 2 . Choose k ~ 22

minimal with 0 (k exists by Serre’s results on the cohomology of cohe-

rent sheaves on P ). We may assume k = 0 . Any nonzero o ~ Ho(E) has zeroes only

in codimension 2 . Hence a nonzero 0 E Ho(E) gives a trivial line subbundle of E

By induction we have F ~ ®(ar) . From (*) one gets the exact sequence

This shows H°(F(-1)) - O and therefore a, s O for all i . The obstruction to

split (*) lies in H1(F*) - ® H1(O(-a,)) - O , since a, s O for all i .
i i i

Hence (*) splits and we get

2.1. Vector bundles of rank n - 1 on P
20142014201420142014201420142014201420142014201420142014201420142014201420142014 - n

Tango [58] constructed indecomposable holomorphic (n - 1)-bundles on p 
n 

for each

n ~ 3 using the following generalization of a general position argument of Serre’s.

PROPOSITION 2.1.- Let E be a holomorphic vector bundle on P generated by global
n

sections. If c.(E) = 0 for some i ~ r = rk E then E has a trivial subbundle
i

of rank r - i + 1 .

COROLLARY 1.- For n ~ 3 there is an indecomposable (n - 1)-bundle on P .
n

Proof. Q (2) is generated by global sections. Let

be the canonical surjection and put E = (ker ~)* . One calculates c (E) = O . Hence
n

E has a trivial subbundle such that the quotient F is of rank . The indecomposa-



bility of F can be proved by inspecting its cohomology groups.

COROLLARY 2.- For n odd there is a (n- 1)-bundle N on P with Chern class
n

Here h = c1(O(1)) is the canonical generator of H (P ,2Z) .
Proof. Q (2) is generated by global sections and c (03A91(2)) = 0 for n odd.This

shows the existence of-.a trivial line subbundle of 03A91(2) . This gives a surjection
T(-1) ~ 0(1) .

Let N be the kernel of this map. Then

Remarks.- 1) N is the Null-correlation bundle.

2) The tangent bundle T is indecomposable.
n

3) Maruyama [,38] has shown that for each r > n there exist indecomposable r-

bundles on P if n ~ 2.
n -

2.2. Subvarieties of  of codimension 2 and holomorphic vector bundles of rank 2
201420142014201420142014201420142014201420142014201420142014201420142014 n 20142014201420142014201420142014201420142014201420142014201420142014 2014201420142014201420142014201420142014201420142014&#x26;2014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014

In this section we will explain the connection of locally complete intersection

subvarieties of codimension 2 and holomorphic bundles of rank 2 . This correspon-

dence essentially goes back to Serre [49] and has been rediscovered and reformula-

ted many times [_28], [.9], [18], (23), [25J. Here we follow mainly Hartshorne’s pre-
sentation.

Let E be a holomorphic 2-bundle on P and suppose E has a holomorphic

section Q vanishing in codimension 2 only (this can always be achieved by repla-

cing E by E(k) with k ~ 2Z minimal with respect to 0 ). Then

Y = (o = O~ is of codimension 2 and locally a complete intersection. Y is in

general neither reduced nor irreducible. The Koszul complex of a is

This implies

Hence E is an extension of the normal bundle (J/J2)* of Y in ~n to

the whole of ~ . Inserting 
~ n

n

into the Koszul complex gives.



It is clear that

The interesting point is the reversal of this procedure. Take a locally complete

intersection Y ~ P of codimension 2 . We would like to construct a 2-bundle E
n

together with a ~ E HO(I? , E) giving Y = (a = By what we have seen it is
n

natural to try getting E* as extension of JY by some line bundle.

PROPOSITION 2.2.1.- Let Y be a locally complete intersection of codimension 2 in

P , n ~ 3 . Assume that det 0 (k) . Then there exists a holomorphic 2-

bundle E on P with a holomorphic section 9 E E) such that
n n

In particular c (E) = k , c (E) = deg Y .

Proof. The extensions of J by 0(-k) are classified by Ext (J , 0(-k)) . The
exact sequence

0 ~ H1 (Pn , Hom(JY , 0(-k))) ~ Ext1o(JY , 0(-k)) ~ Ho(Pn , Ext1o(JY , 0(-k))) 2014>

gives for n z 3 an isomorphism

since Hom(J , 0(-k)) = 0(-k) and 0(-k)) = 0 for 1 ~ n- 1 and all
- Y n

k ~ ZZ . Using

one finally gets an isomorphism

The canonical section § in H°(Y , OY) therefore gives an extension

of JY by ©(-k) through a coherent sheaf. Since 03BE locally generates each stalk

of O(-k) ) it follows from [49] that F is locally free. E : _ F* is

the desired bundle.



Remarks.- 1) Barth, Larsen and Ogus [36], [45] have shown that Pic(P ) ~ Pic(Y)
for n ~ 6 and nonsingular Y . Thus each nonsingular submanifold Y C e , n ~ 6 ,

n

of codimension 2 gives a holomorphic vector bundle of rank 2 on P .
n

2) The above construction does not work without further considerations on PZ .
But if k ~ 2 the group H2(e2 , 0(-k)) } still vanishes and the proposition 2.2.1 1

remains valid in that case. For arbitrary k see [51], [18].

Let us apply this proposition to produce many holomorphic 2-bundles on P2
and 1?3 . °

Examples.

1) Take Y to be the union of d simple points in ~2 . Then det Ny’~ - 
and we get a holomorphic 2-bundle E on P with c1 - 2 and c2 - d . This
shows the existence of 2-bundles with c1 - 0 , c2 z O . °

2) Take Y to be the union of d disjoint lines in . Then det 

and we get a 2-bundle with c1 - 2 , c2 - d . Normalizing gives c1 - 0, c2 2 0
arbitrary.

3) Take Y to be the union of r disjoint nonsingular conics in Q3 . Then
det N ‘ OY(3) and we get a 2-bundle with c1 - 3, C2 = 2r . ° This shows the

existence of 2-bundles with c1 = -1, ’ c2 2 O even.

4) Horrocks [28]
Let p ~ 2 be an integer and m1,...,m r with 0   p . Choose r

disjoint lines Li ~ P3 and give them a nilpotent structure through

m, p-m,

J = ( x 1 , , y 1 ) . Here x , y are equations for L.. Take Y to be the union

of these fattened lines. Then r det i 0 (p) and we get a 2-bundle with

A short calculation shows that all c~ , c2 with O (2) are of this

form (modulo twisting). Therefore all c~ , c2 with c~c2 - 0 (2) are the Chern

classes of a holomorphic 2-bundle on ~~ .
Atiyah and Rees [2] showed that for a holomorphic 2-bundle E with even

c1 the a-invariant can be given by

Here E norm denotes E(-c./2) 1 for c. 
1 

even and E((-(c. 1 + 1) )/2) for c. 
1 

odd.

Note that (-2)) = (-2)) by Serre-duality.
norm norm



It takes some arithmetic [2] to show that by the above Horrocks construction

one can achieve both values of a. This implies

is surjective.

5) Take Y to be the disjoint union of a plane nonsingular cubic curve and a

nonsingular elliptic space curve of degree d . Y gives a 2-bundle on P3 with

Chern classes c1 - 4, c2 - d + 3 . A short calculation shows (y 
= 1 . Normalizing

one gets the invariants 
’

Note that in Example 2) one has (x = 0 .

6) Horrocks, Mumford [32]
These authors show the existence of a 2-bundle on P4 which comes from an abelian

surface Y C Suppose you have shown the embedding of an abelian surface Y

into ~4 . . The exact sequence

Hence we get a 2-bundle with c1 = 5 , I c2 - 10 . This is essentially the only
known indecomposable 2-bundle on ~4 .

Problem 1. Are there any holomorphic 2-bundles on P , n ~ 5 , which do not split

into line bundles ?

Let us close this section by some remarks on the connection of 3-bundles on

P and locally complete intersections Y ~ Pn of codimension 2 .

PROPOSITION 2.2.2 (Van de Ven, Vogelaar [64]).- Let Y be a locally complete inter-

section of codimension 2 n ~ 3 . Suppose there is a holomorphic line

bundle L on Y together with holomorphic sections 03C31 , 03C32 ~ Ho(Y,L) such that

1 = O} n {03C32 = o’) = 0 . If furthermore det NY|Pn ~ L* ~ OY ( k ) then there is a

holomorphic 3-bundle E on P with
n

Remark.- One gets E as an extension

As an application it is shown that all c1 , c 2 , c3 ~ ZZ with c3 - c 1 c 2 (2) occur

as the Chern classes of a holomorphic 3-bundle on C . Combining with 4) one obtains
the surjectivity of the map



for all r .

2.3. Monads

The description of holomorphic vector bundles on P by monads is due to Horrocks

[27], [29], [31] and was recently put into a general frame by Beilinson [11]. In

specific cases they have been studied by Barth, Hulek, Drinfeld and Manin [5], f_8],
[33], [12].

DEFINITION 2.3.1.- A monad is a complex of holomorphic vector bundles

which is exact except possibly at B .

Remark.- E : = ker b 1 im a is a holomorphic vector bundle with

rk E = rk B - rk A - rk C and Chern class

The following version of the Beilinson construction I learned from Verdier.

THEOREM 2.3.2 (Beilinson [11]).- Let E be a holomorphic vector bundle on P . There

exists a spectral sequence with

and a filtration of E whose associated graded module is ® 
P 

°’

Proof. ~(V) , V a complex vector space of dimension n + 1 . Consider
n

the canonical exact sequence

Here Q - T(-1) and Ho(~ , Q) - V . On Q x ~ we look at
n n n

O(1) : = pr,*’ Q ® pr2 a(1) . There is a canonical section
0 6 x Pn , Q 53 O(1)) - V ~ V* corresponding to id . This section vanishes
precisely and transversally at the diagonal 0394 of P x p . Hence we have the

Koszul complex

O --~ C~n ( n ) SQ © ( -n ) --3 ... --~ ~ 1 ( ~ ) ® ~ ( -1 ) ~ ~ x ~ 
-~ © ~ ---~ O .

n n

This gives

where C03BD = 0 -03BD (-03BD)  o(03BD) for 03BD ~ 0 and C03BD = 0 for 03BD > 0 . The spectral

sequence for the hypercohomology of pr now gives the result.



Remark.- Interchanging pr with pr2 in the above proof gives a spectral sequence

with

satisfying the same properties as the one in the theorem.

Applications (compare [8] and [31] for a different approach)

1) Let E be a holomorphic r-bundle on P with H°(P , E(-1)) = 
= 0 . Then E is the cohomology of a monad

If c1(E) - 0 , then h1(E(-2)) - h1(E(-1)) - c2(E) by Riemann-Roch. In case E

is orthogonal or symplectic (i.e. we have a nondegenerate symmetric or skew bilinear

form on E ), one can give the bundles in terms of linear algebra. Let H and K be

complex vector spaces of dimension n and 2n + r . K should be equipped with an

orthogonal or symplectic nondegenerate form. GL(H) x O(K) acts on the linear map-

pings L(H,K) by

Using the above description of bundles by monads it is easy to show that the iso-

morphism classes of orthogonal (symplectic) holomorphic r-bundles on ~2 - P(V)
with Ho(~2, E(-1)) = 0 and c (E) = n correspond one to one to the orbits of

GL(H) x O(K) on the set of all linear maps cy : V --~ L(H,K) with

(i) cy(v) is injective for all v ~ O

(ii) cy(v)(H) is for all v E V a totally isotropic subspace of K .

Remark.- HO(E) = 0 is equivalent to the surjectivity of the map H._® V -~ K

induced by (y . 
,

2) Let E be a holomorphic r-bundle on P2 - with

Ho(p2, E) = Ho(~2, E*(-1)) = 0 . Then E comes from a monad

One can make explicit the maps a and b [37] :
for z E V* = r(P~ , O(1)) denote the maps

given by the multiplication with z by and ~(z) . At the point x E ~~ the

map a is given by

1 1
Here z’ , z" ~ Q (1) (note that D(-1) = det 0 (1) ). The map b is given atx

x ~ p 
2 by



The injectivity of a is equivalent to :

for each nonzero h E H1(E(-2)) the map z t2014> from V*

to H (E(-1)) has rank at least 2 .

Now let E be of rank 2 and c1(E) - -1 . Serre-duality gives a symmetric nonde-
generate form on H1(E(-1)~ and an isomorphism H1(E(-2))* ^’ H1(E) . In this case

, z E V* . From this one can deduce as in 1) a bijective correspon-

dence (see [37]) between the isomorphism classes of holomorphic 2-bundles E on

Q2 with c1(E) - -1, H°(E) = 0 , c~(E) - n and the orbits of GL(H) x O(K) on

the set of all linear maps Of : V* -~ L(H,K) satisfying

(i) ot(z’ )t~(z") - for z~ , , z" ( V*

( ii ) the map z ~--~ a(z)h from V* to K is for all nonzero h 6 H of rank

at least 2 .

Here H and K are complex vector spaces of dimension n - 1 and n . Furthermore

K is equipped with a nondegenerate symmetric bilinear form.

The case c1(E) - 0 is different. Here Serre-duality gives

and for z E V* the map

is symmetric. It takes some work (see [5], [.37]) to show that the isomorphism classes

of 2-bundles E with c1(E) - ~ , H°(E) = 0 and c 2 (E) = n are in bijective cor-

respondence with the orbits of GL(H) acting on the set of all linear maps

a : V* --~ S2H* satisfying

( i ) the map z t2014~ from V* to H* is for all nonzero h E H of rank

at least 2

(ii) there is a base ( z , z1 , z2 ) of V* such that is invertible and

the map H ~ H* given by -103B1(z2) - 03B1(z2)03B1(zo)-103B1(z1) is of

rank 2 .

Here H is a complex vector space of dimension n (z 2) . Monads of this type have

been used by Barth [5] to classify stable 2-bundles on e2 with c~ - 0 .

3) Let E be a holomorphic r-bundle on P 3 with H°(E(-1)) - 0 , H~(E(-2)) = O
("instanton condition"), E ~ E* and c2(E) = n . Then E comes from a monad

In particular this shows that H1 (P3 , E(-03BD)) = 0 for all 03BD ~ 2 . Using the nota-

tion of the first application one gets in the some way a bijection between isomor-

phism classes of orthogonal (symplectic) r-bundles on e3 - P(V) satisfying the



conditions H°(E(-1)) - 0 , H~(E(-2)) == 0 , c2{E) - n and the orbits of

GL(H) x O(K) acting on the linear maps a : V ~--~ L(H,K) with

(i) H ---~ K is injective for all v ~ O

(ii) t~(v)(H) is for all v E V a totally isotropic subspace of K .

Remark.- The condition Ho(P3,E)= O is equivalent to the surjectivity of the map
H ® V -~ K induced .

Monads of this type have been used to describe instantons ~1~, [22J.

4) Let E be a holomorphic r-bundle on P with Ho(E) - H~(E(-2)) - 0 and

E ..r E* . Then E comes from a monad

3. Stable bundles

DEFINITION 3.1.- A holomorphic r-bundle E on P is said to be stable if for all
n 20142014201420142014

proper coherent subsheaves ~ of E of rank s we have the inequality

If we have only " ~ 
" instead of "  " then E is called semi-stable. A bundle

which is not semi-stable is usually called unstable.

Remarks.- 1) This definition is due to Mumford and Takemoto [56]. Recently Gieseker

{_17] suggested a slightly different definition. He calls E stable if

for m » 0 . ° Here pF (m) = x (Pn , F (m)) is the Hilbert polynomial of F ° With

this definition one generally gets more stable but fewer semi-stable bundles than

before.

2) It is straightforward [56] that stable bundles E are always simple, i.e.

H°(E* ~ E) = C , and therefore indecomposable.
3) T is stable [35].

PROPOSITION 3.2 [4].- The stable 2-bundles on P are precisely the simple ones.

Proof. Assume E to be simple. We can choose k ~ ZZ minimal with 

Take a nonzero C E H°(E(k)) and put Y = ~~ - O~ . Y is of codimension 2 and

we get an exact sequence



If c 1 + 2k ~ 0 we get a "non-trivial" endomorphism of E(k) by composing

Hence c + 2k > 0 . °

Now let be a subsheaf of E. By minimality of k we get -~ ~ k

and therefore £  c /2 . This shows the stability of E .

Remark.- It is easy to see that a 2-bundle E on e is stable if and only if
20142014201420142014 n

H (P , E ) = 0 . For 3-bundles with c. = 0 stability is equivalent to
n norm 1

= = 0 .

Problem 2. Give a similar criterion of stability for bundles of higher rank.

Schwarzenberger has shown [52] that Riemann-Roch implies that the Chern clas-

ses of a stable 2-bundle on P have to satisfy c - 4c  0 (for a semi-stable

2-bundle one has c - 4c2 ~ 0 ). In fact c - 4c = -4 cannot occur for a stable

2-bundle on P [38].

It is a general fact, proved by Maruyama [43], that the restriction of a semi-

stable r-bundle on P , r  n , to a general byperplane is semi-stable again

(Barth f4"} showed the same to be true for stable 2-bundles on P , n ~ 3 , with
n

the exception of the Null-correlation bundle). Hence for a semi-stable 2-bundle E

on P we have
n -

and for stable 2-bundles one necessarily has

Problem 3. Determine similar necessary conditions for stable (semi-stable) holomor-

phic bundles of higher rank.

We show next how stability of a 2-bundle E on P coming from a locally
n

complete intersection of codimension 2 is reflected by Y .
n

Let Y cr p , n ~ 2 , be a locally complete intersection of codimension 2
n

and det NY|Pn = oY(k) . Then we can find an extension E of N as in 2.2.1.

PROPOSITION 3.3 (see [25]).- E is stable if and only if k > 0 and Y is not

contained in any hypersurface of degree d ~ k/2 .

Proof. We have an exact sequence

If E is stable then c (E) = k > 0 .



Assume k to be even. The sequence

Stability of E is equivalent to 0 . Therefore H°(J Y (k/2)) = 0 ,
which is equivalent to the fact that Y is not contained in any hypersurface of

degree S k/2 . Assume on the other hand k > 0 and Ho(JY(k/2)) - 0 . This gives
Ho(Enorm) = 0 which is the stability of E . The case c1 1 odd is treated in a

similar way.

Using this criterion we re-examine the examples of 2.1.

Examples.- 1) If E comes from d simple points in ~2 , E is stable if and only

if the points do not all lie on a line. This shows the existence of stable 2-bundles

on P with c 
1 
= 0 , 2 .

2) If E comes from d disjoint lines in P then E is stable if and only if

these lines are not contained in a plane. This is the case for d 2 2 . This gives

stable 2-bundles on P with c1 - 0 , c2 2 1 , a = 0 .

3) For bundles coming from disjoint nonsingular conics we have the some result

as in 2). One gets stable bundles with c1 - -1, 2 even.

4) If E comes from a plane cubic and a disjoint elliptic curve of degree d then

E is stable if d 2 4 . This gives stable bundles on P3 with

5) The 2-bundle of Horrocks and Mumford on P4 is stable since an abelian surface

Y can neither lie in some P3 (because of ~rr~(Y) ~ 0 ) } nor in some hyperquadric Q

(consider normal bundles).

Here we wish to draw the attention of the reader to an example of a stable

3-bundle on P5 constructed by Horrocks j_3o] using representation theory.

Let us close this section by giving the following

Conjecture.- Each 2-bundle on P , , n ~ 5 , which is not stable is a direct sum of
20142014201420142014201420142014 n

line bundles.

In [20] a "proof" for this was given even for n ~ 4 . Unfortunately there

is a gap in that paper.

The conjecture has nice consequences [20], [50] :

1) Each topological 2-bundle on P , n ~ 5 , which is not the direct sum of two
line bundles and satisfying c21 - 4c2 Z 0 cannot have an analytic structure. By [46],



[54], [55] there are many topological 2-bundles with c - 4c2 Z 0 and which do

not split.

2) Each holomorphic 2-bundle on P which can be extended topologically to ~n ,
n arbitrarily large, is the direct sum of line bundles.

This sharpened the theorem of Barth and Van de Ven [9] on Babylonian vector

bundles (see also [48], [61]).

3) Each nonsingular submanifold Y of codimension 2 is a complete inter-
n

section if n ~ 6 and + 1 . This would improve some results in [3].

One can even show, for example, that a nonsingular 4-dimensional submanifold

Y C p6 is a complete intersection if deg Y ~ 514 .

4) Furthermore one could improve the results of Barth and Van de Ven in [10].

4. Moduli of stable bundles

So far we commented the points I and II of the introduction. To deal with III one

would like to introduce on the set of isomorphism classes of stable holomorphic

r-bundles on P with fixed topological type a "good" analytic structure.
n

Consider the functor

E(c ,...,c ) : An -> Ens

from analytic spaces to sets given by

E(c,...,c ) (S) = (bundles E on P xS of fixed rank with E(s) stable and

ci(E(s)) = c, for i = 1,...,r and s C S}/~ .
Here E2 ~ E 1 if pr (L) ~ E 1 for a holomorphic line bundle L on S .

E is contravariant in an obvious way.

DEFINITION 4.1.- M = M(c1’...’c ) CAn is a coarse moduli space for 03A3(c1,...,cr)
if there is a morphism of functors

Furthermore M should be minimal with respect to these properties, i.e. if N is

another analytic space satisfying the above then there should be a unique morphism

M ~ N making the diagram

commutative.



If a coarse moduli space exists one has put in a functorial way an analytic

structure onto the stable bundles on P with fixed Chern classes and fixed rank.
n -

If M represents E then M is said to be a fine moduli space. This is

equivalent to the existence of a universal family over M x P .

It seems much easier to construct a coarse moduli space M in the analytic

category than to do it in the algebraic category. In the algebraic category the exis-

tence was proved by Maruyama [39], [40], [41] by using Mumford’s geometric invariant

approach. Maruyama could not show that M is always of finite type. For n = 2 and

arbitrary rank this was shown to be true by Gieseker [17]. For arbitrary n and

rank S 4 it was verified recently by Maruyama [43].

These authors also study compactifications of M and it turns out that one

has not only to admit semi-stable bundles but also semi-stable torsion free coherent

sheaves.

Our object here is only to mention some specific results for the moduli spaces

M of bundles over p and P .
By deformation theory the Zariski tangent space of M at m is H1(End(E))

if E is the bundle corresponding to m. If H2(End(E)) = 0 then M is smooth

at m . In particular the moduli spaces of stable bundles on e2 are nonsingular.

By Riemann-Roch we get
~ ~

For rank 2 we get

Let us summarize the properties of Me 2 (c~ , C2) .
THEOREM 4.2.- c2) is a smooth, quasi-projective manifold of dimension

4c - c - 3 . M is connected and rational. M is a fine moduli space if and only

if 4c - c21 ~ 0 (8) .

Remarks.- The rationality and connectedness was proved by Barth [5] for c I even

and by Hulek [33] for c l odd using monads. Maruyama [42] showed that M is connec-

ted, unirational (and in some cases rational) and that M is a fine moduli space if

4c - c21 ~ 0 (8). Le Potier [37] proved the nonexistence of a universal family for

4c - c21 ~ 0 (8) using monads. He showed that in this case there are topological

obstructions to the existence of the universal family. In doing this he calculated



To conclude this section we give the simplest examples of moduli spaces on

P 
2 

and P 
3 

which can be deduced quickly from the description of bundles by monads.

Examples.- 1) M (-1,1) = )~( 1)) .
~2

This follows immediately from Application 2 of 2.3.

Here C2 is equipped with a nondegenerate symmetric bilinear form. A linear alge-

braic calculation identifies the righthand side to (P(V) x modulo T~/2 ~ .

This finally gives M(-1,2) ~ S2~p2 ~ °

3) M P2 (0,2) = (nonsingular conics in P J , [.5].

By application 2 of 2.3 one has

M(0,2) = Isom(V* , S2H*) / GL(H) .
H is of dimension 2 . Let C : = (q E S (H ) : det q = O} ; for cy E Isom(V ., S H )

the inverse image cx-1(C) will be a nonsingular conic. a’ , , a E Isom(V* , S2H*) with

~ -1 (C) = a’ -1 (C) differ by an automorphism Y C Aut(S2H*) with ’y(C) - C . But

these Y’s come from automorphisms of H . This proves our claim.

4) M 1?3 (0,1) = PGL(3,C)/ Sp(2,C) (see [4]).

By application 3 of 2.3 we have

M(0,1) = x Sp(2,C) = PGL(3,C)/Sp(2,C) .
In particular PGL(3) operates transitively on M(0,1) . The Null-correlation bundle

belongs to M(0,1) .

Hartshorne [25] gives a description of M 

~3 
(0,2) . In particular M 

3 
(0,2)

is still connected. For 3 the space M (O,c2) will be divided into 2 com-

ponents by the Q-invariant. The following example due to Barth and Hulek [8] (see

also [25]) shows that (0,c ) z is reducible if C2 is odd and at least 5.

Consider the monad



a b
O( -m - I ) -+ O(m) fli © fli O fl3 O( -m) - ©(m + I )

on P . The map a c H° ( O ( 2m + 1 ) fli O(m + 1 ) fl3 © ( m + 1 ) fl3 Ql ( I ) ) } has to be chosen

such that the a , have no common zero. On o(m) fl3 © fll ©(-m) take the sympletic
1

and put b = a

The stable 2-bundles defined by these monads have Chern classes c1 - 0 ,

c = 2m + 1 .

This family of bundles depends effectively on

parameters (compare 2.3). 
’

One checks that dim O(q) = 4 + 2(m 3 3) ) + (Zm3 3) ) and thus gets that the

family depends on

parameters.

For m ~ 2 this number is bigger than 16m + 5 = 8c2 - 3 which is the dimen-

sion of the Zariski-open smooth part of bundles E with 

" 

End(E» = 0 .

Questions.- 1) Are M ~3 (0,3) and M ~3 (0,4) nonsingular and do they have only two

components (given by c,Y ) ?

2) What can be said about M(O,c2) , c2 even ? 
_

3) Is the Zariski-open part of mathematical instanton bundles of MP3 (O,c2) ,
i.e. the bundles E with H1 (P3 , E(-2)) - 0 , nonsingular ? 

5. Jumping lines and uniform bundles

If E is a holomorphic r-bundle on Pn the restriction of E to a projective
line L ~ Pn is by the theorem of Grothendieck of the form

EJL - o(a1) ~? ... 0 D(a ) .
The integers a, depend on L but are the same for the general line L . Lines

for which EL is different from the generic form are called jumping lines. The set

of jumping lines will be denoted by S(E) . It is a closed analytic subset of

Gr(1,n) .



One of the main tools in studying stable 2-bundles on e is the theorem
n

of Grauert and Mulich [18], [4].

THEOREM 5.1.- For a stable normalized 2-bundle E on P the restriction of E
n

to the general line is

To study stable bundles of higher rank-it would be desireable to solve the following

Problem 4. Let E be a stable r-bundle on Pn . Is it true that for the general

line L one has

with a1 2 a2 ~ ... ~ a , ai-1 - 1 for i = 2,...,r ?

For r = 2 it is true by the Grauert-Mülich theorem. For r = 3 and n = 2

it is true by [43].

For stable 2-bundles E with c I even one can say more about S(E) . The

Grauert-Mülich theorem implies for a normalized stable 2-bundle E on © :
n

Suppose now n = 2 and c~ - 0 . The exact sequence

shows that

because h1(E(-2)) - h1(E(-1)) - c (E). Hence S(E) is a curve of degree c (E).
Barth [4] has shown that this remains true if n > 2 , i~e. S(E) is a divisor of

degree c2(E) in Gr(1,n) .

For c1 odd S(E) is not a hypersurface. For example look at

E E MP2 (-1,2) = S2P 2 v D . If E corresponds to 2 different points p1 , P2 E P2
then there is only one jumping line : the line containing p1 and p2 . In order to

associate geometric objects to M (-1,c2) Hulek [33] gives the following

DEFINITION 5.2.- Let E be a normalized 2-bundle on P2 . A line L C P2 is called

a jumping line of the second kind if 0 
. Here L2 denotes the first

infinitesimal neighborhood of L in P .

Hulek shows that for stable 2-bundles on P with c1 - -1 the set C(E)

of jumping lines of the second kind is a curve in P; of degree 2c2(E) -2 .

Furthermore



and in general one has equality.

Holomorphic bundles E on P with S(E) = 0 are called uniform.
n 

201420142014201420142014

Van de Ven [63] - showed that a uniform 2-bundle on  
n 

either splits into line

bundles or is of the form (k) , k This was generalized by Sato [47] to

r-bundles on P with r ~ n . Elencwajg [14] proved that uniform 3-bundles E on

p. 2 (and therefore on P n for all n by Sato’s result) are homogeneous, i.e.

E for all a ( PGL(n) . This gave much evidence to the old conjecture [51]
that uniform bundles of arbitrary rank on Ware homogeneous.

Recently Elencwajg [15] gave an example of a uniform 4-bundle on P which

is not homogeneous. In fact he uses a monad of the type described in application 2

of 2.3.

Problem 5. Does every uniform unstable bundle on P split ?
201420142014201420142014 n

For rank two this is true (and easy to see).

Finally we recommend to consult a recent problem list (26 problems) on vector

bundles on P 
n 

compiled by Hartshorne [26]. There one can especially find many
problems related to instantons which we have almost completely neglected due to

limited space and knowledge.
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