La dynamique au voisinage d'un point fixe elliptique conservatif : de Poincaré et Birkhoff à Aubry et Mather
Séminaire Bourbaki : volume 1983/84, exposés 615-632, Astérisque no. 121-122  (1985), Talk no. 622, p. 147-170
@incollection{SB_1983-1984__26__147_0,
     author = {Chenciner, Alain},
     title = {La dynamique au voisinage d'un point fixe elliptique conservatif : de Poincar\'e et Birkhoff \`a Aubry et Mather},
     booktitle = {S\'eminaire Bourbaki : volume 1983/84, expos\'es 615-632},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {121-122},
     year = {1985},
     note = {talk:622},
     pages = {147-170},
     zbl = {0582.58013},
     mrnumber = {768958},
     language = {fr},
     url = {http://www.numdam.org/item/SB_1983-1984__26__147_0}
}
Chenciner, Alain. La dynamique au voisinage d'un point fixe elliptique conservatif : de Poincaré et Birkhoff à Aubry et Mather, in Séminaire Bourbaki : volume 1983/84, exposés 615-632, Astérisque, no. 121-122 (1985), Talk no. 622, pp. 147-170. http://www.numdam.org/item/SB_1983-1984__26__147_0/

[1] D. G. Aronson, M. A. Chory, R. G. Hall and R. P. Mcgehee - Bifurcations from an Invariant Circle for Two-Parameter families of Maps of the Plane : A computer-Assisted study, Communications in Math. Physics 83(1982), 303-354. | MR 649808 | Zbl 0499.70034

[2] S. Aubry, P. Y. Le Daeron and G. André - Classical ground-states of a one-dimensional model for incommensurate structures, soumis à Communications in Math. Physics.

[3] G. D. Birkhoff - Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. vol. 14(january 1913), 14-22. | JFM 44.0761.01

[4] G. D. Birkhoff - An extension of Poincaré's last geometric theorem, Acta Math. (december 1925), 297-311. | JFM 52.0573.02

[5] G. D. Birkhoff - Surface transformations and their dynamical applications, Acta math. vol. 43(march 1920), 1-119. | JFM 47.0985.03 | MR 1555175

[6] G. D. Birkhoff - On the periodic motions of dynamical systems, Acta Math. vol. 50(october 1927), 359-379. | JFM 53.0733.03 | MR 1555257

[7] G. D. Birkhoff and D. C. Lewis - On the periodic motions near a given Periodic Motion of a Dynamical System, Annali Matem. S-4, vol. 12(1933), 117-133. | JFM 59.0733.05

[8] M. Chaperon - Quelques questions de géométrie symplectique [d'après entre autres, Poincaré, Arnold, Conley et Zehnder], Séminaire Bourbaki 1982-83, exp. n° 610, Astérisque 105-106(1983), 231-249. | Numdam | MR 728991 | Zbl 0525.53049

[9] C. Conley and E. Zehnder - The Birkhoff-Lewis fixed point theorem and a Conjecture of V.I. Arnold, Inventiones Math. 73(1983), 33-49. | MR 707347 | Zbl 0516.58017

[10] Raph Douady - Application du théorème des tores invariants, Thèse de 3e cycle, Université de Paris 7, 1982.

[11] D. Goroff - Hyperbolic sets for twist maps, preprint 1983, soumis à Ergodic theory and dynamical systems. | MR 805834 | Zbl 0551.58028

[12] D. Goroff - A variational study of twist maps, en préparation.

[ 13] G. R. Hall - Bifurcation of an attracting invariant circle : A Denjoy attractor, Ergodic theory and dynamical systems, | MR 743029 | Zbl 0523.58027

[14] G. R. Hall - A topological version of a theorem of Mather on twist maps, preprint University of Wisconsin-Madison, 1983. | MR 779715

[15] M. R. Herman - Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. I.H.E.S. 49(1979), 5-233. | Numdam | MR 538680 | Zbl 0448.58019

[16] M. R. Herman - Sur les courbes invariantes par les difféomorphismes de l'anneau, Volume 1, Astérisque n° 103-104, 1983. | MR 499079 | Zbl 0532.58011

[17] M. R. Herman - Sur les courbes invariantes par les difféomorphismes de l'anneau, Volume 2, soumis à Astérisque. | Zbl 0613.58021

[18] M. R. Herman - Remarque sur les Cantors de Mather et Aubry, Conférence au Séminaire de l'École Polytechnique, 15/03/1982.

[19] M. R. Herman - Cantors hyperboliques, Conférence au Séminaire de l'École Polytechnique, 14/02/1983.

[20] A. Katok - Some remarks on Birkhoff and Mather twist map theorems, Ergodic theory and dynamical systems vol. 2(1982), 185-194. | MR 693974 | Zbl 0521.58048

[21] A. Katok - More about Birkhoff periodic orbits and Mather sets for twist maps, preprint I.H.E.S., 1982.

[22] R. S. Mackay, J. D. Meiss and I. C. Percival - Transport in Hamiltonian systems, preprint 1983, submitted to Physica D. | MR 824824 | Zbl 0585.58039

[ 23] L. Markus and K. R. Meyer - Periodic orbits and solenoids in generic hamiltonian dynamical systems, Amer. J. of Math. vol. 102(1980), 25-92. | MR 556887 | Zbl 0438.58013

[24] J. N. Mather - Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology vol. 21, n° 4(1982), 457-467. | MR 670747 | Zbl 0506.58032

[25] J. N. Mather - Concavity of the Lagrangian for quasi-periodic orbits, Comment. Math. Helvetici 57(1982), 356-376. | MR 689069 | Zbl 0508.58037

[26] J. N. Mather - Non-Uniqueness of Solutions of Percival's Euler-Lagrange Equations, Commun. Math. Phys. 86(1982), 465-473. | MR 679195 | Zbl 0553.58011

[27] J. N. Mather - A criterion for the Non-Existence of Invariant Circles, preprint, 1982.

[28] J. Moser - Non existence of Integrals for Canonical systems of Differential equations, Commun. on Pure and Appl. Math. vol. VIII(1955), 409-436. | MR 79171 | Zbl 0068.29402

[29] J. Moser - On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss., Göttingen Math. Phys. K1 11(1962), 1-20. | MR 147741 | Zbl 0107.29301

[30] J. Moser - Stable and random motions in dynamical systems, Annals of Math. Studies 77, Princeton Univ. Press, Princeton N.J., 1973. | MR 442980 | Zbl 0271.70009

[31] J. Moser - Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff, Lect. Notes in Math. 597, Springer-Verlag, 1977. | MR 494305 | Zbl 0358.58009

[32] I. C. Percival - Variational principles for invariant tori and cantori, in Symp. on Nonlinear Dynamics and Beam-Beam Interactions, edited by M. Mouth and J.C. Herrava, n° 57, Amer. Instit. of Physics, Conf. Proc. (1980), 310-320. | MR 624989

[33] J. Poeschel - Integrability of hamiltonian systems on Cantor sets, Commun. Pure and Appl. Math. vol. 35(1982). | MR 668410 | Zbl 0542.58015

[34] H. Poincaré - Sur un théorème de géométrie, Rendiconti del Circolo Matematico di Palermo vol. 33(1912), 375-407. | JFM 43.0757.03

[35] H. Poincaré - Les méthodes nouvelles de la Mécanique Céleste, Tome III, Gauthier-Villars, 1899. | JFM 30.0834.08

[36] R. C. Robinson - Generic properties of conservative systems, Amer. J. Math. 92 (1970), 562-603. | MR 273640 | Zbl 0212.56502

[37] H. Rüssmann - On the existence of invariant curves of twist mapping of an annulus, Lect. Notes in Math. 1007, Springer-Verlag, 1983. | MR 730294 | Zbl 0531.58041

[38] F. Takens - A C1 counter-example to Moser's twist theorem, Indag. Math. 33(1971), 379-386. | MR 300311 | Zbl 0235.58009

[39] R. Thom - Travaux de Moser sur la stabilité des mouvements périodiques, Séminaire Bourbaki 1963-64, exp. 264, W.A. Benjamin Inc., 1966. | Numdam | MR 178210 | Zbl 0132.19002

[40] E. Zehnder - Homoclinic Points near Elliptic Fixed Points, Commun. on Pure and Appl. Math. vol. XXVI(1973), 131-182. | MR 345134 | Zbl 0261.58002

[41] M. Morse - A fundamental class of geodesics on any closed surface of genus greater than one, Transactions A.M.S. vol. 26(1924), 25-60. | JFM 50.0466.04 | MR 1501263

[42] G. Hedlund - Geodesics on a 2-dimensional riemannian manifold with periodic coefficients, Annals of Math. serie II vol. 33(1932), 719-739. | JFM 58.1256.01 | MR 1503086