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MINIMAL MODELS OF ALGEBRAIC THREEFOLDS:
MORI’S PROGRAM

by JÁNOS KOLLÁR

Seminaire BOURBAKI

4leme annee, 1988-89, n° 712

Juin 1989

The aim of Mori’s program is to provide a rough classification of algebraic
varieties in dimension three (and higher if possible). Before I explain the exact
aims, let us engage in a rather slanted review of the case of curves and surfaces.

1. Curves and surfaces

1.1. Let C be a smooth proper algebraic curve over C (equivalently, a compact
Riemann surface). It is well known that C can be endowed with a metric of
constant curvature, and one has the following classification according to the
sign of the curvature:

curvature structure

positive P~

zero 

negative H/03C01 ( C)
(Here H is the upper half plane.)

This should be considered only a partial classification. The positive curvature
case is completely clear but in the negative case much remains to be done.

1.2. One can attempt to extend these results to higher complex dimensions in
several ways. Considering the sectional or the holomorphic bisectional curvature
turns out to be too restrictive. Instead we can consider the curvature of the
determinant of the tangent bundle, which is essentially the same as the Ricci
curvature of the tangent bundle. For historical reasons we also dualize and
consider our basic object:

This will be referred to as the canonical bundle or the dualizing sheaf (for
reasons that are unimportant now). Dualizing changes the sign of the curvature,
creating the possibility of confusion. One can easily prove the following:
S. M. F.
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1.4. PROPOSITION. Let M C be a smooth hypersurface of degree k. Then
KM admits a metric whose curvature is

This sounds very promising but even in complex dimension two life is more
complicated. There are two very simple constructions that create "mixed cur-
vature" surfaces.
Products. The product of a positively curved and a negatively curved man-

ifold cannot have a metric with semidefinite curvature. This is not surprising.
Blowing up or down. Let M be a complex manifold of dimension n and

pick a point x E M. We can "enlarge" M by removing x and introducing a
copy of corresponding to the complex directions at x. This way we obtain
a new manifold BxM which admits a natural map p : M. This is
called the blowing up or blowing down. The map p is an isomorphism over
M - ~~~ and p-1(~} ~’ If L C C BxM is a stra,ight line then an
easy computation yields that 6(KB.,M) = -1. Thus the canonical line
bundle of BxM cannot be positive semidefinite.

In complex dimension two these are the only sources of indefinite curvature:

1.5. THEOREM. Let M be a smooth proper algebraic surface. Then KM admits
a metric whose curvature is semipositive unless one of the following holds:

(1.5.1) there is another (smooth) surface Mi and x E Mi such that

(1 .5.2) M is a ~°1 bundle over a curve C;
(1.5.3)M^-_’~2.
In all three cases there is an embedded copy of pI  C C M such that

‘~ f C  o.

These cases are very different in nature. (1.5.2-3) are very precise global
structural statements. One can hardly wish for more. (1.5.1) merely identifies
(and removes) a small part of M and gives no global information. On the other
hand it introduces a new surface Mi which is simpler than M since it has "fewer"
curves. (In fact + 1 = We can apply (1.5) to
Mi and continue if possible. This gives the following:
1.6. THEOREM. Let M be a smooth proper algebraic surface. There is a

sequence of blowing downs M ~ M1 ~ ~ ~ ~ -~ Mn = M’ such tha.t M’ satisfies
exactly one of the following conditions:

(1.6.1) admits a metric whose curvature is semipositive.



(1 . 6.2) M’ is a P1-bundle over a curve C;
(1. ~. 3~ ~2 .

The aim of Mori’s program is to find an analog of these results for higher
dimensional varieties.

2. First steps in higher dimensions

Before continuing further we replace the curvature assumptions with some-
thing more algebraic. Let L be a line bundle on a complex manifold M with
metric h and curvature 0 and let C C M be any proper curve. Then

We will denote this number by C’ L. In particular, if 0 is semipositive then
C ~ ~ > 0 for every C.

2.1. Definition. We say that a line bundle L on a proper variety X is nef if
C’ . L > 0 for every compact curve C C X . (This replaces the earlier confusing
terminology "numerically effective" ). It is conjectured that for the canonical line
bundle being nef is equivalent to admitting a metric with semipositive curvature.
As (1.5) suggests, we should try to understand those varieties X for which

Iix is not nef. This means that there are curves C C X such that C . Kx  0.
First we would like to find the worst such curve C. To this end we consider

~iX gives a linear function on H2(X, R); thus the "worst" curves are on the
boundary of the cone NE(X). More precisely, they should be extremal.

If M is a surface and ]{M is not nef then by (1.5) we can always find an
embedded copy of pl. In higher dimensions we will be able to guarantee only
a nonconstant map X. The image of such a map is called a rational
curve. (In all examples known to me one can also find an embedded copy of
,P’1. ) 

Mori’s first major result is a partial description of the cone 



2.2. THEOREM. (Mori [Mol]) Let X be a smooth projective variety (any di-
mension~. The extremal edges of the closed cone of curves N E(X) are discrete
in the open halfspace {z E H2(X, h’X  0~. If R c N E(X) is such a
negative extremal edge then there is a rational curve C C X such that [C] E R.

Negative extremal edges are usually called extremal rays. Once an extremal
edge is identified as the source of the trouble, one would like to use it to construct
a map as in (1.5). In dimension three a complete description is known:

2.3. THEOREM. (Mori [Mol]) Let X be a smooth projective threefold over C.
Assume that Kx is not nef and let R c NE(X) be a negative extremal edge.
Then there is a normal projective variety Y and a surjective map f : X - Y
such that an irreducible curve C C X is mapped to a point by f iff [Cj E R.
One can choose Y such that f*Ox = Oy and then Y and f are unique up to
isomorphism. The following is a list of all the possibilities for f and Y.

(2.3.1) Case I: f is birational.

Let E C X be the exceptional set of f. One has the following possibilities for
E, Y and f :

(2.3.1.1) E is a smooth minimal ruled surface with typical fiber C and C . E =
-1. Y is smooth and f is the inverse of the blowing up of a smooth curve in Y.

(2.3.-L2,) p2 and its normal bundle is 0(-1). Y is smooth and f is the
inverse of the blowing up of a point in Y.

In the remaining subcases Y has exactly one singular point P and f is the
inverse of the blowing up of P in Y. Let be the completion of the local
ring of P E Y.

(2.3. J.3~ E ~ p2 and its normal bundle is O(-2).
~~,Y N ~~1~2~ y2~ z2~ ~y~ ~Jza zx~~~

(2.3.1.4) E  Q where Q is a quadric cone in p3 and its normal bundle is
~~3(-1)I~~ ~P,Y N ~ll~~ ~~ z~ tlJl (~~ - z2 - t3). °

(2.3.1.5) E ^’ Q where Q is a smooth quadric surface in ~°3, the two fami-
lies of lines on Q are homologically equivalent in X and its normal bundle is

~P,~ ~’ ~~~~~ ~~ z~ t~~~(~~ - zt).
(2.3.2~ Case 2: f is not birational.

Then we have one of the following subcases:
(2.3.2.1) dimY=2. Then Y is smooth and f is a conic bundle (i.e. every fiber

is isomorphic to a conic in ~2~.
(2.3.2.2) dimY = 1. Then V is a smooth curve and every fiber of f is an

irreducible and reduced ( possibly singular) Del Pezzo surfa.ce.
(2. 3. 2. 3~ di mY = 0. Then X is a Fano variety is negatively curved).



It is crucial to assume that X is projective. If we allow nonprojective but
proper algebraic varieties then infinitely many new subcases of birational con-
tractions will occur. These have not yet been classified.

I do not want to dwell on the second case; (2.3.2) provides a very satisfactory
classification.

The main point of interest is the first case. Instead of having only one subcase
(as for surfaces) there are five. The first two are as expected but in the last three
subcases the space Y has isolated singularities, although fairly simple ones.
Examples show that we cannot hope to get an analog of 1.6 if we insist on con-

sidering smooth varieties only. For a long time this was a considerable stumbling
block and even conjectural approaches were lacking.
A crucial conceptual step forward is to abandon smooth varieties. In retro-

spect, the signs were already clear in dimension two. If one considers families of

surfaces, then it is frequently more convenient to allow certain mild singularities
in all the surfaces. Before we decide which class of singularities to allow, let us
formulate clearly what do we want.

2.4. Choice of Singularities.
(2.4.1) We want to investigate varieties X for which KX is not nef. In order

to do this, Kx should exist and being nef should make sense.
(2.4.2) The usual definition of Kx works over the smooth locus of X. If X is

normal (a harmless assumption) then codim(SingX) ~ 2, hence KX has a well
defined hpmology class in ~)~ However, because of the singularities
there is no intersection product between H2dimX-2 and H2. Thus the symbol
C . K X makes no sense in general.

(2.4.3) If KX-SingX extends to a line bundle over X then its first Chern class
is in H2 (X, Z), and we can take the intersection product with [C] E H2 (X, Z).
For the singularity given in (2.3.1.3), this condition ’is not satisfied because of
the group action. However, will extend to a line bundle over X.
Thus we can still define a first Chern class E H2(X, Q), and this is also
satisfactory.

(2.4.4) Failure of any of the above conditions would result in the death of the
program. It is however desirable to have further conditions that keep us from
straying too far from smooth varieties. Earlier we were willing to put up with
blowing up smooth subvarieties. Therefore, the ideal would be to have a class of
singularities that has no effect on properties that are invariant under blowing up
of smooth subvarieties. This "metacondition" is too strong but serves as very
good guide.
One of the most important invariance properties under blowing up is the in-

variance of the plurigenera: Pm(X) = dim0393(X,K~mX) (m > 0). Singularities
that do not affect the plurigenera form one of the important classes of singulari-
ties for our purposes. There is however a technical strengthening of this property



that we will ultimately use.
(2.4.5) Finally, there is a condition whose role is less clear at the moment.

We say that a variety X has Q-factorial singularities if for every codimension
one subvariety V C X there is an integer m such that mV is locally definable
by one equation. The main consequence of this is that every codimension one
subvariety will have a cohomology class in H2(X, Q).

2.5. Definition. An algebraic variety X is said to have canonical resp.
terminal singularities if the following three conditions are satisfied:

(2.5.1) X is normal;
(2.5.2) extends to a line bundle over X for some m > 0; (This

unique extension will be denoted by 
(2.5.3canonical) If f : X’ --~ X is a resolution of singularities then Pm(X ~ _

Pm (X’ ) for every m ~ 0. (To be precise, we require an appropriate local version.)
(2.5.3terminal) If f : X’ -~ X is a resolution of singularities and a E is a

local section then f*a E vanishes along any codimension one component
of the exceptional locus. (This is a strengthening of (2.5.3canonical)’)

2.6. PROPOSITION. ~2.6.~) A two dimensional terminal singularity is smooth.
(2.6.2) Two dimensional canonical singularities are exactly the Duval sin-

gularities. (They are also called rational double points).

In dimension three there is a complete list of terminal singularities as a result
of works by Reid [Rl], Danilov [D], Mori [Mo2] and Morrison-Stevens [MS]:

2.7. PROPOSITION. Three dimensional terminal singularities are isolated. They
are all quotients of hypersurface singularities by cyclic groups. The typical
three dimensional terminal singularity can be described as the quotient of the
hypersurface singularity (xy + = 0) C C4 by the cyclic group action
(x, y, z, u) - (~’x, ~’ 1 y, z, where ~n = 1 is primitive and (a, n) = 1. (A
similar description is available for the remaining exceptional ones.)

2.8. The aim of Mori’s program is to find certain "elementary"
birational transformations such that by a successive application of
these transformations every threefold X can be transformed into a

threefold X’ such that

either: Iix, is nef;
or: X’ is similar to a projective space bundle.

The "elementary" birational transformations correspond to extremal rays,
though in a more complicated way than (2.3) suggests. The extremal rays

correspond to certain rational curves C Thus one can claim that if is

not nef then some rational curve C C X is responsible for this, and the program
provides a way of getting rid of these "bad" rational curves.



The whole program may work in all dimensions. At the moment only the first
step, corresponding to (2.2), is known in all dimensions, as is a partial result cor-
responding to (2.3). These results are due to Kawamata [Kal][Ka2],Benveniste
[B], Kollar [Ko], Reid [R,2] and Shokurov [S2].
2.9. THEOREM. Let X be a projective variety (any dimension) over C with
only Q-factorial terminal (resp. canonical) singularities.

(2.9.I) The extremal edges of the closed cone of curves are discrete in
the open halfspace {z E H2 (X, KX  0} and they have rational directions.

(2.9.2) For every extremal edge R there is a contraction map f : X - Y such
that a curve C E X is mapped to a point by f iff [C] E R. One can always
assume that = Oy and then f and Y are unique.

(2.9.3) We have the following possibilities for f and Y:
(2.9.3.i) f is birational and the exceptional set is an irreducible divisor. Then

Y again has Q-factorial terminal (resp. canonical singularities. Such a contrac-
tion is called divisorial.

(2.9.3.2) f is birational and the exceptional set has codimension at least two
in X. In this case is never a line bundle for m > 0. Such an f is called a
small extremal contraction.

(2.9.3.3) dimY  dimX. Then X is covered by rational curves. The gen-
era.1 fiber F has negative canonical class. Such a contraction is called a Fano
contraction. Such an .~’ should be considered "simila.r" to a. projective space
bundle.

By (2.3) the small contraction case does not occur for smooth threefolds. Also,
it leads us out of the required class of singularities since is never a line
bundle for m > 0. To see this assume that is a line bundle. Then 
and are two line bundles on X and they are isomorphic outside the
exceptional set. Since the exceptional set has codimension at least two, these
line bundles are isomorphic. On the other hand, if [C] E R then

This is a contradiction.
Therefore (2.9.3.2) is an incorrect step in the program. Something new must

be done; this new operation is called a flip.

3. Definition and examples of flips

From now on we restrict our attention to threefolds.
3.1 Definition. Let X be a threefold with terminal singularities and let

f : X -~ Y be the contraction of an extremal ray. Assurne that f is small. Let



the exceptional set be C C X and its image Q C Y. By the flip of f we mean
a threefold X+ together with a morphism f + : X+ - F which satisfies the
following conditions:

(3.1.1 ) .~+ has terminal singularities;
(3.1.2) The exceptional set C+ C X+ is one dimensional and its image is

again Q C Y. In particular, X - G‘ ^-_’ X+ - G’+.
(3.1.3) ]{x+ has positive intersection with any component of C+.
The rational map X - -> X+ will also be called the flip of f.
Heuristically speaking, a flip improves the situation because it replaces C

(which has negative intersection with ]{x) with C+ (which has positive inter-
section with Unfortunately, it is not known how to attach a precise
meaning to this remark.

It is not at all clear that flips exist; in fact, this is the hardest part of the
whole program.

3.2 Examples of flips. The following is probably the simplest series of
examples.
We start with an auxiliary construction.
Let us consider Y = (xy - uv = 0) C C4. This has an isolated singularity

at the origin. If we blow it up, we get X = Bo Y. The exceptional set Q C X
is the projective quadric (xy - uv = 0) C ~°3. This has two families of lines:
x = cv; y = and x = cu; y = These two families can be blown
down to smooth threefolds X resp. X+. X resp. ~r+ can also be obtained
alternatively by blowing up the ideals (x, v) resp. (~, ~c). Let G’ C X, resp.
C+ C X + be the exceptional curves of X - Y, resp. X+ - Y. Thus we have
the following varieties and maps:



Consider the action of the cyclic group Zn: (x, y, ~c, v) H (~x, y, ~~, v) where
( is a primitive nth root of unity. This defines an action an all of the above
varieties. The corresponding quotients are denoted by a subscript n.
The fixed point set of the action on Y is the 2-plane (x = u = 0). On the

projective quadric Q the action has two fixed lines: (x = u = 0) corresponding
to the above fixed 2-plane and ( y = v = 0) corresponding to the (-eigenspace.
On X therefore the fixed point set has two components: the proper transform
of the (x = u = 0) plane and the image of the (y = v = 0) line, this latter is an
isolated fixed point. It is easy to see that (x, v’ = give local coordinates
at the isolated fixed point. The group action is (x, v’, u) H ((x, ~-1v’, (u). In

particular, the quotient is a terminal singularity.
On X+ the fixed point set will have only one component and it contains the

exceptional curve C+. Thus X~ is smooth.
It is not too hard to compute the intersection numbers of the canonical classes

with the exceptional curves. We obtain that

Thus X+n ~ Yn is the flip of Xn ~ Yn for n ~ 2.
Before going further let us note two special properties of this example. At

the isolated fixed point on X we have coordinates ~x, v’, u) and the curve C
is the v’-axis. A typical local Zn-invariant section of IiXI is given by a =
(v’n-1 - A dv’ A which has intersection number (n - 1) with C.
Since this section is invariant, it descends to a local section an of Let
Dn = (an = 0). By construction which is a DuVal
singularity (= rational double point) of type Since Cn . Dn = en . 
one can easily see that even globally Dn is a member of ~i Xn ( . 
Another simple way of getting a surface singularity out of the above construc-

tion is to consider the general hyperplane section Hn of Yn. This is given as the
quotient of an invariant section of Y. v - ~cn = 0 is such a section whose zero
set on F is isomorphic to the the singularity (xy - = 0). This itself is a
quotient of C2 by the group Zn+i. Using this, Hn can be written as a quotient
of C2 and we easily get that Hn is isomorphic to the singularity C2/Zn+I where
the action is (zl, z2) - ~z2) and E is a primitive (n + 1)St root of unity.

4. Small contractions

In this section we will outline some steps toward the structure theory of small
contractions in dimension three. A small extremal contraction can contract



several irreducible curves simultaneously. If we pass to the analytic category
then we can factor it into a series of morphisms, each contracting one irreducible
curve only. These are the ones that we will consider for the most part.

4.1. Definition. Let f : X - Y be a proper bimeromorphic morphism of
complex spaces which satisfies the following conditions:

(4.1.1) X has only terminal singularities;
(4.1.2) Y is normal with a distinguished point Q E Y;
(4.1.3) consists of a single irreducible curve C C X ,
(4.1.4) the canonical class of X has negative intersection with C.
(4.1.5) f : X - C - Y - Q is an isomorphism.
In the above situation we say that extremal

neighborhood. We usually think of Y as being a germ around Q.
The ideal sheaf of the curve C C X will be denoted by I.
By an appropriate version of Kodaira’s vanishing theorem, R1 = 0. By

(4.1.4) we can say that O x is "more positive" than Wx and therefore =

0. Let J c O x be any ideal sheaf whose cosupport is C. Consider the sequences

Taking f * we get long exact sequences. All the are zero since the fibers of

f are at most one dimensional. Since = 0 and l~1 f *cvx = 0 we obtain
that

As we will see, these are very restrictive conditions.
4.2. Notation. (4.2.1) For a sheaf F we define gr0F = F ~ Oc/(torsion).
(4.2.2) If i : X - SingX - X is the natural injection then we define

03C9[k]X = i*(03C9~kX-SingX).
4.3. COROLLARY. With the above notation, C ~ P1.

Proof. = 0.

4.4. COROLLARY. With the above notation, gr003C9X ~ OC(-1).
Proof: 1Jx /Iwx is a generically rank one sheaf on pl. Therefore it is the

direct sum of O( a) and a torsion sheaf. Since = 0, we
see that a > -1. Let m > 0 such that is locally free. We have a natural
map

By (4.1.4), = C~  0, thus ma  0. This gives that a = -1.



4.5. COROLLARY. With the above notation, + and

a, b > -1.

Proof. Let us look at the long cohomology sequence of

The map clearly surjective. 0 , and
therefore H~ (.~~I2 ) = 0. Now we get the result as in 4.3.

It is clear that one can continue in this way to obtain results about higher
powers of I as well. The crucial point is however to get a handle on the singu-
larities. Let X D C 3 P be a singular point on X. By (2.7) X is locally the
quotient of a hypersurface singularity X~. Let C~ be the preimage of C.
Although C is smooth, C# can be quite complicated. For example, the quotient
of the monomial curve

by the group action (x, y, z) - (~ax~ (-a y, (b z) is smooth. This curve singularity
is fairly complicated if a is large. Also, in general C~ can be reducible.
To analyse the situation further, we will define certain local invariants of the

triplet X D C 3 P and then we use global inequalities to obtain bounds for
them. There are two very important such invariants. Let

where /3 is as in (4.4) and ex comes from the natural map

Using the information we already have about the source and target of a and {3
we obtain:

4.7. COROLLARY. With the above notation,


