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On p-adic L-functions.
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John Coates.

Seminaire Bourbaki
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Novembre 1988

1. Introduction. Our goal in this seminar will be the modest one of

outlining the general definition of the p-adic L-function of a motive over the
rational field Q, and discussing several concrete examples where this p-adic L-
function can be shown to exist. As definitions are inevitably tedious, we shall

begin by briefly explaining why p-adic L-functions are of interest to number-
theorists. The ultimate reason is that their zeroes always seem to occur as the

eigenvalues of elements of Galois groups acting on certain arithmetically
defined p-adic spaces. The precise formulation of this statement amounts to a
series of deep arithmetic conjectures, which are usually called the main

conjectures of Iwasawa theory, and which, in common with most other

general conjectures about L-functions, are still largely unproven (although
there has been dramatic recent progress on several important examples of
these main conjectures by Kolyvagin and Rubin). While we do not have time
to discuss these general conjectures here, their arithmetic flavour can be

captured by stating several down to earth consequences of them,which have
been proven. Recall that the Riemann zeta function ~(s), where s is a variable
in the complex plane, is defined by the Euler product

~(s) - II (1- q - s ) -1 (R(s) > 1) (

where q runs over all prime numbers. Apart from a simple pole at s = 1, it has
a holomorphic continuation over the whole complex plane. Euler proved
that the value of ~(s) at each odd odd negative integer s is a rational number.
We owe to Kummer the remarkable discovery that these rational numbers
are deeply related to the arithmetic of the field F = Q( Jlp ), where p is a prime
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number, and Up is the group of p-th roots of unity. Let A denote the Galois

group of F over Q , and C the ideal class group of F. Let F denote the field

with p elements,and let w be the F - valued character giving the action of A
on up . Now we can view Cp = C/CP as a vector space over F, which is
endowed with a natural action of A .

Theorem 1. Let n be an odd negative integer, which is not congruent to 1
modulo (p-1). Then the character x = wn occurs in the representation of A on

Cp if and only if p divides the numerator of the rational number ~(n).
Moreover, x does not occur in this representation.

Today, we view this as a corollary of the main conjecture on cyclotomic fields

(proven first by Mazur-Wiles [25], and again recently by a different method by
Kolyvagin and Rubin), although it was established earlier by Kummer,
Herbrand, and Ribet. As a numerical example, take p = 12613 (see [34]). If n is
an odd negative integer, which is not congruent to 1 modulo 12612, then ~(n)
is divisible by p if and only if

n = - 307 , - 501, -9399, -10535 mod 12612 (2),

and so it follows that, if n is any odd integer,then x = ron occurs in Cp if and
only if n satisfies one of the congruences (2).

After the cyclotomic theory, it is natural to turn to elliptic curves for
further examples. Let E be an elliptic curve over Q, which we can suppose
given by an equation

(ai inZ) (3),

which is minimal in the sense that the absolute value of its discriminant is

minimal. The arithmetic of E is concerned with the study of the group E(Q )
of rational points on E, together with its inseparable arithmetic companion
the Tate-Safarevic group E(E) of E. Recall that E(E) is defined as follows. Let

Qa denote an algebraic closure of Q, and let G be the Galois group of Qa. For
each place v of Q, let Qv be the completion at v, Kv an algebraic closure of this

completion,and Gv its Galois group. Then E(E) is the subgroup of HI (G ,



E(Qa)) consisting of all cohomology classes which restrict to 0 in Hl(Gv ,
E(Kv)) for all places v. The conjecture of Birch and Swinnerton-Dyer links the
determination of these two groups with the behaviour of the L-function

L(E,s) attached to E (see §3 ) at s = 1. It is still unknown, in general, whether
L(E,s) satisfies Conjecture A of §3, but it is true when E is a modular elliptic
curve (Eichler - Shimura) or E admits complex multiplication (Deuring-
Weil). Let Hi (E(C) , Z ) be the first homology group, with integral coefficients,
of the torus E(C) of complex points of E. If e denotes + or - ,write ~ for a

generator of the free rank 1 Z - submodule of this homology group, on which
the involution induced by the action of complex conjugation on E(C) acts via
the sign e. We then define the periods

When E is modular or admits complex multiplication,it is known that

L(E,l)/u+(E) is a rational number. The proof of the following recent result of
Rubin,which is in accord with the conjecture of Birch and Swinnerton-Dyer,
depends heavily on the ideas of Kolyvagin.

Theorem 2. Assume that E admits complex multiplication,and let K be the
imaginary quadratic field Endc (E) ® Q . Assume that L(E,1) ~ 0. Then E(Q)
and E(E) are finite, and, for each prime p which does not divide the order of
the group of roots of unity of K, we have

p - part of L(E,l)/u+(E) = p-part of #(~(E))/#(E(Q))2 (5).

For example,take E : y 2 = x3 - x, which admits complex multiplication by Z[i].
Then

L(E,1) = u+(E)/4 .

Now Fermat’s celebrated argument shows that E(Q) has order 4,and that the 2
- primary part of E(E) is trivial. Hence the above theorem shows that E(E) is
trivial for this elliptic curve. We note that Kolyvagin has proven the first



assertion of Theorem 2 for modular elliptic curves, but that (5) has still not
been fully established for such curves.

As a final example, consider the L-function L(Sym2(E),s) attached to the
motive which is the symmetric square of E (see §3). When E is either

modular, or admits complex multiplication, Conjecture A of §3 is valid for

Sym2(E), and if we put

u(Sym2(E)) = u+(E)u-(E)/(2~i) (6)

then it is known that is a non-zero rational multiple of

u(Sym2(E)). The following result, proven in [3], gives some indication of the
interest of this rational number. Assume that E admits complex
multiplication. Let p be a prime number, Ep the group of p-division points on
E, F = Q(Ep) the field obtained by to Q adjoining the coordinates of the p-
division points, and C the ideal class group of F. Let A denote the Galois group
of F over Q. If p is an odd prime where E has good reduction, the order of A is
known to be prime to p, and so all representations of A over the field F with p
elements are semi-simple. Recall that a prime p of good reduction is said to be

ordinary for E if the reduction of (3) mod p has non-trivial p-torsion over the

algebraic closure of F.

Theorem 3. Assume that E has complex multiplication. Let p ~ 2,3 be a prime
number, where E has good ordinary reduction. Then, if p does not divide the
numerator of the rational number no irreducible

component of either Sym2(Ep) or Hom(Sym2(Ep),pp) can occur in the
representation of A on Cp = C/Cp.

For example,if E is the curve y2 = x3 - x,we have

L(Sym2(E),l)/u(Sym2(E)) = 1/4.

Since E has good ordinary reduction for all primes p = 1 mod 4,it follows that
the conclusion of Theorem 3 is valid for all such p.



Notation. If K/F is a Galois extension of fields, we write G(K/F) for the Galois

group of K over F. Let Qa denote the algebraic closure of Q in C, and write G =

G(Qa/Q). For each integer m > 1, Ilm will denote the group of m-th roots of

unity in Qa. Throughout, p will denote an arbitrary prime number (we do not
exclude p = 2), and Q p, Zp the field of p-adic numbers,and the ring of p-adic
integers. Let Cp be the completion of an algebraic closure of Qp . We fix an
embedding of Qa in Cp ,which we do not make explicit in our notation. Write

D = G(Q( 7~

for the Galois groups over Q of the field generated by all p-power roots of

unity, and of its maximal real subfield. The action of H on the group of all p-
power roots of unity defines a canonical isomorphism

y~ : H -~ Zpx (8),

which is called the cyclotomic character. If x is a Dirichlet character,we write
c(x) for the conductor of x. Recall that x can also be viewed as a character
(which we again denote by x) of the Galois group G, which is unramified
outside c(x) and 00, and which satisfies x(Frobq) = x(q) for all primes q with
(q,c(x)) = 1. Here Frobq denotes the arithmetic Frobenius, i. e. it operates on
the algebraic closure of the field with q elements by sending x to xq .

2. The p-adic analogue of the Riemann zeta function. The construction
of the p-adic analogue of ~(s) is due to Kubota - Leopoldt [19] and Iwasawa [17],
although most of the ingredients used in it were already known to Kummer.
The definition (1) of ~(s) as an Euler product is simply not applicable in the p-
adic case, and all known approaches today involve p-adic interpolation,
where the obvious question to ask is whether there exists a continuos

function of a p-adic variable s in Zp , whose values at the odd negative
integers s = n are essentially the rational numbers ~(n). However, both the
analogy with the adelic description of ~(s) given in Tate’s thesis, and the
connexion with Iwasawa modules mentioned in the Introduction, make it

desirable, following Iwasawa and Mazur, to express the result in terms of p-
adic measures on Galois groups, and we begin by briefly recalling the



definition of these (see [31]).

The Iwasawa algebra I of D is defined to be the projective limit of the

group rings Zp[D/U], where U runs over the open subgroups of D. It is a
compact algebra, which contains Zp[D] as a dense sub-algebra. The elements
of I are called integral p-adic measures on D. This terminology is justified
because, if Jl is in I and f is any continuous function from D to Cp ,we can
define the integral JD f dp by passage to the limit from the case when f is
locally constant. In this latter case, if U is an open subgroup of D such that f is
constant modulo U, and if the image of Jl in Zp[D/U] is equal to L then

the value of the above integral is L where, in both sums, s runs over

D/U. We need two slight generalizations of the notion of an integral
measure. Let I* be the ring of quotients of I, i.e. the set of all quotients 
where a, fi are in I and f3 is not a divisor of 0. We say an element ~ of I* is a
measure if there exists a non-zero ~i in Zp such that pp, is in I. Now let (~ be
any continuous homomorphism from D to Cpx. We say an element p of I* is
a (b - pseudo - measure, if there exists an integer k >_ 0 such that (~(a) - is a

measure for all a in D. We then say that such a ~ - pseudo -measure p has a

pole of order  k at )). Given such a Jl, and any continuous homorphism 03BB ~ 03C6
from D to the multiplicative group of Cp , we can define the integral of ~,
against ~ to be ())(o) - times the integral of ~, against (())(o) - where

o is any element of D such that ())(c) ~ 

The following is the basic existence theorem for the p-adic analogue of
Riemann zeta function. As usual, if x is a Dirichlet character, L(x,s) = n (1 -

X(q)q-s)-I, where the product is taken over all primes q with (q,c(x)) = 1.
Formula (11) below shows that L(x,r) belongs to Q for all integers Recall

that y denotes the cyclotomic character (9). Let x be a Dirichlet character of p-
power conductor,and let n be any integer. Then xyn is a character of the Galois

group H,and it will be a character of the quotient D of H if and only if

X(-I) = (..I)n (9).

Theorem 4. Let m be an odd integer  0. There exists a unique pseudo-
measure pm , with a pole of order 1 at on D as follows. For all Dirichlet



characters x of p-power conductor, and all integers n such that n+m  0 and

(9) holds,we have

We sketch what is essentially Iwasawa’s proof of this theorem. Put r = 4
or p, according as p is even or odd, and put rk = rpk for all k ~ 0. For each p-
adic unit u, write [U]k for its class in the group of relatively prime residue
classes modulo rk. Consider the partial zeta function

where the sum is over all positive integers m in the class [u]k. It has an

analytic continuation over the whole complex plane, apart from a simple
pole at s = 1. For each non-negative integer t, we have

where (u)k denotes the unique representative in Z of [U]k such that 0  (u)k 
rk ; here Bt+i(x) denotes the (t+l)-th Bernoulli polynomial, defined by

the sum being over all integers h > 0. In particular,we have

For t fixed, let pe denote the largest power of p occurring in the denominators
of the coefficients of Bt+ 1 (x) / (t+ 1). One deduces immediately from (11) and
(12) that, for all integers k > 0 and all p-adic units u, we have

If v is also a p-adic unit,we define



Then we claim that, for all integers k > 0, we have

Note that (13) only implies the weaker congruence in which the first two rk ’ s
appearing in (14) are replaced by rk+e . But it is easy to see that this weaker

congruence implies (14), when combined with the additional identity

where h is any integer > k, and z runs over any set of representatives in the p-
adic units of those classes modulo rh which map to the class of u modulo rk .

Note that one obvious consequence of (14) is that bt (u, v; rk) is integral at p
for all t > 0, because this is plainly true for t = 0 from the explicit formula for
Bi (x). We can now construct our desired pseudo - measure on D. Let Fk be the
maximal real subfield of the field obtained by adjoining the rk - th roots of

unity to Q . For each p-adic unit u, let Ok(U) denote the restriction to Fk of the

automorphism of Q which acts on Jlpoo by raising to the u - th power.
Now let Wk be any subset of the p-adic units, which is a set of representatives
of the relatively prime residue classes modulo rk . For each p-adic unit v,
define

where both sums are over the u in Wk . This belongs to the Zp - group ring of
the Galois group of Fk over Q . It should be thought of as a twisted version of
the classical element arising from the factorization of Gauss sums. The

identity (15) shows that (~,k(v,m) : k=0,1,...) defines an element ~,(v,m) of the
Iwasawa algebra I of D. Let o(v) be the element of D defined by the Ok(v)
(k=0,1,...). If v is not of finite order, it is clear that (vl-m - 6(v)) is not a zero

divisor in I. Hence pm = a(v)) is a yl-m - pseudo-measure,
which is independent of the choice of the p-adic unit v of infinite order.

Using the congruence (14), one verifies easily that (10) holds.



3. Complex L-functions. The complex L-functions of primary interest
in number theory are those attached to the cohomology of an algebraic variety
over Q , or, more generally, to a motive over Q . We briefly recall Serre’s
definition [30] of these L - functions.

We simply view motives in the naive sense, as being defined by a
collection of realisations, satsfying certain axioms. Thus, by a homogeneous
motive M over Q of weight w(M) and dimension d(M), we mean a collection
of Betti HB(M), de Rham HDR(M), and 1-adic HI(M) (one for each prime 1)
realisations, which are, respectively, vector spaces over Q , Q , and Q ,all of
the same dimension d(M). Moreover, these realisations are endowed with the

following additional structure :- (i). HB(M) admits an involution Foo; (ii). The
Galois group G of Qa over Q has a continuos action on HI(M) for each prime
I, and there is an isomorphism gl from Ha(M) 0 QI to Hi(M), which
transforms Foo into the complex conjugation; (iii). There is a decreasing
exhaustive filtration (FkHDR(M) : k E Z) on HDR(M) ; (iv). There is a Hodge
decomposition into C - vector spaces

where i,j run over a finite set of indices satisfying i+j = w(M), and where Foo
maps Hi,j(M) to (v). There is a Goo = G(C/R) - isomorphism of C -
vector spaces

where complex conjugation acts on the space on the left via its action on C,
and on the space on the right via Foo on HB(M) and its natural action on C.
(vi). Finally, for all k c Z, we have

Example 1. Let E be an elliptic curve over Q . Then E defines a motive (which
we again denote by E) over Q of weight 1 and dimension 2, with the following
realisations :- HB(E) is the Betti cohomology with coefficients in Q of the
torus E(C) of complex points of E, HDR(E) is the de Rham cohomolgy of E as



an algebraic variety over Q , and, for each prime 1, Hl(E) is given by
Hom(VI(E) , Q 1) ; here VI(E) is the tensor product with Q 1 of the projective
limit of the groups EIn (n=1,2,...) of In - division points on E, endowed with
their natural action of G. The above axioms reduce to classical facts about

elliptic curves. Similarly, for each integer k ~ 1, we can define a motive

Symk(E) by taking its realisations to be the k-th symmetric powers of the
realisations of E.

Example 2. For each integer m, we now define the Tate motive Q(m) of

weight - 2m and dimension 1. Let be the tensor product with Ql of the
projective limit of the groups Illn (n=1,2,...) of In - th roots of unity, and let

be the m-th tensor power of The realisations of Q(m) are

given by

The involution Foo is (-1)m , and the action of G is the natural one. The Hodge
decomposition is specified by taking H-m,-m = C, and the k-th term in the
filtration of the De Rham cohomology is either Q or 0, according as k ~ -m or
k > -m. The isomorphism (17) is given by goo(1) = 

If M is any motive over Q, we can construct the following motives
from M :- (i). The twists M(n), for any n in Z ; by definition M(n) is the motive
of weight w(M(n)) = w(M) - 2n, whose realisations are simply the tensor

products of the corresponding realisations of M and Q(n) ; (ii) The dual

motive M^ ; by definition, the realisations of M^ are the dual vector spaces of
the realisations of M.

For simplicity, we shall assume for the rest of this seminar that our
motive M satisfies the following :-

Hypothesis. If w(M) is even, then Foo acts on Hk,k(M) (k = w(M)/2) via a scalar.



The assumption made later that M is critical at s = 0 will automatically imply
this. We also put

The underlying idea of the definition of the complex L-series of M is to specify
it as an Euler product, all of whose terms are determined by purely local data.
The Euler factor at oo is given by

where U runs over the direct summands of HB(M) ®C of the form either U =

with jk, or U = Hk,k, and is given explicitly by :- (a). If U =
Hj,kfl3Hk,j with jk, then Loo(U,s) = ri( j  k) rc (s - j)h(j,k) ; (b). If U = Hk,k and
Foo acts on U by (-1)k, then L~(U,s) = rR(s - k)h(k,k) ; (c). If U = Hk,k and Foo acts
on U by (-1)k+l,then Loo(U,s) = rR(s+l-k)h(k,k). If q is a finite prime, let Iq
denote the inertia group of some fixed prime of Q a lying above q. The Euler
factor at q is given by

where 1 is any prime different from q, and Frobq denotes the arithmetic
Frobenius. We impose the standard hypothesis that this Euler factor is a
rational function in q-s ,with coefficients in Q , which are independent of 1 ~
q. The complex L - function of M is then defined by

where v runs over all primes of Q , including v = oo. We also put

Note that we have A(M(n) , s) = A(M, s+n) for all n in Z. We assume, as
usual, that there exists a finite set of primes S such that (i) for each prime 1,
and each q ~ 1 which is not in S, the inertia group Iq operates trivially on



Hl(M), and (ii) for q not in S, the reciprocal complex roots of Lq(M,s)-l (viewed
as a polynomial in q-s) have absolute value equal to qw(M)/2. Under an

additional hypothesis, one can define (see [9]) Deligne’s global E-factor e(M,s).
Here is the standard conjecture about the analytic continuation and

functional equation of these L-functions.

Conjecture A (Complex Version). A(M , s) has a meromorphic continuation
over the whole complex plane to a function of order  1, and satisfies the
functional equation

Moreover, A(M , s) is entire, unless w(M) is even and Q(-w(M)/2) is a direct
summand of M.

It follows that A(M,s) should be holomorphic everywhere, except for a

possible pole at the point s = l+w(M)/2. We write e(M) for the order of the

pole of L(M,s) at this point (take e(M) = 0 if L(M,s) is holomorphic at this

point). We note that e(M) is conjectured to be the maximal number of copies
of Q(-w(M)/2), which are direct summands of M. Also, for each prime 1, e(M)
is conjectured to be equal to the Q 1 - dimension of the subspace of
Ht(M(w(M)/2)), which is fixed by the global Galois group G.

One of the delicate points of the complex theory (which also turns out
to be basic for the non-archimedean theory) is that the global factor e(M) =
c(M,0) can be written as a product of local £-factors (see [9]). Let A denote the
adele group of Q . Fix, once and for all, the Haar measure dx = II dxv on A

,where dxoo is the usual Haar measure on R, and, for each prime q, dxq is the

Haar measure on Qq which gives Zq volume 1. We also must choose a

complex character of A / Q ,and there are two natural choices. denote

the character of A / Q with components (x) = exp(2xix), and, for each
finite prime q, (x) = exp(-2xix), where we have identified Qq/Zq with the
q- primary subgroup of Q / Z . The second natural choice (x) _ ~ ~i~ (-x).
For the rest of this seminar, t will denote one of i or -i. We then have



where Ev(M , ~~~> ) denotes Deligne’s local Ev -factor (with the fixed measure

dxv suppressed in the notation), and the product is taken over all primes v of

Q , including v = oo. Note that we have

Ev(M, ’~~~) ) rl~-~l ) = T (23).

Finally, we recall the notion of a twisting a motive M by a Dirichlet
character. If x is a Dirichlet character, and K is any finite extension of Q

containing the values of x, we can attach to x a motive [x] over Q , with
coefficients in K, in the following manner (see [10], §6). As remarked earlier,
we can view x as a character of the global Galois group G, and, for each finite

prime ~, of K, we define to be the completion K~,, with G acting via x.
Similarly, we take HB(x) to be K with G acting via x (and so the action of Foo is

given by x(-I)). The de Rham realisation is then HDR(x) = ,with
the trivial filtration FOHDR(X) = HDR(x). By the twist M(x), we mean the
motive over Q , with coefficients in K, whose realisations are the tensor

products of the realisations of M (with coefficients extended to K) with the
realisations of [x].

4. Critical Points. No approach to the construction of the p-adic
analogue of L(M,s) via local data is known, and so we are forced to define this

p-adic analogue using interpolation of special values of the complex L-
function. For this to make sense, the relevant special values must be

essentially algebraic numbers, and this leads us to the notion of critical points
and the period conjecture (see Deligne [10]). It also places an important
restriction on our motive M, namely we can only consider those M which
admit at least one critical point. Our aim in this section is to briefly recall a
modified form of Deligne’s period conjecture, which is the same as that given
in [4] up to a power of i = ~-1, and which seems essential for the p-adic theory.

Recall that an integer s = n is said to be critical for M if both the Euler
factors at infinity Loo(M,s) and are holomorphic at s = n. There
are various equivalent forms of this definition (due to Bloch, Deligne, Scholl,
...). Let HB(M)+ denote the subspace of HB(M) which is fixed by Foo . Recall that
we assume that Foo acts on Hk,k via a scalar.



Lemma 5. The following three assertions are equivalent for M :- (i). M is
critical at s = 0; (ii). If j  k and h(j,k) ~ 0, then j  0 and k ~ 0, and, in addition,
Foo acts on Hk-k by +1 if k  0 and by -1 if k ~ 0. (iii). The map

induced by (17), is an isomorphism.

Henceforth, we shall assume the following (which, in turn, implies the
. hypothesis imposed in §3) :-

Hypothesis. The point s = 0 is critical for M.

Note also that our normalization here is different from that in [4], where s = 1
was taken to be the fixed critical point. Following [10], we view the motive M
as varying, and write

We now define the modified Euler factor at infinity, which we denote
by and which will depend on the choice of t = +i or -i. In parallel
with (19), we put

where U runs over the direct summands of HB(M)®C as specified after (19),
and where is given by :-

(a). If U = with jk, then = L~(U);
(b). If U = Hk,k with then = 1;

(c). If U = Hk,k with k0, then = 

In case (a), we have = Note also that case (b) holds for

U if and only if case (c) holds for It is therefore clear that, if we define

the modified L-function



then it satisfies the functional equation

If x ,y are complex numbers, we write x - y if there exists a non-zero rational
number u such that x = uy. The following lemma (see [5]) is a strengthening
of Lemma 2.4 of [4]. Let d+(M) denote the Q - dimension of HB(M)+ . Recall
that we assume M is critical at s = 0.

Lemma 6. Let x be a Dirichlet character, and let n be an integer such that (9)
holds and M(n)(x) is also critical at s = 0. Then

We can now give an equivalent form of Deligne’s period conjecture in
[10], which seems better suited for questions of p-adic interpolation. Let c+(M)
be the period defined in [10]. Equivalently, c+(M) is the determinant of the

isomorphism (24), computed with respect to Q - bases of HB(M)+ and
HDR(M)/FOHDR(M). Thus c+(M) is only determined up to multiplication by a
non-zero rational number. Now the arguments used to prove Lemma 6 show
that

Having made a choice of c+(M), we define the modified period

For the Dirichlet character x, we define the Gauss sum

where x runs over a complete set of representatives of the relatively prime
residue classes modulo the conductor c(x) of x. It is not difficult to prove that
the quantity



is independent of the choice of t = i or -i.

Period Conjecture. Let x be a Dirichlet character, whose conductor is prime to
the conductor of M, and let n be an integer such that (9) holds, and M(n)(x) is
critical at s = 0. Then the expression (31) belongs to Qa. Moreover, the effect of
an automorphism 6 in G on (31) is to replace x by xQ .

Using Lemma 6 and (28), one sees that this conjecture is equivalent to the
basic periond conjecture of [10]. The interest of the new version is that it

gives a natural variation of the period as n and x vary.

Example 3. Conjecture A and the Period Conjecture are known for motives
attached to primitive cusp forms of congruence subgroups of SL2(Z) (Mordell,
Hecke, Manin, Shimura, Deligne, ...). For simplicity, we only discuss the case
of the unique normalized cusp form 

’

of weight 12 for SL2(Z). This cusp form determines a motive over Q ,which
we again denote by A, of weight 11 and dimension 2. For this motive, we have
h(0,11) = h(ll,0) = 1~ and, for each prime I, Hi(A) is the 1-adic representation
attached to A by Deligne. Now, for all Dirichlet characters x,

Since ~(I1)(x-1), it follows that s=I,...,11 are the critical points for A(x).
Put M = ~(1), so that M is critical at s = 0. Hence M(n)(x) will be critical at s = 0
and (9) will hold when either (i) n = 0,2,...,10 and x(-1) = I, or (ii) n = 1,3,...,9
and ~(-1) = - 1. We assume that either (i) or (ii) is valid. It is known (see §7 of
[10]) that we can take c+(M) = L(0,1). Since r(M) = -I, it follows that 

L(~,1)(2~c Applying case (a) of the rule for modifying the Euler factor at



infinity, we obtain Poo,f(M(n)(x)) = (2x v)-1’n. Since d+(M) = 1, it follows that
the expression (31) is, in this case, equal to

It is known (see [20]) that (32) satisfies the assertion of the Period Conjecture. If

x is the trivial character, and n = 2 or 4, the following numerical values for

(32) are calculated in [20] :-

Example 4. Let E be an elliptic curve over Q , and consider the motive N =

Sym2(E), which is of dimension 3 and weight 2. By the Weil pairing, we have
N" = N(2). Also, = rR(s)rc(s), since h(0,2) = h(I,I) = h(2,0) = 1, and Foo

acts on Hl-1 by +1. Hence s = 1 and s = 2 are the critical points for N. Put M =

N(l), so that M is critical at s = 0. A simple calculation in linear algebra (see §7
of [10]) shows that c+(M) = u(Sym2(E)), where this latter quantity is given by
(6). Assume now that E is modular. Conjecture A is known to be true for M
twisted by any Dirichlet character x (Rankin, Shimura, Jacquet, Gelbart, ...).
Now M(n)(x) will be critical at s = 0 and (9) will hold only when n = 0 and

x(-1) = 1. Assuming we are in this case, a simple calculation shows that the

expression (31) is equal to

The Period Conjecture then holds for this expression, and is due essentially to
Sturm [32], [33].

5. Modification of the Euler factor at p. It is essential for the p-adic
theory that we carry out a modification of the Euler factor at p similar to that
carried out on the Euler factor at 00. Unlike the situation at the 00 factor, there
is no need to assume that M is critical at s = 0 to define this modification. Let

Gp be the local Galois group of Qpa over Qp , and write Ip for its inertial
subgroup. Let Wp (resp. Wp’) be the Weil group (resp. the Weil - Deligne
group) of Q p . For each prime 1, let Gp - Aut be the

homomorphism giving the action of the local Galois group on the 1-adic



realisation of M. We impose the following condition on p for the rest of this
section.

Hypothesis on p. M has potential good reduction at p, in the sense that, for
each prime tl(Ip) is a finite group.

If this implies that the nilpotent matrix N attached to 1:1 by Grothendieck
is, in fact, the zero matrix N = 0, and the associated representation of the Weil
- Deligne group is given by the pair 0) (see [9], §8). Let 03A6 denote any
element of Gp , which maps to Frobp-l in Gp/Ip . We fix a prime 

One further technical remark is needed to deal with problems of non-

semi-simplicity. It is necessary to replace our representation of Wp’ on Hl(M)
by its ~ - semi-simplification (see [9], §8.5). We assume from now on that this
has been done, and abuse notation by again writing 0) for the C - semi-

simplified representation (this is harmless, we can equally well use the 0 -

semi-simplification to compute the local Euler factor and e -factor at p). Now
fix an embedding of Ql in the complex field C . Then is a semi-

simple complex representation of Wp , and so breaks up as a direct sum
U , where U ranges over a finite set of irreducible

representations of Wp . Hence, putting Lp(U,s) = det(l - p-s I UIp )’1, we
have

where both products are taken over all U. Let us also assume that the

coefficients of the polynomial

are algebraic numbers. Let ordp denote the order valuation of Cp ,
normalized so that ordp(p) = 1. Fixing U, we claim that ordp(a) is constant as
a ranges over the inverse roots of the polynomial det(l - I U). This is

because U, being a simple complex representation of Wp , can be twisted by a

quasi-character, trivial on Ip , so as to become a representation whose image is
a finite group. We define ordp(U) to be ordp(a) for any such inverse root a.



This is also independent of the choice of 03A6 because of the above hypothesis on

p. Finally, for simplicity, we assume for the rest of this section that ordp(a) is
in Z for all roots a of (33).

As always, let 1 = i or -i. In parallel with (25), we put

where U runs over the simple factors of as above, and where :-

(a). If ordp(U) > 0, then = 1;

(b). If ordp(U)  0, then Pp,t(U) = 

Note that Pp,t(U) is always well defined, i. e. in case (b), Lp(U,s) cannot have a
pole at s = 0 because ordp(U)  0. In addition, it is plain that case (a) holds for
U if and only if case (b) holds for because of our assumption that

ordp(U) is in Z. Thus, if we define the modified L-function

it is clear from our construction of the modified Euler factors that it satisfies

the functional equation

We say that M has good reduction at p if Tt(Ip) = 1 for all primes 1 ~ p. Let
dp(M) denote the number of inverse roots a of the polynomial (33), counted
with multiplicity, such that ordp(a)  0. The following lemma gives an
explicit calculation of the modified Euler factors at p, in the case of most
interest to us.

Lemma 7. Suppose that M has good reduction at p. Let ~i (resp. a) run over all
inverse roots, counted with multiplicity, of Zp(M,X) such that 0

(resp. ordp(a)  0). Then, we have



Moreover, if x is a non-trivial character of p-power conductor, say c(x) = pg,
we have

where is given by (30).

6. p-adic L-functions. Let M be a motive, which is critical at s = 0, and
which satisfies the Period Conjecture. Let p be a prime where M has potential
good reduction. Write 8(p) for the group of all Dirichlet characters of p-power
conductor. As x ranges over 8(p) and n. ranges over integers satisfying (9), the
values

are algebraic numbers, and hence can be viewed as lying in Cp via our fixed
embedding. Our aim is to seek a continuous p-adic interpolation of these
numbers as n and x vary. While it is very likely that such an interpolation
exists for all such p, our knowledge of the general case is still very

fragmentary, and we shall henceforth restrict our attention to those primes p,
which are ordinary for M (see [1]). Put V = Hp(M). We say that p is ordinary
for M if (i) M has good reduction at p, and (ii) there exists a decreasing
filtration FmV of V (with Fm V = V (resp. 0) for m sufficiently small (resp.
large)), which is stable under the action of the local Galois group Gp , and
which is such that the inertia group Ip operates on FmV / Fm+1 V via ym , for all
m in Z ; here y~ is the cyclotomic character (8). We shall require two further

properties of an ordinary prime, which we shall impose as axioms, but which
we understand have been proven in many cases. These are that, for each m in

Z , we have (iii) the m-th p-adic Hodge-Tate number of V ( or equivalently
the Q p - dimension of is equal to the complex Hodge number

h(-m, w(M)+m), and (iv) the number, counted with multiplicity, of inverse
roots a of the polynomial Zp(M,X), given by (33), with ordp(a) = - m is equal
to the complex Hodge number h(-m, w(M)+m). When M is of the form

Hk(X)(n), for a smooth projective variety X over Q , (iii) has been proven by



Faltings [12], and (iv) has been established in many cases by Fontaine -
Messing [14].

Lemma 8. Let a run over the inverse roots of Zp(M,X). Then (a). The number
dp(M) of a with ordp(a)  0 is equal to d+(M); (b). For each a, we have ordp(a)
 0 if and only if ordp(a)  n, where n is any integer such that there exists a
Dirichlet character x, satisfying (9), with M(n)(x) critical at s = 0.

By Lemma 5, d+(M) = h(j,k), and so (a) is plain from property (iv) above.
Part (b) follows on applying Lemma 5 to the motives M and M(n)(x). An
important cosequence of Lemmas 7 and 8, and the fact that (31) is

independent of the choice of t, is that the expression (37) is also independent
of the choice of t.

We can at last state the p-adic analogue of Conjecture A. As before, let
e(M) denote the order of the pole of the complex L- function L(M,s) at s =
1+w(M)/2. As remarked earlier, it is conjectured in the complex theory that (i)
if w(M) is odd, then e(M) = 0, and (ii) if w(M) is even, then e(M) is the
maximal number of copies of Q(-w(M)/2) which are direct summands of M.
When combined with the hypothesis that M is critical at s = 0, we conclude
from these conjectures that, if e(M) > 0, we must have (a) w(M) even and
non-zero, and (b) w(M)/2 even (resp. odd) when w(M)  0 (resp. w(M) > 0).
When e(M) > 0, we assume (a) and (b) in what follows. As in (7), let D denote
the Galois group of over Q . Let y denote the cyclotomic character of
H, as in (8). Recall that our two basic assumptions are that M is critical for s =
0, and that p is ordinary for M.

Conjecture A (p - adic Version). For each choice of the period c+(M), there
exists a unique pseudo - measure Jl(c+(M» on D as follows. For all n in Z and
all Dirichlet characters x of p-power conductor such that (9) holds and M(n)(x)
is critical at s = 0, we have

If e(M) = 0, Jl(c+(M» is a measure. If e(M) > 0, we put k = w(M)/2, and have



(i). (y~k(6) - a)e(M) Jl(c+(M» is a measure, for all a e D, when w(M)  0 ;
(ii). a)e(M) p(c+(M)) is a measure, for all a E D, when w(M) > 0.

The pseudo-measure p(c+(M)) satisfies a simple p-adic analogue of the
functional equation (21) of the complex L- function. The involution a ~ a-1
induces an involution of the ring of quotients of the Iwasawa algebra I of D,
which we denote by p - p*. Also, if Jl is a pseudo-measure and p is in I, the
product p.p in the ring of quotients of I is clearly again a pseudo measure.
Now the conductor of M is an integral ideal of Z, which is prime to M, and we
write a(M) for its Artin symbol in D. Put

The arguments of [10], §5 show that y(M) is a rational number, which is

independent of the choice of i = i or -i. The following is now an immediate
consequence of (36), and the fact that, for v ~ p,oo and x of p-power conductor,
we have Ev(M(n)(x), ~~O) _ Ev(M, ~~O) v na(v) X-1(va(v», where a(v) denotes
the power of v occurring in the conductor of M.

p-adic functional equation. We have

where a(M) is the Artin symbol in D of the conductor of M.

Example 5. Take M = Q(m), so that w(M) = - 2m. Then M will be critical at s=0
if and only if either (a) m is odd and  0, or (b) m is even and > 0. Suppose
first we are in case (a). We can take c+(M) = 1~ whence !1t(M) = 1. Also w(M) >

0, and if (9) holds and M(n)(x) is critical at s = 0, then w(M(n)(x)) >_ 0. One
verifies easily that the right hand sides of (10) and (38) are then equal, so that

= pm in this case. Suppose next that we are in case (b). We can take
c+(M) = (2xi)m, whence !1t(M) = 1. Also w(M)  0, and if (9) holds and M(n)(x)
is critical at s=0, then w(M(n)(x))  0. Applying (36) to M(n)(x), we deduce



easily that fl(c+(M» = pi-m*. Note also that the functional equation (39) is

simply in both cases.

Example 6. Conjecture A (p-adic version) holds for motives attached to

primitive cusp forms of congruence subgroups of SL2(Z) (see [20], [21], [23],
[24]). As in Example 3, we only discuss here the special case of M = A(l). Let ai
, a2 denote the roots of the polynomial 1 - t(p)X + pl l X2 . It is known that p is
ordinary for M if and only if t(p) is prime to p, or equivalently one of these
roots is a p-adic unit. Suppose p is ordinary for M, and let ai be the unit root.
Take c+(M) = L(A,1). Applying Lemma 7, we see that, in this case, the right
hand side of (38) is given explicitly by

where c(x) = pg. The p-adic functional equation for M is particularly
interesting (as was pointed out to me by Greenberg). We have M" = M(9). It is
therefore naturel (see [10], §5) to take c+(M"(1)) = c+(M)(2xi) 1°, whence

= c+(M) (2x t)-l= As = 1, we conclude that 

1, and so the p-adic functional equation becomes

In particular, it follows from (38), by integrating yrk (k=0,2,...,10) against both
sides of (40), that

Example 7. Let E be a modular elliptic curve over Q , and, as in Example 4,
take M = Sym2(E)(I). Let p be a prime where E has good ordinary reduction.
Then p is an ordinary prime for M, and the p-adic version of Conjecture A
has been proven by Schmidt [29] (see also Hida [37]), except for the delicate case
of formula (38) when x is the character of a real quadratic field. Take c+(M) =
u(Sym2(E)),given by (6), so that = c+(M)(2x 1)-1 . Recall that (9) holds and
M(n)(x) is critical at s=0 only when n=0 and ~(-’1)=1. Suppose the p-Euler
factor of E is Lp(E,s) = (1 - up’s)(l - where say u is a p-adic unit, because



E has good ordinary reduction at p. Then the inverse roots of the polynomial
(33) are given by ai = u2/p, a2 = 1, a3 = v2/p. Thus, when x is the trivial
character, Lemma 7 shows that the right hand side of (38) is 0. This is a simple
example of a so called trivial zero of the p-adic L-function, which is of great
importance in Iwasawa theory. Suppose now that x is not the trivial
character. A simple calculation, using Lemma 7, shows that the right hand
side of (38) is given explicitly by

where c(x) = pg . Finally, we note that the p-adic functional equation has a
very simple form in this case. By the Weil pairing, we have M^ - M, and
simple arguments of linear algebra show that we can take 
u(Sym2(E))(2x i)2. Since r(MA(1)) = - 3, it follows that = Qt(M). Also,
we have c(M) = = 1. Thus we obtain y(M) = - 1, and so the
functional equation is

7. Concluding Remarks. (a). It is of considerable interest to generalize
the p-adic version of Conjecture A to motives defined over an arbitrary finite
extension F of Q . The Galois group D will then have to be replaced by the
Galois group D(F) of the maximal abelian extension of F, which is unramified
outside the primes of F above p. By class field theory, the structure of D(F) as
an abelian group is given by B x Zpk, where B is a finite group and k > l+r2 ,
with r2 equal to the number of pairs of complex conjugate embeddings of F (k
= l+r2 if and only if the global units of F are p-adically independent). Some
special cases are already known (see [2], [II], [31], [18], [22], [35]). (b). While we
have stressed the p-adic analogues of the complex L-functions of motives,
much interesting work has also been done on the p-adic analogues of the
complex L-functions attached to automorphic forms (see [16], [26], [36], [37]). (c).
For further interesting results on the analogy between complex and p-adic L-
functions, see [6], [7], [8], [27].

Acknowledgements. I am greatly indebted to B. Perrin-Riou and P. Deligne
for their help in the formulation of the p-adic conjectures in this seminar.



These conjectures are basically taken from my joint paper [4] with B. Perrin-
Riou. However, in a letter to me Deligne pointed out that there is a much
more elegant and succinct way of expressing our conjectures using the local e-
factors of the motive. His remark also made it clear that, in some cases, the

conjectures of [4] should be modified by a suitable power of i = ~l-1, which
depends on the e-f actor at oo. I have now revised an earlier version of this

seminar so as to take Deligne’s remarks into account.
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