@incollection{SB_1990-1991__33__221_0, author = {Le Potier, Joseph}, title = {Fibr\'es de {Higgs} et syst\`emes locaux}, booktitle = {S\'eminaire Bourbaki : volume 1990/91, expos\'es 730-744}, series = {Ast\'erisque}, note = {talk:737}, pages = {221--268}, publisher = {Soci\'et\'e math\'ematique de France}, number = {201-202-203}, year = {1991}, mrnumber = {1157844}, zbl = {0762.14011}, language = {fr}, url = {http://archive.numdam.org/item/SB_1990-1991__33__221_0/} }
TY - CHAP AU - Le Potier, Joseph TI - Fibrés de Higgs et systèmes locaux BT - Séminaire Bourbaki : volume 1990/91, exposés 730-744 AU - Collectif T3 - Astérisque N1 - talk:737 PY - 1991 SP - 221 EP - 268 IS - 201-202-203 PB - Société mathématique de France UR - http://archive.numdam.org/item/SB_1990-1991__33__221_0/ LA - fr ID - SB_1990-1991__33__221_0 ER -
%0 Book Section %A Le Potier, Joseph %T Fibrés de Higgs et systèmes locaux %B Séminaire Bourbaki : volume 1990/91, exposés 730-744 %A Collectif %S Astérisque %Z talk:737 %D 1991 %P 221-268 %N 201-202-203 %I Société mathématique de France %U http://archive.numdam.org/item/SB_1990-1991__33__221_0/ %G fr %F SB_1990-1991__33__221_0
Le Potier, Joseph. Fibrés de Higgs et systèmes locaux, dans Séminaire Bourbaki : volume 1990/91, exposés 730-744, Astérisque, no. 201-202-203 (1991), Exposé no. 737, 48 p. http://archive.numdam.org/item/SB_1990-1991__33__221_0/
[1] The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. London A308 (1982), 523-615. | MR | Zbl
et .[2] Holomorphic tensors and vector bundles on projectives varieties, Math. USSR Izvestija 13 (1979), 499-555. | Zbl
.[3] Hermitian vector bundles and the equidistribution of the zeros of their holomorphic cross-sections, Acta Mathematica 114 (1968), 71-112. | MR | Zbl
and .[4] Flat G-bundles with canonical metrics, J. Diff. Geom. 28 (1988), 361-382. | MR | Zbl
.[5] Equations différentielles à points singuliers réguliers, Lecture Notes in Maths 163 (1970) Springer. | MR | Zbl
.[6] Infinite determinants, stable bundles and curvature, Duke Math. Journal 54.1 (1987), 231-247. | MR | Zbl
.[7] Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc.(3)50 (1985), 1-26. | MR | Zbl
.[8] Twisted harmonic maps and self-duality equations, Proc. London Math. Soc 55 (1987), 127-131. | MR | Zbl
.[9] A new proof of a theorem of Narasimhan and Se- shadri, J. Differential Geom. 18 (1983), 269-277. | MR | Zbl
.[10] Harmonic mappings of Riemannian manifolds, Amer. J. of Math. 86 (1964), 109-160. | MR | Zbl
et .[11] Restrictions of semistable bundles on projective varieties, Comment. Math. Helvetici 59 (1984), 635-650. | MR | Zbl
.[12] On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1970), 45-60. | MR | Zbl
.[13] The deformation theory of representation of fundamental groups of compact Kähler manifolds, Preprint, University of Maryland. | MR
et .[14] Periods of integrals on algebraic manifolds III, Publ. Math. I.H.E.S. 38 (1970), 125-180. | Numdam | MR | Zbl
.[15] Techniques de construction et théorèmes d'existence en géométrie algébrique,IV : les schémas de Hilbert. Séminaire Bourbaki, Exposé 221 (1960-61). | Numdam | Zbl
.[16] Harmonic mappings of riemannian manifolds, Lecture Notes in math. 471 (1975) Springer. | Zbl
.[17] Algebraic geometry, Springer (1977). | MR | Zbl
.[18] Sur la restriction des faisceaux semi-stables , Ann. Sc. Ec. Norm. Sup. 14 (1980), 199-207. | Numdam | MR | Zbl
.[19] The self-duality equations on a Riemann surface, Proc. London, Math. Soc.(3)55 (1987), 59-126. | MR | Zbl
.[20] Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114. | MR | Zbl
.[21] Chern classen von Hermite-Einstein-Vecktorbündeln, Math. Annalen 260 (1982), 133-141 | MR | Zbl
.[22] Fibrés stables et métriques d'Hermite-Einstein, d'après S.K. Donaldson, K.K. Uhlenbeck et S. T. Yau, Séminaire Bourbaki, Exposé 683 (1987). | Numdam | MR | Zbl
.[23] On boundedness of families of torsion free sheaves, J. Math. Kyoto University 21-4 (1981), 673-701. | MR | Zbl
.[24] Moduli of stable sheaves, J. Math. Kyoto University, I 17-1 (1977) 91-126; II 18-3 (1978) 557-614. | Zbl
.[25] Semistable sheaves on projective varieties and their restriction to curves, Math. Annalen 258 (1982), 213-224 | MR | Zbl
et .[26] Restriction of stable sheaves and representation of the fundamental group, Invent. math. 77 (1984), 163-172 | MR | Zbl
et .[27] Geometric invariant theory, Springer (1982). | MR | Zbl
et .[28] Stable and unitary vector bundles on compact Riemann surfaces, Ann. of maths 82 (1965), 540-567. | MR | Zbl
et .[29] Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, Journal of the Amer. Math. Soc. 1 (1988), 867-918. | MR | Zbl
.[30] Higgs bundles and local systems, Preprint, Princeton University. | MR
.[31] Moduli of representations of the fundamental group of a smooth variety, Preprint, Princeton University.
.[32] Non abelian Hodge theory, Preprint, Princeton University.
.[33] The ubiquity of variations of Hodge structures, Preprint, Princeton University. | MR
.[34] Harmonic bundles on non compact curves, Preprint, Princeton University.
.[35] Report on twistor space and the mixed Hodge structure on the fundamental group, Preprint, Princeton University.
.[36] On the existence of hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure and Appl. Math. 39-S (1986), 257-293. | MR | Zbl
et .[37] Variétés kählériennes, Paris, Hermann (1958). | MR | Zbl
.