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SOME RECENT DEVELOPMENTS IN THE THEORY OF

PROPERLY EMBEDDED MINIMAL SURFACES IN R3

by Harold ROSENBERG

Seminaire BOURBAKI

44eme annee, 1991-92, n° 759

Juin 1992

In the past decade there has been considerable progress in our under-

standing of minimal surfaces in three dimensional manifolds. In this sem-
inar I would like to discuss a small part of the work that has been done

concerning properly embedded minimal surfaces (which I will refer to as 
’

m-surfaces) in 1R 3 .
Until 1982, the only examples of such surfaces we knew were periodic

minimal surfaces and the catenoid and plane, and they came to us from the
last century : the helicoid, Scherk’s surfaces, Riemann’s surface, Schwarz’s

surfaces, etc. An m-surface is periodic if it is invariant by a non trivial
discrete group of isometries acting freely on Our surfaces are always
assumed connected unless stated otherwise. We denote by C(M) the total
curvature of M : C(M) = fM K, K the gaussian curvature of M.

In 1982, C. Costa wrote down the formulae for a complete minimal

surface, modelled on a 3-punctured torus, of C(M) = -127r, which he
believed was embedded [Cost.-1,2]. D. Hoffman and W. Meeks looked

at the surface on a computer and with the aid of the symmetries they
detected, they proved the Costa surface is embedded (James Hoffman did
the graphics). Subsequently families of finite total curvature m-surfaces
have been constructed [H.-M.-2], figures 1 and 2.

All the examples we know today, of m-surfaces in are periodic or of
finite total curvature. One of the important open problems is to decide if
there are other examples.
S. M. F.
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We will discuss some of the main results concerning m-surfaces of finite
total curvature : the theorems of R. Schoen [Sch.-1] and Lopez-Ros [Lo.-
Ros] ; each theorem is a characterization of the catenoid among m-surfaces
of finite total curvature. Schoen’s theorem assumes exactly two ends and
the Lopez-Ros theorem assumes genus zero.
We discuss the curvature estimates of stable minimal surfaces, initiated

by Heinz for graphs and in general by R. Schoen. We show how the curvature
estimates are used to construct stable limits of least area surfaces, and we

give applications.
We discuss the annular end theorem and the strong halfspace theorem of

Hoffman-Meeks. This latter result says that two properly immersed disjoint
minimal surfaces in are planes; this is very useful.
We discuss the work of Meeks and myself on the finite total curvature

conjecture : an m-surface in IR~ of finite topology and at least two ends is
of finite total curvature. A corollary of our work is that such a surface is of
finite conformal type.
We discuss the work of Meeks and myself on periodic minimal surfaces.

The main result is that finite topology of the quotient surface implies finite
total curvature of this quotient surface. If this is so then the (quotient)
surface is parametrized by meromorphic data on a compact Riemann
surface (a Weierstrass type representation).

This theorem yields topological and geometrical obstructions for the
existence of such surfaces. For example, the number of ends of such surfaces
is always at least two (except for the plane). If the surface is doubly periodic
and orientable (in the quotient) then the number of ends is at least four.
These are topological obstructions, we will discuss geometrical obstructions
in section VII. For example, if all the ends are not parallel (as in Scherk’s

doubly periodic surface) then the group G is commensurable. This means
there are two independent elements of G of the same length.
We prove the plane and the helicoid are the only simply connected m-

surfaces in with an infinite symmetry group.
We discuss the sum of minimal surfaces and some applications.
There is no known topological obstruction to realizing a complete,

orient able, non compact surface as an m-surface in IR3 .
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Finally we discuss some problems, conjectures, and related results.
I have decided not to discuss the construction of the beautiful examples

of Costa, Karcher, Hoffman and Meeks. Their influence on this subject
has been enormous, and as H. Karcher says : "What a magnificent picture
of a conformal map." I would like to thank David Hoffman and Hermann
Karcher for their work and inspiration. Some of the computer graphics were
done at the Geometry, Analysis, Graphics Laboratory at the University
of Massachusetts at Amherst by Jim Hoffman, Ed Thayer and Fusheng
Wei. The remaining computer graphics were done by Hermann Karcher and
Konrad Polthier working with SFB256 at Bonn. I thank you all. I received
a great deal of help with the material preparation of this manuscript by
Hermann Karcher and Katrin Wendland. I thank you both.

The paper is organized as follows.

1. How the classical examples are constructed.

2. The Weierstrass representation and the geometry of the ends of a finite
total curvature minimal surface in 

2.1 Osserman’s parametrization of finite total curvature surfaces
2.2 The geometry of finite total curvature ends

3. The characterizations of the catenoid by R. Schoen and Lopez-Ros.
3.1 The theorem of R. Schoen

3.2 The theorem of Lopez-Ros
3.3 and 3.4 The maximum principle at infinity
3.5 The monotonicity formula

4. Curvature estimates for stable minimal surfaces.

4.1 The Barbosa-Do Carmo stability criteria
4.2 An idea of the proof of Heinz’s theorem

5. Compactness of least area families and construction of complementary
finite total curvature surfaces.
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6. The annular end theorem and the strong halfspace theorem of Hoffman-
Meeks.

6.1 The annular end theorem

6.2, 6.3 and 6.4 The finite conformal type theorem and its corollaries

6.5 The strong halfspace theorem

7. Doubly periodic minimal surfaces.

7.1, 7.2 and 7.3 The finite total curvature theorem for doubly periodic
minimal surfaces

7.4 The total curvature formula

7.5, 7.6 and 7.7 Global topological and geometrical properties
7.8, 7.9, 7.10 and 7.11 The sum of minimal surfaces and applications

8. Singly periodic minimal surfaces.
8.1 The finite total curvature theorem for singly periodic minimal

surfaces

8.2, 8.3 and 8.4 The generalized Weierstrass representation
8.5 The geometry of finite total curvature ends

8.6 The winding number of an end
8.7 - 8.12 Applications of the finite total curvature theorem

9. Some problems, conjectures, and related results.
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1. HOW THE CLASSICAL EXAMPLES ARE CONSTRUCTED

Let r be a polygonal Jordan curve in 1R3 and Mo a compact minimal
surface with 8Mo = r. The Schwarz reflection principle [Oss.-1] allows
us to extend Mo across each edge of r by rotating Mo by 7r about each

edge. Continuing the reflections along each edge that develops one obtains
a complete minimal surface M, which will have singularities in general and
self intersections ; i.e. M will be immersed.

If the angle at which two edges of r meet is irrational the M will

turn infinitely often about this vertex. So if one wants embedded examples
then r should be chosen to have vertex angles of the form and Mo
should be chosen embedded. For example the polygons of figures 3 and 4

provide properly embedded examples which are invariant by 3-independant
translations (triply periodic examples).

Riemann, Schwarz and Weierstrass found minimal surfaces Mo with

8Mo = r by explicitly solving the Riemann mapping problem and the
Weierstrass representation (this is well explained in Darboux [Darb.]).
Today we find Mo by other techniques. Douglas and Rado proved that

any rectifiable Jordan curve r in JRn bounds a least area minimal disc Mo,

~Doug.~,~Rado-1,2~. Subsequently, R. Osserman proved Mo had no geometric
branch points (i.e. a least area disc with boundary r is immersed [Oss.-1].
Finally using geometric measure theory, Reifenberg proved there is always
an embedded minimal surface Mo with 8Mo = r, [Reif.] .
Now if one choses F and Mo well, the complete surface M obtained

by the reflections of Mo in all edges (that develop) will be an embedded

triply periodic surface. The quotient of M by a group G generated by 3-

independant translations will be a compact minimal surface of finite genus
embedded in the flat 3-torus ]R3/G. The geometry and topology of these
surfaces has been studied by W. Meeks [M.-3], and H. Karcher [K.-3],[K.-4].
Many of the other known examples of infinite total curvature (doubly and

singly periodic examples) are constructed by taking r to be a non compact
polygon and Mo a complete embedded minimal surface with boundary F.

Again one does all possible reflections of Mo across the edges of F (and
its’iterates) to construct a complete minimal surface M. So how does one



(759) THEORY OF PROPERLY EMBEDDED MINIMAL SURFACES IN R3

find Mo when r is infinite ? There is a general theory which attacks this

problem (the Jenkins-Serrin theorem [J.-S.] and the conjugate Plateau
construction [K.-1]) but rather than discuss this. I will describe how one

can obtain some examples directly.
First, let us construct Scherk’s (first) surface by solving a compact

Plateau problem and taking limits. Consider the polygon F(n) of figure
5-a. For each integer n, choose r(n), as in figure 5-a, so that

- r(rt) projects to a square in the horizontal plane, and

- the top edges are at height n, and the bottom edges at height -n.

Now let be the least area disc with boundary r(n). It is not hard to

prove, that is a graph over the square in the horizontal plane to which 
’

r(n) projects. (More generally, Rado has proved that if a Jordan curve F

projects to a convex planar curve C, then any minimal surface bounded by
r is a graph over the planar domain bounded by C [M.-2]).
Now inherits the symmetries of r(n) so there is a point pn of E(n)

at vertical height zero where the tangent plane of E(n) is horizontal.
Now as n - oo, the surfaces all pass through the same point

pn = p. Then the functions defining the graphs converge to a function

f, defined on the interior of the square, with boundary values +00 on two

opposite sides of the square and -oo on the two other sides. The graph of f
is a minimal surface with boundary the four vertical lines over the vertices
of the square, figure 5-b.
Now do Schwarz reflection of the graph of f about the four vertical lines,

and about all the vertical lines one obtains. This yields Scherk’s minimal
surface M. M projects to the infinite array of squares in the horizontal

plane, which form the (black squares say) of an infinite checkerboard
pattern, figure 5-c.
Now one can form quotients of M by independent horizontal translations

to obtain properly embedded, finite topology (and finite total curvature)
surfaces in flat manifolds 1r2 x IR, 1r2 a flat 2-torus.

The simplest way to do this yields a projective plane punctured in two

points. We now describe some of these examples.
Let P be the square to which r(n) projects and let VI, v2 be the vectors
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determined by the sides of P. Let G(vi + v2, v1 - v2) denote the group
generated by the translations vi + vz, v1- v2 . Then G(vi + v2, v1- v2 ) leaves
M invariant and the quotient is topologically a projective plane minus two

points, of total curvature - 27r, figure 6-a.
A fundamental domain for G(2v1, 2v2) is two continguous copies of P

(figure 6-b) and the quotient of M by this group is conformally diffeomor-
phic to a 4-punctured sphere and is of total curvature -47r in T2 x R.

One can realize S2 minus any even number of points this way : let

G = a fundamental domain consists of 2n copies of P (figure
6-c). To obtain a torus minus four points, let G = G(2(vi + v2), 2(vi - v2)).
A fundamental domain is four copies of P (figure 6-d). The total curvature
is and there are four ends.

One obtains the Klein bottle from the group G(vi - v2, 2(vi + v2 )).
A fundamental domain is given in figure 6-e. There are two ends and

the total .curvature is -47r. Placing n copies of P diagonally and letting
G = G(vi - + v2)) we obtain the connected sum of n projective
planes minus two points. By taking appropriate oriented two-sheeted covers
of the nonorientable examples just described one obtains every possible
orientable surface minus four points.

Notice that in all these examples, the ends are asymptotic to flat

cylinders, which happen to be vertical. Also the top ends are not parallel
to the bottom ends here. There are examples with all the ends parallel
and non vertical [M.-R.1]. H. Karcher has constructed, an easy to visualize
example of a torus minus four points in T x R, with all the ends parallel;
we call this a Karcher saddle, [K.-2].

In Karcher’s example one has a rectangle P and a minimal graph over
the part of P bounded by Li, L2, C1 and C2 (figure 7-a). The function
is 0 on Cl, C2 and +00 on L1, L2. Moreover, the graph is vertical along
Ci U C2. This implies Ci, C2 are planar lines of curvature and the graph
can be extended by reflection in the plane of P. This new surface has four
vertical lines as boundary (figure 7-b).

To obtain a torus minus four points, place two copies of P diagonally
and quotient by the group G(2v1, 2v2), figure 7-c.

In all of the above examples, the geometry and topology of the quotient
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surfaces are related by the formula :

This is a special case of the result :

THEOREM 1.1 [M.-R.1]. - Let M ~ T x 1R be a properly embedded
minimal surface of finite topology. Then M has finite total curvature and

In our construction of Scherk’s surface we started with a square P over

which we took limits of minimal graphs. If we started with a rhombus

P the same construction works; the graphs with boundary the polygons
r(n) would still have their vertical point pn at height zero. So Scherk’s
surfaces exist over checkerboard patterns defined by rhombi. However, had
we started with a parallelogram P with sides of unequal length, the points
pn will always drift off to infinity and the limiting surface will be two disjoint
vertical strips (figure 8).

This a special case of our result :

THEOREM 1.2 [M.-R.-1]. - Let M be a properly embedded minimal
3uTface in ’~ x 1R of finite topology. If the ends of M are not parallel then
T x IR has a commensurable lattice and the ends of M are vertical.

By commensurable lattice we mean T x IR, = JR3/G, and G has two
linearly independent vectors of equal length.

There is a theorem of Jenkins and Serrin which yields Scherk’s surface
over a rhombus (hence the complete surface by reflection in the vertical
lines over the vertices). We state a special case of their result.

THEOREM 1.3 [J.-S.]. - Let C be a polygonal Jordan curve in the plane
with an even number of sides. Let P be the compact planar domain bounded

by C and let p be the data on C which is +00 and -~ on adjacent sides of
C. A necessary and sufficient condition that p extend to a (finite valued )
minimal graph over P, is the sum of the lengths of the edges of C where p
is +00, equals the sum of the lengths of the edges of C where ’P is -oo.
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When ~ does extend to a, minimal graph, the graph is bounded by the
vertical lines over the vertices of C. For example, the Jenkins-Serrin graph
over a regular hexagon is shown in figure 9.

Clearly the theorem of Jenkins-Serrin implies Scherk’s surface exists over
a parallelogram precisely when it is a rhombus.

There are generalizations of Jenkins-Serrin theorem to non compact
domains which have proved useful to construct complete surfaces [R.-S.E.],
[K.-1].

2. THE WEIERSTRASS REPRESENTATION AND THE GE-

OMETRY OF THE ENDS OF A FINITE TOTAL CURVA-

TURE MINIMAL SURFACE IN]R3

Consider a Riemann surface M and a conformal map ~ : M - C~
3

satisfying = 0, ~ == (~i, ~2? ~3~. Then X(z) = Re Jo ~, is a minimal
;=i 

°

surface in It is not hard to see (and can be found in [Oss.-1], for

example) that every surface in IR3, whose mean curvature vanishes, is

locally of this form. In order for the surface in IR3 to the modelled on M,
one needs the integral of § to be independent of the path on M between zo
and z ; this is called the period condition : for every cycle, on M,

3

Also, in order for M to be immersed in one requires ~ ~~i(z)~ ~ 0
i=1

forzEM.

We summarize this in the definition : a minimal surface, in IR , modelled
on the Riemann surface M, is a conformal map ~ : M -~ C~ satisfying :

- ~l + ~Z + ~3 = 0 on M and + ~~2 ~2 + ~~3 ~Z never vanishes,
- the period condition : Re f-y = 0 for all cycles 1 on M.

In case the period condition is not satisfied, one considers the minimal

surface modelled on the universal conformal covering space of M (i.e. C or
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the open unit disc). It is common, even when X is not an embedding, to

speak of X(M) as the minimal surface modelled on M.
The three coordinate functions of § and the one equation : ~1-~-~2 -+-~3 =

1, can be reduced to two conditions. One classical way to do this is called

the Weierstrass representation. Assuming ~i 2014 is not identically zero

(this corresponds to M a plane), let

Then g is a meromorphic function on M, w a holomorphic one form, and

M is obtained from (g, w) by :

This is called the Weierstrass representation of M. Notice, the poles of g
are the zeros of w and a pole of order k of g corresponds to a zero of order

2k of w.

It is easy to see that a pair (g, w) as above, i.e. g is meromorphic on M,
w holomorphic on M, satisfying the zero-pole condition, defines a minimal
surface by using the formula (W). Naturally one needs the period condition
for the surface to be modelled on M.

The meromorphic map g has an important geometrical meaning : it is

the Gauss map of NI ; more precisely, it the composition of the usual Gauss

map of X(M) with stereographic projection of the unit sphere (centered at
the origin) to the equatorial plane, from the north pole.

The geometric invariants of M are expressed in terms of (g, w). The
induced metric on M is given by :

and the curvature of M :
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2.1. Osserman’s parametrization of finite total curvature surfaces

A Riemann surface M is said to be of finite conformal type if there is a

compact Riemann surface M such that M is conformally equivalent to M

punctured in a finite number of points.
The importance of finite total curvature for a complete minimal surface

in IR~ is made clear by the following theorem of Osserman.

THEOREM 2.2 [Oss.-1]. - Let M be a complete immersed minimal
surface in IR3 and M |K|dA  ~. Then M is of finite
conformal type and M can be parametrized by meromorphic data on a

compact Riemann surface. More precisely, if M denotes the conformal
compactification of M (so M is conformally M - {pl, ..., then the

Weierstrass representation (g,w) of M extends meromorphically to M.

Thus, in some sense, the theory of finite total curvature minimal surfaces
in IR~ is a problem in Riemann surface theory. But, we are very far from
an understanding of this subject. How does one see M in terms of ( g, w) ?
When is M embedded ? Which M exist ?

It is interesting to understand what Osserman’s theorem has to do with
minimal surfaces. In fact, an important part of this theorem is independant
of minimality. A complete Riemannian two manifold of finite total curvature

is of finite conformal type. This is a theorem of Huber [Hub.] ; a modern

proof can be found in [Wh.]. The hard part of Huber’s theorem is the

conformal type since the Cohn-Vossen inequality (C(M)  27rX(M) for

complete 2-manifolds of non positive curvature) implies the topological
type is finite when C(M) is finite. Assuming this, it is not hard to extend

(g, w) to the punctures. An end A of M is conformally a punctured disc :
A = ID* = {0  1}. The Gauss map g extends meromorphically to the

origin since the total curvature of A is the area of the Gaussian image of A,
counted with multiplicity. If the puncture were an essential singularity then

g would take on almost every value infinitely often and the spherical area

would be infinite. Now rotate M so g is finite at the puncture. Since the

metric on M is and the metric is complete, one has f-y ~W ( = oo,
for every divergent path, on A; converges to the origin viewed in ID*.
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Then one proves w has a pole at the origin by a function theory argument

(cf ; 

2.2. The geometry of finite total curvature ends

Now it is not difficult to analyse an end A of finite total curvature.

Parametrize A conformally by ID* and let (g, c~) be the Weierstrass represen-
tation of A. After a rotation of A in IR3 we can suppose g(0) = 0, so g(z) =
zk after a conformal reparametrization of a subend of A. The metric com-

plete at 0 tells us that w must have a pole at 0 : w( z) = ~+C~( ~z I-~-1 ) dz
in a neighbourhood of 0.
A direct calculation, using the Weierstrass representation (W), yields :

We know g2w has a milder pole than w at 0 so iz2 has a pole of order

~ at 0. Consider the image of the circle 0  8  r > 0, r small,

by the map ix2. The image curve turns £ - 1 times about the x3-axis.
Since the curve must clpse (i.e. A is an annulus) we have £ > 1; in fact, the
coefficient of z in w must be 0, since 2-1 and x2 are single valued on A.

If the end A is embedded, then the image curve : (x1 - iX2)( rei8),
0  8  27r turns once around the x3-axis, hence £ = 2 and

in a neighbourhood of 0.
Now X3 = Re j gw, and g(z) = zk near 0, so ] is bounded means

k > 2 ; these are the planar ends. Notice that if k = I, c is real since x3 is
well defined on the end.

Integrating ~3 we obtain the development of x3 (the constants are the

integration constants) :
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From the equation E we obtain :

Substitute this in x3(z) to obtain :

where the coefficients are real constants (a = -c).
Hence an embedded finite total curvature end is asymptotic to a planar

or a catenoid end.

3. THE CHARACTERIZATIONS OF THE CATENOID BY R.

SCHOEN AND LOPEZ-ROS

In the class of finite total curvature minimal surfaces in IR3 we have two
fundamental theorems ; each a characterization of the catenoid.

THEOREM 3.1 [Sch.-I]. - Let M be a complete immersed finite total
curvature minimal surface in IR3 with two ends, each embedded. Then M

is a catenoid.

Remark : We will see that M is embedded; this follows immediately from

the monotonicity formula.

THEOREM 3.2 ([Lo.-Ros] and [P.-Ros]). - Let M be an m-surface in 1R3

of finite total curvature and genus zero. Then M is a plane or a catenoid.

We make a short digression. The theorem of R. Schoen is rather suprising.

Why can’t one add a handle to a catenoid (figure 10) ?
Related to this, we have the unsolved conjecture of W. Meeks : let Ci and

C2 be convex curves in parallel planes and let M be a compact connected
minimal surface with 8M = Ci U C2. Then M has genus zero.

Convexity is certainly necessary here as the following example shows.

Let Mi, M2 be two pieces of catenoids placed as in figure 11-a.
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The boundaries of Mi, M2 are in parallel planes. Now join the top and
bottom boundary circles by narrow bridges (figure 11-b). By the Bridge
principle [Cour.], [ Smale], there is a minimal surface M, which is close to
Mi and M2 (near Mi, M2) and fills the bridges.
Now we shall begin the proofs of theorems 3.1, 3.2. A useful tool is the

maximum principle at infinity. The usual maximum principle implies that
the distance between two disjoint properly immersed minimal surfaces in
IR3 cannot be realized at points pi G int(M1), p2 E int(M2), unless Mi and
M2 are parallel planes. Now what happens when Mi and M2 are asymptotic
at infinity ?

THEOREM 3.3 (Maximum Principle at Infinity [L.-R.],[M.-R.-2]). - Let
M~ and M2 be disjoint properly immersed minimal surfaces with compact
boundary in a complete fiat three manifold. If aM1 = aM2 = ~ then ~111
and M2 are fiat. Otherwise

In fact, the case aM1 - 8M2 = ~ is the strong halfspace theorem of
Hoffman-Meeks. This case does not arise in the proofs of the theorems of
Schoen and Lopez-Ros and we discuss the strong halfspace theorem in VI.
What we need (and prove) here is the special case of the maximum principle
at infinity, first proved by Langevin and Rosenberg.

THEOREM 3.4 [L.-R..]. - Let Mi and M2 be disjoint finite total

curvature embedded minimal surfaces in IR3 with compact boundaries. Then
> 0.

The proof of this theorem uses the notion of flux on a minimal surface
M.

Let c~ be an oriented cycle on M and denote the complex structure

operator of M by J ( J is rotation by Tr/2 in each tangent space of M). The
flux of Q is
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where a’ is the unit tangent vector to a : J(a’) is a conormal field to M
along a ; a unit normal to ~, tangent to M.

Since the coordinate functions are harmonic on M, a direct application of
the divergence theorem shows that Flux(a) only depends on the homology
class of a ; so flux should be thought of as an IR3-valued function on the

homology of M.

Now, we established in II that an embedded finite total curvature end of
a minimal surface in IR3, has a limiting normal vector (which we suppose
vertical here) and the end can be written as a graph u(x), for Ixllarge :

We say the end is a catenoid type end if 0 (a is the logarithmic growth
rate of the end) and the end is planar if a = 0. In the first case the end
is geometrically asymptotic to a catenoid and to a horizontal plane when
a=0.

The development of u can be differentiated term by term, so the

outward pointing conormal vector to the end, along the curve CR =

~(x, y, u(x, y)~x2 + y2 = R2 ~ is easily calculated to be

Hence Flux( CR) = (0, 0, 203C0a) + O(|R|-1).
Since the flux only depends on the homology class of CR, we have

Flux( C R) = (0,0, 27ra). In particular, the Flux vector only depends on the

logarithmic growth rate of the end and is parallel to the limiting normal

vector.

Now we can prove theorem 3.4. Assume there are two embedded disjoint
minimal surfaces Mi, M2 of finite total curvature, compact boundaries, and

dist( M1, M2) = 0. We will see this leads to a contradiction.
Since finite total curvature of Mi, M2, implies finite topological type,

each Mi has a finite number of ends, each end topologically an annulus.

Since dist(M1, M2) = 0 and Nh, M2 have compact boundaries, there must
be an end Ei of Mi and E2 of M2 such that dist(Ei,E2) = 0. After a
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rotation in we can assume Ei and E2 are asymptotic to the same

horizontal catenoid end of growth rate a (if a = 0 its a horizontal plane).
Since E1 n E2 = ~, we can assume Ei lies above E2 (we can take E1

and E2 to be graphs). After a small vertical downward translation .E~ of

E1, aE1 still lies above E2, but outside of a large ball, E1 lies below E2.

Hence E’1 ~ E2 is a compact nonempty one dimensional analytic subset of
both Ei and E2.
We now show that E2 is a simple closed curve 03B3, homotopically

non trivial on Ei and E2, and E1 is transverse to E2 along ~y. Since .Ei is

a graph, the projection 7r : IR.3 --; IRZ of Ei n E2 is a compact nonempty
one-dimensional analytic variety of IR2. Let D be a disc in IR2 so that Ef
is a graph over D. If 7r( E n E2) is not a connected, homotopically
non trivial simple closed curve in 1R2 - D, then IR 2 - n E2) contains a
compact component disjoint from D. This is impossible since the lifts of this

component to E2 and E1 correspond to different solutions to the minimal
surface equation with the same boundary values (impossible by the usual
maximum principle). Hence intersects E2 transversely in a single curve

q that is homotopically non trivial on E1 and E2. Let E1 and E2 denote
the ends of E1, E2 respectively, with boundary,.

The surfaces E1 and E2 represent distinct solutions to the minimal

surface equation (they are graphs) over the unbounded region A of IR?
with boundary and they have the same boundary values along 
Since and E2 are asymptotic to translates of a fixed vertical catenoid,
they have the same logarithmic growth rate.

Let X1 and X2 denote the gradient of the third coordinate functions of

E1 and E2, respectively. If VI, v2 denote the conormal (upward pointing)
vectors to Ei and E2 along 03B3, then

However, along ~y, Ei lies below E2, so vi  X2 . v2 at each point of ~y,
and this contradicts 03B3X1 . V1 vl = 03B3 X2 . v2 .
A basic result in minimal surface theory is the monotonicity formula; a

proof may be found in [G.-T.].
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THEOREM 3.5 (Monotonicity Formula). - Let M be a proper im-
mersed minimal surface in x E M, and = the euclidean ball of
IR3, of radius R, centered at x. Let k be the number of sheets of M passing
through x and = M n DR(x). Then is a monotone increasing
function of R, which tends to one as R - 0. Here denotes the area

of E(R). In fact, each sheet of E(~), passing through x, has area growing
at least as fast as 7r R2, the area of the fiat disc through x of radius R.

COROLLARY. - Let M be a complete finite total curvature surface in
]R3 with exactly two embedded ends. Then M is embedded.

Proof of Corollary : Each end E of M can be written as the graph of
a function u over IR2 - a compact disc. A simple calculation shows the

area growth of E is Euclidean, i.e. 1 as -R 2014~ oo. Since M has

exactly two ends, each embedded, we conclude f(R) = ~~R R --~ 1 as

R - oo. If M had a point of self intersection, the monotonicity formula

implies f(R) = 1 for all R hence M is the union of two flat planes.

Proof of Theorem 9.I : Let E1 and E2 be the ends of M and let ~yl and

~y2 be smooth Jordan curves on Ei and E2 respectively, each homotopically
non trivial on its end. Let E be the compact submanifold of M bounded by

’1 U,2. Since ~yl is homologous to q2 in S, the flux of ~y1 equals the flux of ~y2.
Hence, if the flux of ~yl is different from 0, then the limiting normal vectors

to Ei and E2 are parallel and if al and a2 are the logarithmic growth rates
of Ei and E2 respectively, then al = -a2. Also the flux formula implies
that if al is zero then so is a2. Thus both ends are simultaneously catenoid

type ends or planar type ends. Moreover, since we know M is embedded,
the ends are always parallel, i.e. their limiting normal vectors are parallel.

After a rotation of M we can assume the ends are horizontal.

We observe first that neither end of M is planar. For if E1 were planar
then we could find a horizontal plane P disjoint from M. Then move P

towards M by parallel translation. There would be a first point of contact

with the horizontal plane (at a, finite point of M, or at infinity) and
this contradicts the maximum principle at infinity, or the usual maximum
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principle.
So we can assume Ei is a catenoid type end (above E2 ) with growth rate

0 and al = -a2.

We will now prove there is a horizontal plane P which is a plane of

symmetry of M. This allows us to say that the catenoids to which E1 and

E2 are asymptotic, have the same vertical axis. One finds P by applying
the Alexandrov reflection technique and the maximum principle at infinity.

Let P(t) be the horizontal plane X3 = t. For each t, let Mi be the part
of M, on and above P(t) and Mt the part of M on and below P(t). Let

Mt be the symmetry of Mt by P(t) :

A surface S has locally bounded slope if the tangent plane to every interior

point of S never contains a vertical line. Finally we say a subset A is above

a subset B, written A ~ B, if for every x E for which n 

and p-1 (x) n ~, we have all points of A lying above all points
of n B. Here p : IR3 - IR2 is the projection to the horizontal.

Now for t large, Mi is a graph of locally bounded slope over (a part
of) P(t) ; Mt is part of Ei for t large. M; is then a catenoid type end of

growth rate 2014c~i; the same as E2. Thus for t sufficiently large, M; is above

Mt .
Now consider decreasing t, to s say, and the surface M;. We claim that

if for each T, s  T  t, M is never vertical along P(T), then M: is above

M9 . Otherwise, there would be a first interior point of contact of some

M; with M5 and the usual maximum principle yields M; = M5 so M
is vertical along P(T) n M. Here we have used the maximum principle at

infinity to say the end of M; is a strictly positive distance from E2.
Since it is not possible that M; is above Mj* for all s, there is a largest T

such that M is vertical at some point p of M n P(T). M; is above MT hence

M; and ~lilT have a common boundary, they are tangent at p, and one is

locally on one side of the other at p. Thus M; = by the boundary
maximum principle and M is invariant by reflection in P(T).
Now consider the development of E2 as a graph :
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We wish to translate M so that the axis of the catenoid passes through the

origin. Let a*i = yi + al, x2 = y2 + a2. Then u2 in terms of y is given by :

where Ci = Ci + aaz, i = 1,2. Thus letting ~xi = - a , i == 1, 2, and calling y
by x again, we have :

Assuming the horizontal plane 2*3 = 0 is the plane of symmetry of M (which
we can suppose after a vertical translation of M), we have u2 (x) _ 
and the development of u 1 ( x ) is :

We will now prove M is a surface of revolution about the x3-axis, thus
a catenoid. Since the expression of u2 is invariant by rotation about the

origin in the x = (xl, x2) plane, it suffices to prove the plane x1 = 0 is a

plane of symmetry of M.
Denote by P(t) the planes XI = t (now we shall think of the XI axis as

vertical) and for K a (large) constant let M = h’} = Bi U B2 = B,
where B2 = M n ~~3 = h’~, Bi = M n {x3 = -h’~.

Here is the idea of what we shall do next. Fix t > 0. For K large, Bi
and B2 are close (C1-close) to circles in the planes ( = centered at

the x3 axis. So Bt is a graph of bounded slope over P(0) and Bt ,
cf. figure 12.

Let E = be the compact part of M bounded by B. By doing the
Alexandrov reflection technique with the horizontal planes P(s), coming
down to P(t), from above E(K), one proves that Et is a graph of bounded
slope over P(0) and By construction, this will continue to hold

for any larger value of K. So Mt . Since this is true for any t > 0, we
have Mo . Now do the same argument from below, i.e. start with -t
and come up, from below with horizontal planes to conclude Mo .
hence M is invariant by symmetry in 
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We now make the above discussion precise. First we prove Bt is a graph
of bounded slope and Clearly it suffices to do this for B2 (Bi is
the same argument). We have

Consequently for and Ixl sufficiently large (depending on t) we have

~~ > 0. The normal vector r~ to B2, in the plane x3 = K is

The first coordinate of q is non zero for ~x) large, and 3*1 > t, so J5~ is a
graph of bounded slope.
Now on B2 we have u2 = I{, so

hence = R for a large R. Since = 1 + it

follows that Ixl = R + so B2 is close to a circle for ~x ~ ] large. Let
C denote the circle of radius R in x3 = ~’, centered at the origin. Clearly

where é( t) > 0, depends only on t. Hence if K is sufficiently large,

B*2,t ~ B-2,t/2. Since is a graph over P(0), it follows that > B2,t.
To complete the proof of R. Schoen’s theorem, it remains to show

~t > where E = E(.K) is the compact submanifold of M bounded

by B.
Let T be the maximum value of XI on E; it is realised on B since a-i is

harmonic.

Define J = ~t, is a graph of locally bounded slope over P(s)
and E9 > E9 ~. We prove the theorem by showing J is a non empty open
and closed subset of ~t, T~, so t E J.
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Let p E B be a point where x3 = T. Then T G J so J is non empty.
Since a compact minimal surface is in the convex hull of its boundary (the
maximum principle applied to the coordinate functions) E is in the slab

between the planes x3 = K and x3 = -K. By the boundary maximum

principle, E is never tangent to the planes = K ; i.e; E is transverse to

== K along B. So for s near T, s  T, E~ is a graph over P(s) of locally
bounded slope. Notice also, that if s G J and s  T, then si E J.

First we show J is closed. Suppose (s, T) C J. If Es is not a graph then
there is si , s  T and x G P( o) such that (X,8) and (X,81) are on
the same vertical. We choose si so there are no other points of E on the

vertical between (x, 8) and (x, s1 ). We know that (x, s) is an interior point
of E since Bi is a graph and E touches == K only along B.
Now E is a graph in a neighborhood of (x, s1) and not vertical in the

neighborhood. So the vertical lines to this neighborhood, descend to fill a

neighborhood of (x, s). It follows that E is below P(s) in a neighborhood
of (x, s), otherwise there would be an (x, s) on E, near (x, s), with s > s.
But then (x, s) would have another point of E, above it, on the vertical, so

E~ would not be a graph. Clearly E below P(s) at (x, s) implies £ = P(s)
by the maximum principle, which is a contradiction. Thus J is closed.

Next we show J is open. Let and let assume ~s, T~ C J.
Let D C E be a disc containing (x, s). Notice that E is not vertical

at (x, s), for if this were so, consider the discs Ds and Di. Then Dg is

locally on one side of D~ in a neighborhood of (x, s), so DJ = D~ by the

boundary maximum principle and P(s) is a plane of symmetry of ~. This
is impossible since B is not symmetric in P(s).

Thus E is a graph in a neighbourhood U of P(s) and not vertical in
U. It remains to show ET for T near s. Since E n U is a graph, we

have V > ET for V a neighborhood of P(s), V C U, and T near s.
Also V is compact and its image under reflection in P(s) is disjoint
from so by continuity, for T near s, we have V > ~T . This means

~T > E~T for T near s.

The last argument using Alexandrov reflection actually proves more :

under certain circumstances, a minimal surface inherits the symmetries of

its boundary. More precisely, R. Schoen proved :
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THEOREM 3.6. - Suppose Q c IRn is a compact domain whose

boundary is mean convex. Let C be a compact embedded

manifold (not necessarily connected) satisfying : B C (aS~) x R, Bo is

a graph of locally bounded slope over P(o) = IRn x (0) and Bo > Bo. Let
M be an embedded minimal hypersurf ace with 8M = B and all interior

points in f2 x IR. Then Met is a graph over P(o) of locally bounded slope
and Mo’.

In fact, R. Schoen proved this theorem only assuming M immersed, but

one has to work a little more than we did to obtain this generality. The

hypothesis, the interior points of M are in f2 x IR is not serious, since if an

interior point p of M is in (8Q) x IR then, by the maximum principle, the

connected component of p in M is entirely contained in (aS~) x IR, so one

can disregard these components of M.

It is easy to construct examples of boundaries B whose symmetries do

not pass to a minimal M with aM = B. For example consider two copies
of a dumbell curve in parallel planes as in figure 13.

The (asymmetric) minimal M can be obtained by applying the bridge
principle to a catenoid bounded by the two circles on the right, and the two

discs bounded by the two circles on the left.
We now begin the proof of the Lopez-Ros theorem : the plane and the

catenoid are the only properly embedded minimal surfaces with finite total

curvature and genus zero.

Here is the idea. Suppose M is a embedded finite total curvature surface

in IR3. We know M has a finite number of ends which we can assume

horizontal (i.e. their limiting normals are vertical) after a rotation of M in

IR3. Each end is asymptotic to a horizontal plane or to a catenoid.

Lopez and Ros deform M, among minimal surfaces by deforming the

Weierstrass data. If (g, w) is the Weierstrass data of M they consider the

data ~g, ~ , where a is a positive real number. One checks that this data
defines an immersion Xa of M. In fact this holds whenever the flux of M

is vertical. In our case this is so, since M has genus zero so all the flux is at

the ends. The planar ends have zero flux and the catenoid type ends have

vertical flux since their limiting normals are vertical.
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Next one observes that each catenoid end of M is a (vertical) catenoid
end of Xa with the same logarithmic growth rate; it can move up or down

during the deformation. The planar ends stay planar ends at the same

height.
By the maximum principle at infinity, the distance between the ends of

Xa is strictly positive, as A goes from 1 to infinity. Therefore each Xx is an
embedded surface.

If M has a point p where the normal vector is vertical, then there is
a neighborhood D of p and a A > 1 such that Xa(D) is not embedded

(assuming M is not a plane). One sees this by proving Xa converges to an

Enneper surface (which is not embedded) near p, as A - oo. Thus M has
no points p where the normal is vertical.

If M has a planar end A, then a similar analysis proves Xa(D) is not

embedded, for A large and D a subend of A (assuming M not flat).
Thus all the ends of M are catenoid type and the Gauss map has no

zeros or poles on M. The conformal compactification of M is the sphere S
and the foliation by the level curves of 2-3 is non singular on M and has a

singularity of positive index at each puncture. Hence there are exactly two

ends in M.

We could now refer to R. Schoen’s theorem to conclude M is a catenoid

but it is easy to prove this directly. Since the Gauss map has all it’s zeros and

poles at the ends, g has degree one. After a conformal reparametrisation of

M one can assume g(z) = z. A little residue theory then proves w( z) = cd2,
c E IR, hence M is a catenoid [Oss.-1].
Now we enter into the details of this argument.
For each cycle, on M, one can calculate the flux of q by :

From this formula, it follows easily that the following three conditions

are equivalent to M having vertical flux :

I) the forms ~i and ~2 are exact,

2) the forms 03C9 and g2w are exact,

3) for each A > 0, the immersion Xa is well defined on M.
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The formula for the metric and curvature show that each Xa(M) = Ma
is a complete minimal surface of the same total curvature as M.
Now suppose p E M is a point where the normal to M is vertical, say

(0,0, -1). Parametrize a neighborhood of p conformally by ]  E},
with

g(z) = zk, w = (a + zh(z))dz ,
where a E C* and h is holomorphic in D(t) =  E}. Introduce the
conformal coordinate ~ = on Then ~f~ is parametrized by

Now dilate Xa by to obtain Xx. As a --~ oo, Xa converges, on

compact subsets of C, to the minimal surface IR3, with
Weierstrass data :

This is a complete surface with a non embedded end; there are transversal
self intersections. Hence X x, for A large, has self intersections.

. If the normal at p is (0,0,1), then turn M upside down.
Now suppose A is a planar end of M (and M is not a plane), and let

the limiting normal vector to A be (0,0, -1). Parametrize a subend of A
by the Weierstrass data in D(e) :

where a E C* and h holomorphic in D(e).
We have a parametrization of the end of Ma in = :Al/kz,

After a homothety by ~1-1/k, we obtain a new minimal surface Mx.
When ,~ -; oo, Ma converges uniformly on compact subsets of C* to

~* -~ defined by





(759) THEORY OF PROPERLY EMBEDDED MINIMAL SURFACES IN R3

If k == 1, this is a catenoid, and if k > 1, the surface has a non embedded
end at infinity. So for A large, is not embedded, since A is a planar end.

It remains to prove each is an embedding. Let J = is

injective}. If Ao E J then the distance between two fixed ends of is

strictly positive, by the maximum principle at infinity. Clearly this distance
is a continuous function of A (it may be infinite). Hence for A near Ao, ~’a
is also an embedding and J is open.

Suppose An G J, A,, 2014~ À as 77 2014~ oo. If .~ a is not injective then there are

points x, y E M, x ~ y, with The intersection of M03BB at

XÀ(x) and cannot be one dimensional so a neighborhood of x and
a neighborhood of y have the same image by by the usual maximum

principle (we used Àn E J here). Hence Xx : M ~--~ ~la is a finite covering
of the (embedded) minimal surface Again, by the maximum principle
at infinity, there is an ê-tubular neighborhood U of Ma that is embedded.
The ends of AIÀn vary continuously so for n large, C U. But then

the orthogonal projection of to M03BB is a diffeomorphism so Xa is also
a diffeomorphism. This contradiction shows J is closed and completes the

proof of the Lopez-Ros theorem.

4. CURVATURE ESTIMATES FOR STABLE MINIMAL SUR-
FACES

In 1952, E. Heinz proved that if M is a minimal graph over the disc DR
of radius R ( D ~ _ {x2 + y2  R2 } ) and if Ilo is the Gaussian curvature of
M at the origin, then [Heinz] :

This result was generalized by E. Hopf, Finn and Osserman, 
Oss.], to parametric minimal surfaces whose Gauss map misses an open
set.

The most general theorem was obtained by R. Schoen [Sch.-2] : there is
a universal constant C > 0 such that if M is a stable minimal (immersed
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and complete) surface in a flat three manifold then

where p E M, and d(p) is the intrinsic distance of p to 8M. Stable means
that every compact domain D of M minimizes area up to second order,

among normal variations of D leaving the boundary fixed; we will make
this precise shortly.

This theorem of Schoen is a very important tool for the study of minimal
surfaces in three-manifolds. Notice that this implies the only complete
immersed stable minimal surfaces with no boundary in flat 3-manifolds
are totally geodesic. So, for example, in IR~ they are planes. This result
was also proved by Do Carmo and Peng [Do C.-P.].
Why is Schoen’s result a generalization of Heinz’s theorem, i.e. why is

a minimal graph stable ? In general a foliation by minimal hypersurfaces
implies each leaf is stable. For the unit vector field n to the foliation is

divergence free in the ambient space. Let D be a compact domain in a leaf
and D a chain with 8D = 8D ; so that D U D is a cycle, homologous to
zero. The divergence theorem implies the flux of n across D equals the flux

of n across D ; i.e.

where nD is the unit normal vector field to D. Hence D is area minimizing
in its homology class.
Now the vertical translation of a graph foliates a solid cylinder and the

above argument shows that for every R’  R, the part of M over DR~
minimizes area up to second order. Letting R’ --~ R we see this is also

true for M.

4.1. The Barbosa-Do Carmo stability criteria

There is an important criteria for stability of a domain on a minimal

surface in IR~ due to Barbosa and Do Carmo [B.-Do C.] which implies that

graphs are stable. Their theorem says that an immersed minimal surface in
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IR~ is stable if the area of the spherical image (by the Gauss map) is less
than 27r.

I would like to make a few comments on their theorem. Let D be a

compact domain on the minimal surface M, n a unit normal vector field

to M and f a piecewise smooth function on D which vanishes on 8D. The
vector field Y = f n on D, induces a normal variation of D and the second
derivative of area of this variation is :

where A is the intrinsic Laplacian of M. The operator L = A - 2K is
the stability (or Jacobi) operator of M. M stable means the above integral
is strictly positive for all compact domains D and non constant f on D,
vanishing on aD. Hence if one can find a non constant f, f = 0 on âD, in
the kernel of L (such f are called Jacobi fields), D is not stable.
Now suppose D is a domain on which the Gauss map g is a branched

covering onto g(D). Then Schwarz proved that if the first eigenvalue Ai of
the spherical Laplacian As on g(D) is less than two, D is not stable. Here
is the proof. Let u be a function on g(D), u positive in interior g(D), zero
on 8g(D) and Asu + Aiu = 0. Define f = u o g. Since g(aD) = a(gD), f
vanishes on aD and is positive in interior D. The second variation defined

by f is :

Hence D is not stable (the above integrals are taken on the complement of
the branch points of g).
Now here is the idea of the proof of the Barbosa-Do Carmo stability

criteria. If D is not stable then one can find a domain D C D and a

function u on D, u > 0 on int D, u = 0 on aD and Au - 2K u = 0.
One then avera,ges u via the Gauss map to obtain a function f on g(D)

satisfying

This inequality implies al (g(D))  2.
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However, among all spherical domains having a fixed area, the spherical
cap minimizes the first eigenvalue of the Laplacian. But a spherical cap
in an open hemisphere has Ai > 2 (the coordinate functions of IR3 satisfy
As + 2 = 0 and they are positive on an open hemisphere, zero on its

boundary) so this is a contradiction.

4.2. An idea of the proof of Heinz’s theorem

Let us suppose M is the graph of a function f whose gradient vanishes
at the origin. This gradient hypothesis makes the proof simpler. The idea
is to compare M to a Scherk graph.
We can assume f defines a minimal graph on DR, /(0,0) = 0, and

~~ f (o, 0) ( = 0. Rotate the graph of f so the x-axis is a principal direction,
curving upwards.

Let N be a Scherk graph defined over a square of side length 2, centered
at the origin, with boundary values +00 on the vertical sides of the square
and -~ on the horizontal sides. Assume also N passes through the origin;
clearly N is horizontal at the origin.

Let Ko be the Gauss curvature of N at the origin. A homothety of N by
C > 0, from the origin, transforms N to a minimal graph Nc defined over
a square o(C) containing Dc. Since curvature is multiplied by ~2- under
this homothety, the curvature h’C of Nc at the origin, satisfies

Notice that Nc is horizontal at the origin and one of the principal
curvatures of Nc is along the x-axis and points upward.

Choose C > 0 so that the principal curvature of N c, along the x-axis at

the origin, equals the corresponding principal curvature of M at the origin.
Then Ko = Kc at this point.

Now if R ~ C then DR ~ DC and

If o(C) C DR then consider M n Nc. Both surfaces are tangent at 0
so they are equal or M n Nc is a one dimensional analytic curve, singular



(759) THEORY OF PROPERLY EMBEDDED MINIMAL SURFACES IN R3

at 0, and with at least six branches passing through the singularity. Since

Nc is asymptotic to infinity on the boundary of the square o(C), except at
the four vertices, there must be a compact component of M n Nc strictly
contained in the vertical region over the interior of o(C) (at most one branch
of Mn Nc can go to a fixed vertex of o(C) since M is a graph). Then there is
a Jordan curve a in o(C) along which M and Nc agree. Since they are both

graphs over the interior of c~ and one has unicity of such minimal graphs
by the usual maximum principle, we have M = Nc ; a contradiction. Thus

o(C) is not contained in D R, hence C > and

and a Heinz type estimate is established.

5. COMPACTNESS OF LEAST AREA FAMILIES AND CON-

STRUCTION OF COMPLEMENTARY FINITE TOTAL CUR-

VATURE SURFACES

A technique used often to study a complete minimal surface M in a
flat 3-manifold N is to construct finite total curvature minimal surfaces

E, with (?E compact and non empty, £ non compact, such that ()E C M
and int(E) n M = d. Such surfaces £ trap M in small regions of N which
makes the geometry of A4 understandable. We will see several examples of
this technique.

First I would like to explain how E can be obtained. Let f2 be a complete
region of N, whose boundary is a good barrier for solving the least-area
Plateau problem (this theory was developed by Meeks and Yau [M.-Y.]).
This means a~ = C is a 2-dimensional variety, smooth except along an

analytic one dimensional variety, such that
- C is mean convex at the smooth points, i.e., the mean curvature

vector at such points, points into H (the zero vector points into Q), and
- at a non smooth point of C, the angle between the smooth faces

of C, at the point, is less than or equal to 7r (measured in 5~~.
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Then Meeks and Yau proved that any smooth embedded 1-cycle r in aS~,
that is null homologous in H is the boundary of a compact least area surface

Er in H, and Er is smooth and embedded. The idea is to solve the Plateau

problem in N by taking a limit of embedded surfaces with boundary r
whose areas converge to the infimum of all possible areas. Then one checks
that such a minimizing sequence can be constructed to stay in n. The
mean convexity (and angle condition) implies that surfaces leaving H will
increase area when crossing Then one works (considerably) to extract
a subsequence that converges to a smooth embedded surface.

One can also use geometric measure theory to obtain Ep [ Simon]. Again,
we are assuming C = 9H is a good barrier and F C 9H a smooth one cycle
(i.e. a collection of disjoint smooth Jordan curves). If r bounds an oriented
2-chain in H then F bounds a smooth embedded orientable surface Er in H

which minimizes area among all orientable 2-chains in H with boundary F.
If r is a Z2-boundary in 03A9 then r bounds a smooth embedded least area
surface in the same relative Z2-homology class. If r bounds an orientable

(immersed) surface of genus n in Q, then Er can be chosen of genus at most
n and of least area in its homotopy class.
Now we will discuss how the least area compact minimal surfaces Er can

converge to finite total curvature, non compact, minimal surfaces ~.

We assume M orientable, A an end of M, A C and F a smooth

Jordan curve on A, not homologous to zero in Q. Let Ai C A2 C ... be an

increasing sequence of compact submanifolds of A, which exhausts A, and

aAi = r U ri. By our previous discussion of how one can solve the Plateau

problem in H using geometric measure theory, we know there exists a least

area smooth embedded surface Ei in H such that e)E, = r U r i and E, is

Z2-homologous to Ai rel Since Az is orientable and Ei U Ai is Z2-

homologous to zero, Ei is also orientable. Since F is not homologous to zero

in Q, ~z can be chosen connected.

Now we will show a subsequence of the Ei converges to a stable embedded

minimal surface £ with 9E = r.

Observe that there are uniform local area bounds for the family Ez. For

if is a ball of radius r, 88 transverse to Ea, then is a 1-cycle
on 9jB that bounds (mod 2) a 2-chain on 9B of area at most 27rr2. Since Ei
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minimizes area bounded by aA~ (in the Z2-homology class), we conclude
B n Ez has area at most 27rr2. Similarly if B is a ball centered at a point
of then the area of B is at most the area of 

Now let B(r) C Q. By the curvature estimates of R. Schoen, after

choosing a possibly smaller r, each component of E~ n B(r) that intersects

B(r/2) can be expressed as a graph, of small gradient, over a plane Pi
in B(r), passing through the center of the ball, and Pi does not depend
on the component. By the uniform area estimates, E, n B(r/2) contains
a bounded number of components independent of i and hence there a a

bounded number of associated graphs. Suppose for the moment that for

every i, E, f1 B(r/2) contains one component. Choose a subsequence of

the Pi to converge to a plane P through the center of the ball. Then the

standard compactness theorem for minimal graphs implies a subsequence of
the graphs E, n B(r /2) converge to a minimal graph over P n B(r /2) . When

E~ n B(r /2) has more than one component, we do the above argument to
each component and obtain a (uniformly bounded) finite number of graphs
over P n B(r/2), to which the subsequence of Ei n B(r /2) converges.
Now Q has a countable basis of balls Bn where for every n and

subsequence Eia of ~i, the Bn have a convergent subsequence in Bn.

Suppose the subsequence Ez~ n Bi converges in Bi. Then the associated

sequence of graphs in B2 n Ei~ has a subsequence converging in B2 
Continue in this manner from Bi to and take a diagonal subsequence.
This yields a subsequence of Ei that converges to a smooth minimal surface

E, with ~E = r. It is not hard to see that E is embedded and stable (since
it’s a limit of least area embedded surfaces). Also the boundary regularity
theorem of Hardt and Simons implies E is smooth along r [H.-S.]. Finally,
the theorem of Doris Fisher Colbrie yields that E has finite total curvature

[F.C.].
In particular, this technique yields :

LEMMA 5.1. - Let M be a properly embedded minimal surface in IR3
with more than one end. Then there is an end of a catenoid or of a plane
in the complement of 
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Proo f : Let r be a smooth Jordan curve on M that separates M into
two non compact components, one of which we denote by A. M separates
IR3 into two connected components and F cannot be homologous to zero in
both components ; let S~ be a component such that r is not homologous to
zero in H.

By our previous discussion, there is a finite total curvature embedded
minimal surface Er in H with aEr = r. More precisely, C = 9H = M is
a minimal surface hence a good barrier for solving the Plateau problem.
Let Ai C be an exhaustion of A with ~Ai = r U ria Let Ez be an
embedded minimal surface in H, Z2-homologous to Ai, with ~03A3i = 

As before, a subsequence of Ei converges to Er.
Now it may be that Er C M (if it touches M at one interior point, then

since it’s on one side of M at this point, it is contained in M). In this case,
at least one end of M is of finite total curvature, so asymptotic to a planar
end or catenoid end B. By the maximum principle at infinity, the distance

between the ends of M is strictly positive. So B can be translated into Q

to be disjoint from M. Similarly, if intEr C into, then the ends of Er are

a strictly positive distance from M so the conclusion of the lemma is clear.

There is a slight refinement of this lemma which is useful.

LEMMA 5.2. - Let B be a ball in IR3 and Ai, A2 properly embedded

minimal surfaces, non compact with ~A1, aA2 smooth Jordan curves such

that B n (Ai U A2 ) = aAl U aA2 and Al n A2 = Let A be the annulus

on aB, bounded by BAI U 8A2 and let 0 be the connected component of
IR3 - (Ai U A2 U A) disjoint from B. Then there is an end of a plane or a

catenoid in the interior of S~. Moreover, aA1 is the boundary of a smooth

embedded surface 03A3 in 03A9 and outside of a larger ball B containing B, 03A3 is

a finite total curvature minimal surface that separates ends of Al and A2,
i. e. any path from Ai to A2 in IR3 - B, meets E.

Proo f : Let r = aAl and consider Q, with 9H = Al U A U A2. If 9H

were a good barrier for solving the Plateau problem then the construction

of E = Er proceeds exactly as in the previous lemma. However 9B is not

mean convex with respect to H. One changes the Riemannian metric of IR3
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in a neighborhood of A in H so that 9H is a good barrier in the new metric

(cf. [M.-Y.] for the details). Then one proceeds as before. (This lemma
remains true even if Ai and A2 are properly immersed; [M.-R.-2].)

6. THE ANNULAR END THEOREM AND THE STRONG

HALFSPACE THEOREM OF HOFFMAN-MEEKS

We can now give an idea of the proof of the following important result.

THEOREM 6.1 [H.-M.-3]. - Let M be a properly embedded minimal

surface in then M can have at most two annular ends of infinite total

curvature.

Sketch of Proof : Let Al, A2 and A3 be distinct annular ends of M. It is

not hard to find a ball B such that B n (A1.U A2 U A3) = aAl U 8A2 U 

Using the previous lemma, one traps one of the ends, Ai say, between

standard ends E1, E2 (each is a catenoid or planar end).
Now one proves that A1 has finite total curvature. This is the difficult

part of the proof. One proves the tangent plane to A1 is never vertical

outside of some compact set (then the Gaussian image of this subend is in
a hemisphere hence has area less than so by the stability theorem of

Barbosa-Do Carmo, A1 is stable so of finite total curvature). To prove the

tangent plane of ~4i is eventually never vertical one constructs foliations

of the region between Ei , E2 by minimal annuli whose boundaries are on

Ei U E2. Then one studies the contact of Ai with the foliation. The only
contact points are of saddle type (by the usual maximum principle) and the

topology of ~4i being simple one is able to show Ai is eventually tranverse
to the foliation which implies there are no vertical tangent planes. hence at
most two annular ends of M can have infinite total curvature.

Now what about the two remaining annular ends, can they have infinite
total curvature ? This is unknown and it is one of the most important
problems in this subject today. Meeks and I have proved :

THEOREM 6.2 [M.-R.-3]. - Let M be a properly embedded minimal
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surface in IR3, with more than one end. If A is an annular end of M
then (after a rotation of M in IR,3~, either A is asymptotic to a horizontal
plane (hence has finite total curvature) or x3/A is a proper harmonic

function. In particular, every such A is conformally the punctured disc
D* _ {z G C/0  1~.

COROLLARY 6.3. - If M is a properly embedded minimal surface of
finite topology and more than one end, then M has finite conformal type.

COROLLARY 6.4. - If M is a properly embedded minimal annulus then

after a rotation of ~l~l, M intersects every horizontal plane in a simple closed
curve.

COROLLARY 6.5. - An m-surface in IR3 with a helicoidal type end
has exactly one end.

The strong halfspace theorem

There are complete immersed non planar minimal surfaces in a halfspace
of Jorge and Xavier constructed such examples in a slab [J.-Xav.]. It
is not known if such examples exist in a ball.

However, if the immersion is proper, Hoffman and Meeks proved this is
not possible. They prove more :

THEOREM 6.6. - (the strong halfspace theorem [H.-M.-4]) If M1 and
M2 are disjoint properly immersed minimal surfaces in IR3 then they are

parallel planes.

Proo f : Assume first that M2 is a plane (the (x, y) plane say) and

Mi is in the upper halfspace. After a vertical translation we can assume

dist(M1, M2) = 0.
Let Dt be the disc of radius t in M2 centered at the origin. Since Mi

is properly immersed, there is a t > 0 such that dist(D1,M1) > t. Choose
t  1/4. Let, be the vertical upward translation of ~D1, a distance t. By
our choice of t and D1, , U aD1 is the boundary of a stable catenoid Ci.
For each t > U aDt is the boundary of a stable catenoid Ct and Ctl is

above Ct2 when 1  t2  t1. As t -~ oo, the Ct converge to the horizontal

plane at height t, less the disc E in this plane bounded by ~y ; figure 14.



Clearly E U Ct U Dt bounds a compact topological ball and the limit of
these balls as t --~ oo is the slab between M2 and the horizontal plane at

height t.
Now M2 is properly immersed in IR3 and dist(M2, M1) = 0 so there is a

smallest t such that Ct n M2 ~ 03C6. But then Ct is on one side of M2 at this

point of first contact so Ct = M2 by the maximum principle. This proves
the strong halfspace theorem in the special case that M2 is a plane.
Now suppose Mi and M2 are disjoint and properly immersed. We will

find a plane between Mi and M2 so by what we have just proved Mi and

M2 are planes too.
Let H be the connected region of whose boundary is contained in
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Mi U M2 and the boundary contains points of both Mi and M2. Notice
that aS~ is a good barrier for solving the Plateau problem.

Let, be an arc in Q joining a point of M1 to a point of M2 and let r n
be Jordan curves in H such that the linking number of 0393n and 03B3 is one and
rn is in the complement of the ball of radius n centered at a fixed point of

~y; figure 15.
Let En be a least area smooth immersed minimal surface in H with

aEn = As in V, a subsequence of the Eyt converge to a complete stable
minimal surface E C H. E is non empty since each 03A3n intersects 03B3 by our

linking number restriction.

By R. Schoens theorem E is a plane. Clearly if E ever touched Mi or

M2 then they would be planes too. This completes the proof of the strong
halfspace theorem.

7. DOUBLY PERIODIC MINIMAL SURFACES

We call a minimal surface in periodic if it is connected and invariant

by a non trivial discrete group G of isometries that acts freely on IR3. In
fact we study the quotient minimal surface in JR.? jG. In fact, all connected
properly embedded minimal surfaces M in IR3 jG arise this way, since, by
the strong halfspace theorem the lift of M to IR3 is a connected minimal

surface invariant by G (assuming M not planar). Notice that this implies
that ~1 (M) - ~r1 (.R3 ~G) is surjective under our hypothesis on M.

Our main result relates the topology of M to its total curvature C(M).

THEOREM 7.1 (the finite total curvature theorem, [M.-R.-4]). - Let M
be a properly embedded minimal surface in a non simply connected complete
fiat 3-manifold. Then M has finite topology if and only if C(M) is finite.
When C(M) is finite, we have the formula

where W(M) is the total winding number of the ends of ~VI (we define this

later). When N = T 2 ~c R, W(M) = 0.
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Notice that one needs to assume N not simply connected; the helicoid

in IR3 has infinite total curvature and finite topology.
I would like to discuss the proof of this theorem (at least for doubly

periodic surfaces) and give some applications. A complete flat 3-manifold

is finitely covered by T3, T2 x IR or a screw motion around the

x3-axis, followed by rotation by B about this axis. So our theorem concerns

T2 x IR and IR3/S03B8 (doubly and singly periodic surfaces).
Now let G be generated by two independant translations so that IR /G =

T x IR, T a flat 2-torus. Let x3 : T x IR - IR denote the third coordinate

function, Tt = T x (t) the level set of 2-3 at height t. We let D* = ~0 

~z~  1~ be the punctured disc in C.

LEMMA 7.2. - Let A bc an annulus diffeomorphic to D* and X :

~4 2014~ T x IR a proper minimal immersion of A. Then A contains a

proper subannulus A’ which can be conformally parametrized by D*. In this

parametrization x3~A’(z) = c ] where c is constant.

Proo f : Let X3 = x3 o X : A --~ IR; X3 is a proper map. Since A has

one end, X3 is bounded from above or below but not both, so assume

X3 is bounded below. After translating X(A) vertically downward, we can

make the boundary of the annulus have negative x3-coordinate and X3
has 0 as a regular value. Hence A = X31(-00, OJ is a compact smooth

submanifold of A. A contains exactly one component containing 8A and

the other components have x3-coordinate zero. The maximum principle
for the harmonic function X3 implies A is connected and by elementary

topology A is an annulus, and A’ = X31 [0, ~) is a proper subannulus of
A.

The function X3 /A’ is a proper nonnegative harmonic function with zero

boundary values. It is an easy exercise in elementary complex analysis to

prove that A’ can be conformally parametrized by D* and X3 = c for

some constant c.

Now let M be a properly immersed minimal surface in T x IR, of finite

topology. By the above lemma, each annular end of M is conformally D* so

M has finite conformal type. We want to know M is of finite total curvature
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when embedded so we may as well assume M is orientable (by passing to a
two sheeted covering). Then the Gauss map g : M --~ S2 can be defined and
is conformal; two liftings of a point of M to 1R3 differ by a translation that
leaves the oriented unit normal vector field to the lifted surface, invariant.

Our technique to prove M has finite total curvature is to prove the

punctures of the annular ends of M are removable singularities of the Gauss

map g. Since the total ourvature is the area of the spherical image of M

by g, this suffices. In general one shows the puncture is not an essential

singularity by trapping an end A in a region of space which controls the
values of g. If g misses to many values near the puncture then the singularity
is removable. Now we can do this.

THEOREM 7.3. - Let proper minimal embedding

of D*. Then A has finite total curvature.

Proo f : By the previous lemma 7.2, we can suppose A = D* and

X3(z) = c we shall identify A with X(A). We take C  0 so that

X3 > 0 on A. Let Ct = A n Tt ; each Ct is a simple closed curve. The proof
divides into two cases : Co a generator of 03C01(T0) or not. We shall consider
the first case here and we refer the reader to [M.-R.-1] for the second case.

Co generates a cyclic subgroup G in 03C01(T x IR). Let p : T  IR ~ T  IR
be the Riemannian covering space such that p*7rl(T x IR) = G. T x IR is
isometric to (51 x IR) x IR and the generator of x IR)/G acts naturally
on H = as a translation. For notational convenience, let A

also denote a lifting of A to H. Since (L4 is compact and S1 x IR = ~H is non

compact, we can choose a closed geodesic a in 8H such that a n 8A = ~.
Choose a covering transformation a such that a is contained in the interior

of the compact annulus A with boundary aA and ~(aA) ; figure 16.

Let 11 C be the component of H - (A U aA) whose boundary
contains A U and S~t the points of H at height at most t. Notice that

nt is a good barrier for the Plateau problem; its boundary consists of four

minimal surfaces meeting at angles less than or equal to 7r.

Let at be a Jordan curve in the interior of the smooth annulus of ~03A9t at

height t, such that at is homotopic to a. Let Et be a least area embedded
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smooth surface with aEt = a U at, Et figure 16. First observe that Et
is orientable : this will follow by showing Et separates Ot. If not then there
is a simple closed curve 5 in Ot which intersects Et tranversely in one point.
But is generated by hence 5 is homotopic to a multiple of
aA and 8A has zero intersection number with Et. Since the Z2-intersection
numbers are well defined in homotopy classes, this is impossible and Et is
orientable.

By 5, a subsequence of Et converge to a smooth embedded stable surface

~, 9E == C W. By the usual maximum principle intE C int W.
We now prove £ is part of a plane. Since a is the quotient of a straight

line in IR 3, we can extend E by Schwarz reflection Ra to a properly
embedded minimal surface E C T x IR. Note that since f2 = a(A)
and E n 8Q = a, = ~. Let R~a be Schwarz reflection about ao (i.e.
rotation by 7r about We claim that E and E’ - aE U are

two properly embedded disjoint minimal surfaces. Note that Roa o a = R-,
and = id., where ~x is the geodesic on 8H halfway between

o and Qrx. Hence if E n E’ ~ ~, then RaE n ~. Composing
the last inequality with Ra yields ~. But = a so
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o E ~, a contradiction.

Now that E and E’ are disjoint the strong halfspace theorem says their
lifts to IR are planes, hence E and ~E are parallel flat annuli in H.

Let be a flat annulus which contains a and which makes an angle
6 with the horizontal plane aH. Choose 8 sufficiently small so that ~P(~)
intersects the region bounded by E and oE in a compact set and 
intersects A transversally in a smooth curve. This is possible since A
intersects aH transversally in a single curve.

Consider the foliation of T x IR by planes parallel to (flat annuli in

fact). Notice that each leaf intersects in a compact set. This foliation

is defined by the level sets of a linear function whose restriction to A is
a proper harmonic function. Hence this harmonic function has no critical

points on A above P(8). In particular, the normal to P(8) is never attained
as a normal vector to the part of A above 

Since 6 can vary in an interval, the Gauss map on A misses a curve of

values, hence the puncture is not an essential singularity and A has finite
total curvature.

Now we can analyse the geometry of the ends of an m-surface of T x IR of

finite topological type; we will see they converge geometrically to flat annuli.
Before proving this we analyse immersed finite total curvature surfaces in

TxIR.

THEOREM 7.4. - Let M be a properly immersed minimal surface in

T x IR, of finite total curvature. Let A1, ..., Ai be the ends of M with vertical

limiting normal vectors and let ni be the branching order of the Gauss map
i

at the end Az. Then C(M) = 2rr(x(M) - ~ nx). In particular, if M has
a=i

no horizontal ends, then C(M) = 

Proof : When M is nonorientable and we pass to the oriented two sheeted

cover of M, then all the terms in above formula multiply by two. This is

obvious for C(1Vl ) and X(M) ; each end of M lifts to two ends in the cover.
Hence we can assume M is orientable.
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Let Mt = M n (T x ~-t, t~). By Gauss-Bonnet, we have :

For large values of t, X(Mt) = X(M) so we must calculate ~Mt 03BAg.
First consider a component Ct of aMt that is on an end E having a

nonvertical limiting normal vector v. We shall prove ~g --~ 0 as t - oo.

Let a be a horizontal unit vector orthogonal to v ; since v is not vertical,

there are exactly two such vectors. Choose the orientation of a so that C;

converges to a as t --~ oo (C; is oriented by Mt and ’ denotes derivative

with respect to arc length).
Let da be the closed one form defined by orthogonal projection on a (the

line parallel to a). We have Jc t1 da = Jc da sinc Ctl - Ct2 bounds on
E. As t ---~ oo, Ct -; a hence JCt ds converges to JCt da. In particular, the
lengths of the Ct are uniformly bounded.

Let X be the conormal vector field along Ct, i.e. X is tangent to M,

 X, C; >= 0, ~X~ ] = 1 and X points into Mt. Let al be the unit normal
vector to a, tangent to Tt and whose direction is C;’, when 0.

We have

where K is the curvature of Ct, viewed as a planar horizontal curve and

Now compute K by thinking of Ct as a planar section of M. Let P be

the plane at Ct ( s ) generated by the normal n to M at Ct ( s ) and C;(s). Let

Kn(s) be the normal curvature, i.e. the curvature of the curve P n M at

Ct(s).
We have = K cos’ljJ where ~ is the angle between C;’ (s) and n.

Since the limiting normal is not vertical, cos 03C8 is bounded away from zero.

Hence if 0 as t ~ oo then so does K and Kg .

Since M is minimal, the principal curvatures K2 of M are equal in

modulus. The normal curvatures are between Ki and K2 so it suffices to
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prove

In a conformal parametrization of the end by D* the induced metric is

ds = where A = + g ( z ) ~ 2 ), f a non vanishing holomorphic
function on D*, g the Gauss map. The curvature K = -~~ ~’ . Since

( is harmonic in D* and g extends holomorphically to 0, we have
= + Ig12) is bounded in a neighborhood of 0. The metric

ds is complete at 0 so A - oo as Izl --~ 0, and this proves K --~ 0, hence
cf~ 2014~ 0 2014~ oo.

Now consider an end A of M with a vertical limiting normal vector v. By
lemma 7.2, we can conformally parametrize A by D* so that X3 = C 
The Gauss map has a zero or pole at 0 of order n, the branching order of
A.

We can assume g(z) = higher order terms near 0. As z goes once
around the circle Izl = r counterclockwise, the normal vector to A along
Ct goes n times around the vertical vector v, always turning in the same

sense when r is small. Hence the normal vector to the curve Ct in Tt, turns

monotonically counterclockwise,n times around the origin.
Let ~ be the planar curvature of Ct (in Tt). By the last paragraph,

03BA > 0 and Ct kds = 203C0n. ° Now 03BAg = 03BA cos 03C6, 03C6 the angle between the

conormal to Ct in M and the horizontal. We have § - 0 as t --~ oo hence

L 27rn. This completes the proof of theorem 7.4.

Remark : We deduce from the above argument, that if the end A is

embedded, it can not have a vertical limiting normal vector v. For if v is

vertical, the curves Ct have positive curvature ~ and ~C~ = 27rn . Clearly
this means Ct is a convex curve, null homotopic on Tt. Hence A lifts to

a finite total curvature embedded end in IR3 which must be a catenoid

(asymptotically). Clearly this can not be embedded in T x IR.

THEOREM 7.5. - Let A be a properly embedded minimal annular end

in T x IR. Then A is asymptotic to a fiat cylinder. Moreover two distinct

annular ends of an m-surface in T x IR, converge to distinct fiat cylinders.

Proof : We know we can assume A is parametrized by D* and X3 = (
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with c  0. By the analysis in the proof of theorem 7.4, we may assume
that for every small ~ > 0, there exists a T > 0 such that for t > T, each

curve Ct = A n Tt is contained in the interior of an e-tubular neighborhood
Bt of a geodesic; Bt C Tt. Fix e > 0, and assume, after possibly translating
A downward, that Ct has this property for t > 0. Let at and ~3t be the

boundary curves of Bt. For small t, it is clear there exists a unique flat
annulus Ft C T x IR - A with boundary ao U at. We shall check that such

an Ft exists for all t and varies continuously with t. Clearly the set of t for

which Ft exists is open, since Ft and A n (T x [0, t]) are compact. Also,
~Ft ~ 8A = 03C6 so the maximum principle implies the limit of such Ft is also
an example.

In the same manner, we define flat annuli Et with boundary /?o U ,~t,
disjoint from A. A subsequence of Et converges to a flat annulus E, with
8E = ao, E n A = ~ (by the maximum principle). Similarly Ft has a
subsequence converging to a flat annulus F, 8F = /3o? F n A = ~ and
E n F = ~. Hence E and F are parallel at a distance 6 and A is between E
and F. Now do the same argument at a height such that the Ct are within

~~2 of a geodesic on Tt. Letting e --~ 0 we get the desired limit flat annulus.
By the maximum principle at infinity, it follows that distinct ends

converge to distinct flat annuli.

7.6. Global topological and geometrical properties

Recall that T x IR = IR3/G has a commensurable lattice if G contains
two linearly independent vectors of equal length.

THEOREM 7.6. - Let M be an m-surface o f T x 1R of finite topological
type (M not fiat). Then :

I. If M is orientable, then M separates T x 1R. In this case, the
number of top ends, as well as the number of bottom ends of ~VI is even. In

particular M has at least four ends.

2. If M is nonorientable, then the number of top ends, as well as
the number of bottom ends, is odd. In particular, whether M is orientable
or not, the number of ends is even.
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3. The top ends of M are parallel to the bottom ends of M if and

only if the subgroup of H1(T x 1R) generated. by the loops on the ends of
M is cyclic. If the ends are parallel then the number of top ends equals
the number of bottom ends. In particular, by l, if M is orientable and has

parallel ends, then the number of ends is a multiple of four.
4. If the ends of M are not parallel, then they are vertical and T xIR

has a commensurable lattice.

Proo f : Assume M orientable and let M be the connected lifting of
M to IR~. Let G be the translation group defining M. if a G G then
aM = M by the strong halfspace theorem. M separates IR3 into two

connected components A and B and a conserves orientation so aA = A.

Hence M bounds A/G in T x IR and M separates T x IR.
For t large, we know that M n Tt consists of a finite number of pairwise

disjoint simple closed curves Cl, ... , C~ and each Ci is approximately a

geodesic. Here n is the number of top ends. Similarly, M n Tt = Di U ... D111
for t  0, It large, each D~ an almost geodesic and m equals the number of
bottom ends. Since M separates T x R into two components, A and B say,
each Ci has two sides on Tt, one in A, the other in B. Hence both n and m

are even. This proves 1. We leave 2 to the reader, or refer to [M.-R.-1].
Let P be a flat annulus parallel to the limiting top ends and Q a flat

annulus representing the limit of the bottom ends. Let a and b denote the

limiting directions of Cz and D~ respectively, ~a~ = Ibl = 1. Let X denote
the conormal vector field to X is tangent to M, ~X ~ = 1, X 1 8Mt,
and X points upward. Let v be the upward unit vector field tangent to P

and normal to a. Similarly let w be the unit field tangent to Q, normal to

b and pointing upward.
The flux of v across a curve C~ is  v, X > ds. As t -~ oo, X

converges to v, C j converges to a geodesic A;. Hence the flux of v across

8Mt for t large, is

Similarly, the flux of v across D~ is JD. >  v, w > where B~ is the
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limiting geodesic of D~ .
Since v is the gradient of a coordinate function, which is harmonic on M,

the flux of v across 8(MnT x [-t, t] ) is zero. hence _  v, w > 

In particular m|B1| ( and equality holds if and only if v = w. Now

turn M upside down to conclude   > n|A1|. Hence 03C5 = t? and

If v is not vertical then there is a unique horizontal direction a normal

to v. Hence a = b when v is not vertical and the top ends are parallel to

the bottom ends.

If the ends are all parallel, then the subgroup of Hl(T x IR) generated
by the ends is the cyclic subgroup generated by Ai. If the ends generate
a cyclic subgroup with generator A then a = b and v = w so the ends are

parallel.
If the ends are not parallel then they are vertical and n|A1|] = 

Since a and b are independent, the vectors and are indepen-
dent and of equal length. So the lattice is commensurable. This completes
the proof of theorem 7.6.
Now it is not hard to give necessary conditions for a given doubly periodic

minimal surface to have nonparallel ends which forces the ambient space to

have a commensurable lattice. We leave the proof to the reader or refer to

[M.-R.-1].

THEOREM 7.7. - Let M C T x IR be a non fiat m-surface of finite

topology. Then the ends are not parallel if l, 2 or 3 holds :

1. M is orientable and the number of ends is not a multiple of four

2. M is a planar domain

3. X(M) is odd.

7.8. The sum of finite total curvature minimal surfaces (minimal
herissons).

Let Mi, M2 be finite total curvature complete non planar minimal

surfaces in IR3 with Gauss maps gl, g2. Let p1, ... , pn, qi , ... , be the

punctures of Ml, M2 respectively and Ml, M2 the compactified Riemann
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surfaces. If one fixes a unit vector z E S2, one can add (in IR3) all points in
IR3 having z as normal. As z varies in S2 this yields a complete (branched)
minimal surface or a point. More precisely, Rosenberg and Toubiana have

proved :

THEOREM 7.8 [R.-T.-2]. - The set

is a complete minimal surface in IR3 (or a point) of total curvature 
Here W is some subs et of gl {p1, ... , U g2 ~ql, ... , 

The normal vector to Mi + M2 at the point ~ x + ~ y is z.

Thus Mi + M2 is naturally parametrized by S2 - W ; denote this

parametrization by g. If Mi + M2 is not a point, then 9 is a conformal

injection, which explains the total curvature -47r of Mi + M2.
The (possible) branch points of Mi + M2 are geometric branch points,

however the Weierstrass data of Mi + M2 is meromorphic at these branch

points ; the w of Mi + M2 vanishes at the branch points. Notice these points
are quite distinct from the branch points of the Gauss map; in general, 9
is injective where C vanishes.

The sum operation is very useful for detecting symmetries in a surface

M. For example Rosenberg and Toubiana have proved : 
°

THEOREM 7.9 [R.-T.-2]. - Let M be a complete finite total curvature

minimal surface in if all the ends of M are asymptotic to planes (planar
ends ) then M + M is a point.

The idea of the proof is simple. At a planar end of M, the points having
a fixed normal direction (near the limiting normal) are distributed in space
so as to have the same barycenter (like the roots of unity). So a planar end

puncture becomes a regular point in M + M.

Since T x R is an abelian group under addition and the Gauss map is

invariant under translation, the sum Mi + M2 is also defined in T x IR and

has total curvature -47r or 0.
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Meeks and Rosenberg have proved.

THEOREM 7.10 [M.-R.-1]. - Let M be a finite total curvature complete
immersed minimal surface in T x IR. Then

1. If the ends o f M converge to parallel fiat annuli, then M + M is
a point.

2. I f M is embedded and the ends o f M are not parallel, then M+M
is a Scherk surface.

Finally, we apply this theorem to obtain :

THEOREM 7.11. - Suppose M is an m-surface of finite topology in
T x IR and T x IR has an incommensurable lattice. Then

1. M + M is a point.

2. If M has genus one and four parallel ends (e.g. a Karcher

saddle~, then af ter a translation of M (so that a zero of Gaussian curvature
occurs at the origin), the order two points in the group x IR are

the zeros of .the Gaussian curvature of M. In this case M separates T x IR
into two isometric components.

8. SINGLY PERIODIC MINIMAL SURFACES

We have a wealth of beautiful examples of singly periodic m-surfaces.
The helicoid is the easiest to grasp : take a horizontal line £, passing through
the x3-axis; then rotate £ with constant velocity while rising vertically with
constant velocity. This surface M is invariant under screw motions 58 and
for a fixed 03B8, M = M/S03B8 is conform ally a two-punctured sphere of finite
total curvature -28. In M has two annular ends, each a helicoid
end. Notice that M no longer has a well defined Gauss map. The Gauss
map g of M induces a multivalued meromorphic map on M where distinct
determinations of its values differ by am where A = ei8 : if p and q are

points of IR~ with = q, p, q E M, then the normal vectors to M at p
and q differ by rotation about the x3-axis by m0, hence their stereographic
projections to the horizontal complex plane differ by multiplication by Àm.
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From the point of view of the Weierstrass representation of M in IR3,
M is the conjugate surface of the catenoid. On ~* - ~ - (0), the data :

g(z) = z, = z2 , defines a complete minimal surface MT for each
real T ; the catenoid is T = 0 and the helicoid r = Tr/2. The surfaces MT
are not embedded for 0  T  ~r ~ 2, however each MT has two annular
ends and they are embedded. Each end is a helicoid-catenoid type end.
The intersection of MT with a large vertical cylinder of radius R, centered
at the x3-axis, consists of two helices (like a barber pole). As R -; 00,

the helices rise on the cylinder like in R; so they look like helicoids and
catenoids (actually one helice rises and the other descends). We will see
later that when M is an embedded singly periodic surface, there are no
annular ends of this type. The number of ends will be even and half of

them would rise as R - oo, while the other half would descend. So ~1~1

couldn’t be embedded. Hoffman and Wei have shown that one can add a

handle to the helicoid in a periodic manner [H.-Wei.], figures 17-a,b.
Another singly periodic example is the conjugate surface of Scherks

doubly periodic m-surface. In terms of Weierstrass data in T x IR, g(z) =
z and w(z) = parametrizes Scherk’s l’st surface by the sphere

punctured at the four roots of unity. The reader can easily check that Xl
and x2 are multi-valued, and x3 single valued. The data for the conjugate
surface (Scherks’ second surface) is g(z) = z, co = also modelled on

S2 minus the fourth roots of unity. Now 2-3 has a period and XI, x2 are

single valued; the surface is invariant by a vertical translation T. There are

four annular ends that are the quotient, by T, of vertical ends, asymptotic
to planes. Ends of this type are called Scherk type ends, figure 18-a.

Karcher has shown that one can construct singly periodic m-surfaces of

this nature with 2n Scherk type ends, for any n ~ 2. Moreover, he is able

to deform these surfaces to singly periodic m-surfaces, invariant by screw

motions so that the Scherk type ends become helicoid type ends [K.-2],
figure 18-b . He does this with the generalized Weierstrass representation
we develop in this chapter.
we discuss one more example, the Riemann example. This surface is

invariant by a translation T (not a vertical translation) and the horizontal
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sections x3 = constant are circles and lines. The ends in IR3 are asymptotic
to horizontal planes (located at the heights whose sections are lines), figure
19. The simplest orientable quotient of this is a two punctured torus of total
curvature -87r. The Riemann examples form a one parameter family and

the conjugate surface of a Riemann example is also a Riemann example

(this is a good exercise). We refer the reader to [H.-M.-5] for an excellent
discussion of these surfaces. Callahan, Hoffman and Meeks have generalized
the Riemann examples [C-H-M], figure 20-a. Also Hoffman and Wei have
shown that one can add a handle to Riemann’s surface (one handle between

every other pair of planar ends) to obtain a singly periodic m-surface, a
surface of genus one with three punctures [H.-Wei], figure 20-b.

8.1. The finite total curvature theorem

Our theorem 7.1 states that an M surface in IR3 /So is of finite topology
if and only if it is of finite total curvature. I will briefly outline the structure
of the proof, and refer the courageous reader to [M.-R.-4] for the details.

Let M C IR3 /So be an m-surface of finite topology. The problem is to
show the ends (topologically annular) are of finite total curvature. This is
done by trapping an end of M between standard ends; i.e. two ends of finite
total curvature whose geometry one understands. Then, using foliations

by stable minimal annuli of the region between the standard ends (that
trapped the end of M) one proves the end of M is stable hence of finite
total curvature.

The first part of the proof requires an understanding of the finite total
curvature annular ends. In II, we explained the geometry of embedded finite
total curvature ends in IR3 using the Weierstrass representation and the fact
that the Weierstrass data (g, w) extends meromorphically to the puncture.
An annular end A in = N has a multi-valued Gauss map so the

first thing we need to know is the existence of a limit tangent plane of A
at infinity. Assuming A has finite total curvature Huber’s theorem tells us
A can be conformally parametrized by D*. Now we have the Picard-type
theorem (whose proof uses elementary complex analysis).

THEOREM 8.2 [M.-R.-4]. - Let g be a multi-valued meromorphic map
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on D* : g = with, g(z + 27ri) = for z ~ ~x +  o~,
and = 1. If the area of the image of 9 (i. e. the restriction of g to D*
slit along a radial line ), counted with multiplicity, is finite, then g extends

continuously to the origin.

8.3 The generalized Weierstrass representation

Now we use this result to obtain a Weierstrass representation for A

(meromorphic on D) as follows. We can assume 03BB ~ 1 since this is the usual
Weierstrass representation. Then the limiting value of g is 0 or oo since it
is fixed by multiplication by A; so assume g(0) = 0. Let 8 = 27ra with

0  a  1. Clearly the map is bounded in a neighborhood of 0, so

g(z) = with h holomorphic in a neighborhood of 0. Hence ) is
a well defined meromorphic one form on D* that extends meromorphically
to 0. One obtains the multi-valued g from this form by g = exp( f ~).

Notice that the third coordinate function X3 is defined, up to a constant

on N so dx3 is well defined on N. Let ~ = dx3 + i(*dx3). It is easy to see
that r~ is meromorphic on D* and extends meromorphically to 0.

We then can take as Weierstrass data on A the pair of one forms (dg g, ~),
which extend meromorphically to the puncture. In general, we have :

THEOREM 8.4 [M.-R.-4]. - let M be a complete finite total curvature
minimal surface in IR3 There exists a conformal compactification M of

M, and meromorphic one forms (dg g, ~) on such that M is parametrized

by

8.5. The geometry of finite total curvature ends

Now using this parametrization we describe the asymptotic geometry of

embedded annular ends.

THEOREM 8.6 [M.-R.-4]. - A properly embedded minimal annulus in



(759) THEORY OF PROPERLY EMBEDDED MINIMAL SURFACES IN R3

of finite total curvature, is asymptotic to a plane, a fiat vertical

annulus (a Scherk type end) or to a helicoid-catenoid type end (with
horizontal limit tangent plane). If the end A is part of an m-surface of

finite total curvature then A can not be a helicoid-catenoid type end. If

0 fl 0 and A is asymptotic to a plane, then the plane is horizontal. If 8 is

irrational, then A is not a Scherk type end.

8.6. The winding number of an end

Using this theorem we can calculate the flux and total curvature of m-

surfaces M of finite total curvature. For the latter one proceeds as follows.

Let, C be the quotient of the x3-axis and let TR be a tubular

neighborhood of radius R of ~y. For R large, MR = M n TR is bounded by k

Jordan curves Ci,..., Ck on 9Tp, pairwise disjoint, and each Ci converges
to a vertical line (Scherk type end) or to a horizontal circle (planar end)
or to a helice on 9T. Now one calculates the total curvature of MR using
Gauss-Bonnet and let R --~ oo. The boundary term is what we call the

winding number of the end.
More generally, let A be a properly immersed annular end in IR3 /So . We

know a subend of A is disjoint from, so we assume = ~. Then 8A is

homotopic to a cycle an âTR of the form no + m~3 where a is a horizontal
circle on aTR and ,~ is the quotient of the right handed helicoidal arc that

joins a point p to 58(p) and projects to an embedded cycle on The

winding number of A is defined to be 1 203C0|203C0n + It’s easy to see that

this doesn’t depend on R for R large, and in the case of standard ends it
is the limit of the total geodesic curvature of the Ci,..., Ck.
When M is a complete minimal surface of finite total curvature in IR3 

the winding number of M is defined to be the sum of the winding numbers
of it’s ends. When M is embedded, this is k times the winding number of
one end, k the number of ends.

Now the formula of 7.1 should be clear to the reader :

When the ends are Scherk type ends this is C(M) = 27rX(M). When they
are k-planar ends, it is C(M) = 27r(X(M) - k).
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Applications of the finite total curvature theorem

We have seen in VII, that a non planar orientable m-surface in a flat 3-
manifold separates the space (this followed easily from the strong half-space
theorem). This fact, together with 8.1 and our knowledge of the geometry
of finite total curvature ends 8.6, yields a topological obstruction for the
existence of certain m-surfaces :

THEOREM 8.7 [M.-R.-4]. - Let M be an orientable non planar m-
surf ace, of finite topology, in a non simply connected f lat 3-manifold. Then
the number of ends of M is even.

Erik Toubiana has proved that an m-surface in IR? ~T, T a translation,
that has finite, non zero, total curvature and the topology of a two

punctured sphere (i.e. an annulus) is a helicoid [T]. Using 8.1 we generalize
this result to 

THEOREM 8.8 [M.-R.-4]. - Let M be an m-surface in topolog-

ically an annulus, and not f lat. Then M is a helicoid.

Perez and Ros have generalized the Toubiana theorem to genus zero :

THEOREM 8.9 [P.-Ros]. - The helicoid is the only genus zero m-surface
in IR3/T with a finite number of helicoidal type ends.

Their technique of proof uses the Lopez-Ros deformation described in

III, and theorem 8.1. They also prove (with this technique) that there are
no genus one m-surfaces in 0, with a finite number of planar
ends. In other words : one can not screw the Riemann example. Notice that

the Karcher deformations of Scherk’s singly periodic surface shows that one

can screw Scherk’s surface [K.-2], figure 18-b.
Theorem 8.8 yields a unicity theorem for the helicoid in IR? :

THEOREM 8.10 [M.-R.-4]. - The plane and the helicoid are the only
simply connected m-surfaces in 1R,3 with an infinite symmetry group.
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Another application allows us to classify the sum surface :

THEOREM 8.11 [M.-R.-4]. - Let M C IR3 IT be an m surface of finite
topology, T a non trivial translation. If ~l has a helicoid end, then M + M
is a helicoid. if M has a planar end then M + M is a point. if M has four
Scherk type ends, then M + M is a Scherk surface.

Callahan, Hoffman and Meeks have proved a good structure theorem for

singly periodic m-surfaces with more than one end.

THEOREM 8.12 [C.-H.-M.]. - Let M C IR3 be an m-surface with

infinite symmetry group and more than one end. Then either M is a

catenoid or M has the following properties :

1) Sym(M) contains an infinite cyclic subgroup S of finite index,
generated by a screw motion Se.

2) Ml S has finite topology precisely when has finite total

curvature.

3) there exists a plane whose intersection with M consists of a finite
number of simple closed curves.

As a corollary of their theorem, they prove that a doubly periodic m-

surface in IR 3 has one end.

9. SOME PROBLEMS, CONJECTURES AND RELATED RE-

SULTS

Perhaps there are many m-surfaces in IR3 of finite topology and infinite

total curvature. For the moment, the only known example is the helicoid.

Are there any others ? Mark Soret has proved there are no others near

the helicoid (graphs over the helicoid in an ê-tubular neighborhood of the
helicoid [M.-S.]).
A less general question is to decide if the helicoid and plane are the only

simply connected m-surfaces in IR3. We know this to be the case if the

surface has an infinite symmetry group; theorem 8.10.

Maybe every infinite total curvature m-surface in IR3 has an infinite
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symmetry group (I doubt it) in which case the answer would be affirmative.
All of the examples of infinite total curvature m-surfaces we know today
are constructed using symmetries. There is no good reason (as far as I

am concerned) to believe there are no others. It is likely that one can add

exactly one handle (maybe more) to the helicoid to create an m-surface of
infinite total curvature and non periodic.

There is an important difference when an m-surface in IR3 has more

than one end. We have seen in V, that this enables us to find planar or

catenoid ends in the complement of M. Then Hoffman and Meeks proved
that at most two annular ends of such M can have infinite total curvature

(6.1). This leads Hoffman and Meeks to conjecture :

The finite total curvature conjecture [H.-M.-3] :

An annular end of an m-surface in with at least two ends has finite
total curvature.

This is related to the Nitsche conjecture : a minimal surface that meets

every horizontal plane in a Jordan curve is a catenoid. Nitsche proved this

assuming the Jordan curves are star shaped [N].
Now Meeks and I have proved (6.2) that an annular end of an m-surface

in IR3 with at least two ends, is either of finite total curvature or contains a

subend which meets every horizontal plane, in the upper halfspace of IR3,
in a Jordan curve (after a Euclidean motion of the surface).

Hence the finite total curvature conjecture is a consequence of an

affirmative answer to the following conjecture of Meeks and me :

The generalized Nitsche conjecture [M.-R.-3] :

Let A be a minimal annular end such that A n {~3 = c > Jordan

curve for every c > 0. Then A has finite total curvature.
Notice that this question concerns one holomorphic function g in the

punctured disc and the problem is whether the origin is an essential

singularity. Since A (or a subend of A) can be conformally parametrized by
D* with X3 = K the Weierstrass data of A is of the form (~ -~-). It
seems difficult to relate the singularity of g at the origin with the property
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that A is embedded. Erik Toubiana and I have constructed examples of
immersed annuli meeting every horizontal plane transversally and of infinite
total curvature (g has an essential singularity [R.-T.-1]). We have even
constructed such immersions in a slab of IR3. From time to time, I find

myself working on the Nitsche conjecture using techniques from complex
analysis (concerning essential singularities), but not using A embedded.
Fortunately, this doesn’t happen to me very often.
An affirmative answer to the generalized Nitsche conjecture would im-

ply that finite topology, m-surfaces with more than one end can be

parametrized by meromorphic data on a compact Riemann surface. All

of the examples of properly embedded m-surfaces in JR3, that we presently
know, do have this property : all of the infinite total curvature examples
we know are periodic and have quotients of finite topology. We saw in VIII
that the generalized Weierstrass representation is meromorphic on a com-

pact Riemann surface.

What are the m-surfaces in IR~ with exactly one end, topologically an
annulus. For the moment, we know of only the plane and the helicoid, but

as I said earlier, it is likely one can add a handle to a helicoid. Perhaps one

can realise all compact surfaces, of arbitrary genus, with one puncture. Let

us call an annular end algebraic if it is conformally a punctured disk and
dg g and ~ extend meromorphically to the puncture. Is every finite topology

m-surface in IR3 algebraic ? Is a properly embedded minimal annular end

algebraic ? Can one at least decide if it is conformally a punctured disk ? I

can prove that a minimally immersed annulus whose total curvature grows

polynomially (i. e. J Dr crn, ~ where Dr is a geodesic disk of radius

r) is conformally a punctured disk. This growth condition should imply

algebraic. An interesting related problem is to study minimal surfaces whose

intersection with every plane x3 = constant, is one properly embedded real

line. Is such a surface conformally C ? Is it a plane or a helicoid ?

What are the genus zero m-surfaces in IR.3 ? The only examples we know

are the plane, the helicoid, and the singly periodic Riemann examples.
Meeks has conjectured that if the surface is also periodic then it is one of

the these three examples [M.-1].
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What are the genus zero m-surfaces in the other flat 3-manifolds than

IR,3 ? In T2 x IR we believe the only such examples lift to a Scherk surface
in IR3 (notice Scherck has infinite genus in IR3 ). This was proved by Meeks
and me when such a surface has 4 ends [M.-R.-1] and Wei extended this to
6 ends [Wei].

In = 0 theorem 8.9 of Perez-Ros says the only genus zero finite

topology example with helicoid type ends is the helicoid. What are all the

genus zero examples in IR Notice the Riemann example has genus
zero in IR3 and genus one in 
A (too) general question is to classify the genus g finite topology m-

surfaces in T~ x IR or For g = 0 or 1, I believe the problem is

presently within our grasp. Certainly the same problem in IR3 is beyond our
means for the moment. Until recently, the only doubly periodic examples
we knew were coverings of the Scherk surface or the Karcher saddles,
together with their families constructed by Meeks and me [M.-R.-1]. Then
F. Wei found a very beautiful example (using conjugate Plateau techniques
or Weierstrass representation) to construct a genus two doubly periodic
example with two top ends and two bottom ends, all parallel, different from
the other known examples. Wei’s surface had no lines as in the Scherk’s
surface and Karcher saddle [Wei], figure 21-a. Using Wei’s idea, Karcher
was able to add a handle to Scherk’s surface (so the new surface has the
same end behavior as the Scherk surface and is of genus one; personal
communication), figure 21-b. Rabah Souam has proved that neither Wei’s
nor Karcher’s surface could exist if one tried to keep the four vertical lines
on the surface (thesis ; Paris VII).

D. Hoffman conjectures that if M is a finite total curvature m-surface
in IR3 then the number of ends of M is less than or equal to the genus of M

plus two. He believes that to add an end to an embedded minimal surface
of finite total curvature in IR 3, one must increase the genus (contrary to
the Riemann example).

Another interesting subject to pursue is the relationship between the
intrinsic isometries of an m-surface M (i.e. it’s symmetry group) and the
ambiant isometries leaving Al invariant (its isometry group). When M is
an m-surface in IR3, Meeks conjectures that every symmetry of M extends
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to an isometry of IR3. Meeks and I have proved this for doubly periodic m-

surfaces ; in fact we proved more (rigidity) : let f 1 : M - IR3 be a doubly
periodic m-surface and suppose f 2 : M -~ IR3 is another isometric minimal
immersion of M, then there is an isometry § of IR3 such that 03C6 f2 = f 1,

[M.-R.-1]. Choi, Meeks and White have proved that an m-surface in IR3
with more than one end is rigid [C.-M.-W.].

Singly periodic m-surfaces in IR3 are not rigid (the helicoid) however it
is true that their symmetry group equals their isometry group when 
has finite topology [M.-I].

Meeks has also conjectured that a non simply connected m-surface M

in IR3 is rigid (maybe the helicoid is the only non rigid m-surface in IR3 ?) :
any other isometric proper minimal immersion of M is congruent to M

[M.-l].
Perhaps the notion of rigidity should be restricted to isometric minimal

embeddings of M (not immersions). Then the helicoid is probably rigid.
Meeks has extended the finite total curvature theorem 7.1 to finite genus

doubly periodic surfaces. He proved an m-surface in T2 x IR of finite genus
has finite total curvature ~M.-l~. Does this remain true in 

In what generality does the maximum principle at infinity remain

valid ? Can one remove the hypothesis ~M1, 9M2 compact ? The minimum

distance between Mi and M2 (assumed disjoint) should not be realizable
at interior points at infinity.

In the same spirit, Antonio Ros asked me the following question : suppose
M is an m-surface in IR3 ; can an end of M be an accumulation point of
other ends of M ? More precisely, can there be a divergent sequence Xn on

an end A of M and a sequence yn E M - A such that dist(xn, y~) --~ 0, as

A problem that arises when studying m-surfaces in IR3 of finite total

curvature is the following : i do all the catenoid ends have the same axis ?

This is unknown even for three catenoid ends.

There has been important work done by Celso Costa on the problem of

classifying m-surfaces in IR3 of finite total curvature : he classified those

of total curvature -12~r [Cost.-3]. His proof uses very difficult calculations
in elliptic function theory. It would be very interesting to understand this
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from another point of view.
There has been much important and beautiful recent work done on

minimal surfaces that I have not discussed. I consider my most important
ommission the theorem of Frohman and Meeks that two one-ended m-

surfaces in IR3 of the same genus are ambiently isotopic [F.-M.].
There is also the very beautiful work of Fujimoto on values of the Gauss

map ~Fuj .-1,2~ ; but is is not clear to me this has anything to do with the
surface being embedded or not.

Meeks and White have studied the space of minimal submanifolds of

IR3 bounded by two convex Jordan curves Ci and C2. When Ci and C2
are in parallel planes they proved there are 0, 1 or 2 minimal annuli with

boundary Ci U C2 [M.-Wh.].
Finally, let me mention the problem of how, and when, can one desin-

gularize a minimal variety : given two m-surfaces Ml, M2 in IR3, when is
there an m-surface M that is close to Mi U M2 outside of a neighborhood
of Mi U M2 ? In many examples, the desingularization M looks like a string
of handles along Mi U M2. Here are some examples. Scherks singly periodic
surface is the desingularization of two orthogonal planes. Karcher’s singly
periodic generalization of this Scherk surface is the desingularization of n

planes meeting along an axis ; figure 18-a.
A helicoid and its rotation about it’s axis, meet along the axis. Karcher’s

examples desingularize this (and in general, n helicoids meeting along their

axis) desingularize this by a string of handles along the axis ; figure 18-a.
Costa’s finite total curvature m-surface, with 3-ends, can be thought of

as the desingularization of the vertical catenoid and the horizontal plane
passing through the waist circle ; figure 1. The higher genus examples of
Hoffman and Meeks with 3-ends are a better illustration of this (figure
2) : one places a string of handles around the circle of intersection of the
catenoid and the horizontal plane.
When Mi n M2 is a Jordan curve C, a necessary condition for desingu-

larization appears to be : Jc n2 = 0, where nl is the normal to C in

Mi and n2 the normal to M2 along C.
How to make sense of this is not at all clear. How can one do minimal

surgery on M1 U M2 ?
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