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CHALLENGING PROBLEMS ON AFFINE n-SPACE

by Hanspeter KRAFT

Seminaire BOURBAKI

47eme année, 1994-95, n° 802

Juin 1995

1. INTRODUCTION

There is no doubt that complex affine n-space An = Aë is one of the basic objects in
algebraic geometry. It is therefore surprising how little is known about its geometry
and its symmetries. Although there has been some remarkable progress in the last
few years, many basic problems remain open. The new interest in the subject came

mainly from questions related to algebraic transformation groups and invariant theory.
In fact, a number of exciting new examples (and counterexamples) were discovered in
studying general group actions on affine spaces. They gave us important new insight.
However, our knowledge of these spaces is still very incomplete.

Following is a list of eight basic problems in this context. Some of them-like the
Cancellation Problem and the Embedding Problem-are rather well-known and have
been studied by several authors. Others-such as the Linearization Problem and the

Complement Problem-might appear new in this setting although they have been
around since a long time. The Jacobian Problem is certainly the most famous one.
Although it is strongly related to some of the others, we will not have the time to
discuss it here in detail.

. Characterization Problem. Find an algebraic-geometric characterization of
An.

. Cancellation Problem. Does an isomorphism Y x imply that Y is
isomorphic to A’~ ?

. Embedding Problem. Is every closed embedding Ak Y An equivalent to the
standard embedding?

. Automorphism Problem. Give an algebraic description of the group of (poly-
nomial) automorphisms of An .

. Linearization Problem. Is every automorphism of A’~ of finite order linear-
izable ?



. Complement Problem. Given two irreducible hypersurfaces E, F C A~n and an

isomorphism of their complements, does it follow that E and F are isomorphic?

. Fixed Point Problem. Does every reductive group action on An have fixed

points?

. Jacobian Problem. Is every polynomial morphism p: An -3 An of maximal
rank an isomorphism?

There are some obvious relations between these problems. For instance, a positive
solution of the Linearization Problem would imply a positive solution of the Cancel-
lation Problem. In fact, if Y x Ak is isomorphic to an affine space A’~ consider the

automorphism of Y x Ak given by (y, z) -+ (y, -z). Then Y x ~0} is the fixed
point set, hence is isomorphic to An-k in case the automorphism is linearizable. Some

more hidden connections will appear during our discussion in the next paragraphs.
All problems above can be formulated in more algebraic terms as questions about

the polynomial ring ~~xl , ... , x~~ considered as the algebra of regular functions on
An . For instance, the Embedding Problem for the line into the plane has the following
equivalent formulation (see §4):

If a(t), b(t) E ~C~t~ are two polynomials generating the polynomial ring ~~t~
where deg a  deg b, then the degree o f b is a multiple of the degree of a.

The complex affine line A~ = C is, of course, well understood. It has many nice

properties which characterize it among all curves. For instance

. Al is the only affine normal rational curve without non-constant invertible f unc-

tions ;
. A1 is the only affine factorial curve without non-constant invertible functions ;
. A1 is the only acyclic (or contractible) normal curve.

Also we know that

. Every non-constant morphism p: A1 -~ A1 is a finite (ramified) covering;

. The automorphism group of A1 is the (algebraic ) group of affine transformations.

It is easy to see that with these well-known facts about Al the problems formulated

above have nice and satisfactory solutions. On the other hand, these properties do

not hold in higher dimension and the situation becomes much more complicated.
For the affine plane A2 there are some fundamental theorems which give a rather

clear picture and an almost complete understanding of its algebraic and geometric

properties. However, for larger dimension we have only very few general results. But

there are several exciting new examples which shed some light into the mystery.



In the next paragraphs we give a short account on the present situation of the different
problems. Some of them are already discussed in our report [Kr89a] from 1989. Since
then there was some interesting development, mainly in connection with the general
Linearization Problem. Nevertheless, the problems formulated above are still far from
being solved. We are convinced that they will finally have a negative solution, at least
for large dimension. Recent work on unipotent group actions even suggests possible
ways to construct counterexamples.

Acknowlegment. I thank SHULIM KALIMAN, PETER RUSSELL and MIKHAIL ZAIDENBERG
for their help in preparing this report.

2. CONTRACTIBLE VARIETIES AND CHARACTERIZATION OF A"

Based on fundamental work by FUJITA, MIYANISHI and SUGIE there is an important
and simple algebraic characterization of the affine plane ([MiS80], cf. [Su89]).
Theorem 1. Let Y be a smooth affine surface. Assume that Y is factorial and that
there is a dominant morphism Y for some N. Then Y is isomorphic to A2 . (1)

The second condition can be replaced by the two assumptions that Y has no non-
constant invertible functions and that the logarithmic Kodaira-dimension of
Y is -oo. (We refer to the literature for the definition of the logarithmic Kodaira
dimension; see [Ii82] Chap. 11.) The essential step in the proof is to show that Y
contains a "cylinderlike" open set C x A1, C a curve (see 

The theorem has a number of important consequences. In particular, it solves the
Cancellation Problem in dimension 2 (see §3), even in the following slightly stronger
form:

But there are some other interesting applications as well. For example, a two-dimens-
ional quotient of an action of a semisimple group G on An is isomorphic to ~2 , and
the same holds for an action of a unipotent group.

We will see in Example 1 below that a similar theorem does not hold in dimension
> 2. On the other hand, MIYANISHI has given an interesting characterization of A3
[Mi87], but it is not strong enough to solve the Cancellation Problem. We refer to the
report [Su89] of SUGIE for a discussion of these results and for further references.

(1) This result holds for any algebraically closed field k if we assume that’ the dominant
morphism is separable [Ru81].



In an important paper RAMANUJAM [Ra71] has given a beautiful topological
characterization of A~ (as an algebraic surface).

Theorem 2. An affine smooth contractible surface which is simply connected at in-

finity is isomorphic to A2 . In particular, every normal affine surface which is home-

omorphic to A2 is isomorphic to A2 .

This result, too, does not hold in dimension > 2. RAMANUJAM has constructed a

contractible smooth affine surface R which is not isomorphic to A2. It follows now

from h-cobordism theory that the threefold Y := R x A1 is homeomorphic to A3 (cf.
Proposition 1 below). But Y is not isomorphic to A3 , because of Theorem 1 above.
Thus there exists an exotic algebraic structur on (C3.

Contractible smooth surfaces have been studied extensively by GURJAR and

MIYANISHI, by TOM DIECK and PETRIE and by ZAIDENBERG (see [GuM87], [tDP89],
[tDP90]). Using the examples in [GuM87] the second authors were able to describe
all those of logarithmic Kodaira dimension K = 1. They showed that many of them

appear as hypersurfaces in affine 3-space(2). Moreover, they produced infinitely many
examples with logarithmic Kodaira dimension K = 2. ZAIDENBERG pointed out that

this leads to new exotic structures (cf. Proposition 2 of §3) and produced an infinite
series of non-isomorphic exotic [Za91].

ZAIDENBERG also discovered the first exotic analytic structures on cC3 [Za93].
He proves an analytic cancellation theorem which implies that for the RAMANUJAM

surfaces R mentioned above the threefold RxC is not biholomorphic to A~ (cf. [Ka94]).
We refer to his recent report [Za95] for a thorough discussion of these results.

In this context, we should mention the following general result which seems to

be known to the specialists. It is explicitely formulated in [Di90].

Proposition 1. A smooth contractible affine variety X of dimension d > 3 is diff eo-

morphic to Cd .

The proof given by DIMCA is based on the famous h-cobordism theorem of SMALE

and uses a result of HAMM showing that the link at infinity of X is simply connected

(cf. [Di92] Chap. 5, 4.25 (ii) and Chap. 1, 6.12).

An important input to the study of contractible varieties came from the Lin-

earization Problem for C*-actions on A3 (see §6). It had a major influence on the

further development. It turned out that a certain class of contractible threefolds have

(2) Recently, KALIMAN and MAKAR-LIMANOV proved that all smooth contractible surfaces

of logarithmic Kodaira dimension 1 can be realized as hypersurfaces in A3 [KaM95a].



to be understood in detail: They all appear in an explicit way as hypersurfaces in
four-dimensional representation spaces of C* and were the candidates for possible
counterexamples. The first examples of contractible smooth hypersurfaces in An were
discovered by LIBGOBER in a different context [Li77]. His list was generalized by
DIMCA [Di90], by KALIMAN [Ka93] and finally completed by RUSSELL [Ru92]. Fol-
lowing is the simplest example from RUSSELL’S list:

Example 1. Let Y be the hypersurface in A4 defined by the equation

Then we have:

(a) Y is smooth and diffeomorphic to ~3 .
(b) The closed subset Z := ~x = 0~ is isomorphic to C x A1 where C is the cusp

given by z3 + t2 = 0, and the complement Yx := Y, ~x = 0} is isomorphic to
C* x A2 .

(c) Y admits a C* -action given by s . (x, y, t, z) = s-6y, s2z, s3t) with quotient
morphism 7r: A2, (x, y, t, z) H (xy, yz3).

(d) Y is factorial and there is a dominant morphism ~3 ~ Y.

The last assertion indicates that Y might be isomorphic to A3 and thus provides us
with a counterexamples to the Linearization Conjecture for C* -actions on A3 (see
§6), to the Complement Problem and to the ABHYANKAR-SATAYE Conjecture about
embeddings of A2 into A3 (see §4). In fact, the zero set of the function y on Y is
isomorphic to A2 whereas the subvariety given by y = 1 has Euler characteristic 3.
However, MAKAR-LIMANOV recently showed in a remarkable paper [Ma94] that
(e) Y is not isomorphic to t~3.
Thus, the example implies that the characterization of A2 given in Theorem 1 does
not extend to higher dimension even if we assume, in addition, that the variety is
contractible.

The basic idea of MAKAR-LIMANOV was to study locally nilpotent vector fields
on the variety Y (i.e., locally nilpotent derivations of the coordinate ring O(Y) of Y)
and to show that they have a common kernel different from the constants C. This
is obviously impossible for An. (Recall that locally nilpotent vector fields on Y are
in bijective correspondence with actions of the additive group C+.) Generalizing this
idea KALIMAN and MAKAR-LIMANOV introduced a new invariant for affine varieties,
namely the subalgebra



where 6 runs through all locally nilpotent derivations of O(Y) [KaM95b]. It turned out
that this invariant can be calculated in many cases. For instance, we have ML(Y) =
C[x] in Example 1 above. In fact, they show that in all examples of RUSSELL’s list the
invariant ML(Y) is strictly larger than C. Thus none of these threefolds is isomorphic
to A3 .

In a second paper [KaM95a] KALIMAN and MAKAR-LIMANOV give another cri-
terion to decide whether a hypersurface H C An is isomorphic to An-1. It is based on

the remark that the existence of a dominant morphism An-1 implies cer-

tain restrictions on the degrees of the monomials occuring in the equation of H. The

application of this criterion is rather easy. It follows again that most of the examples
from RUSSELL’s list are not isomorphic to A3.

Remark 1. It is an open problem if all vector bundles on these contractible threefolds

are trivial. For the examples from RUSSELL’s list there is a C*-action with an isolated

fixed point which implies that the "zero fiber" contains an embedded line L ~ Al

(see §4; in Example 1 above the line is given by x = z = t = 0). If every rank 2

vector bundle is trivial then, by a famous result of SERRE [Se61], the line L has to
be complete intersection, i.e., defined by 2 equations. So far we have not been able to

verify this.

3. CANCELLATION OF VARIETIES

The general Cancellation Problem was already discussed in the early 70’s. It is some-

times refered to as Zariski’s Problem although ZARISKI’s question was different (see

[Na67]). The problem at that time was to decide for which rings A, B an isomor-

phism implies that A and B are isomorphic ( "uniqueness of coefficient

rings" , see [EaH73]). It was shown by HOCHSTER [Ho72] that this fails in general. In
his counterexample, he takes the coordinate ring A of the tangent bundle over the

2-sphere which is a finitely generated R-algebra and uses the geometric fact that the

tangent bundle is stably trivial, but not trivial.

A geometric formulation of the Cancellation Problem in dimension 2 can be

found in RAMANUJAM’S paper [Ra71], but his topological characterization of A2 (§2
Theorem 2) does not solve the problem. Only the algebraic characterization of A2

given later by FUJITA, MIYANISHI and SUGIE was sufficient as already mentioned in

the previous paragraph (see §2 Theorem 1).

Theorem 3. ([Fu79]) I f Y x A2+k then Y is isomorphic to A2 . (3)

(3) This result holds for any perfect base field k (cf. [Kam80]).



Earlier, under additional assumptions FUJITA and IITAKA [IiF77] have proved the

following more general result.(4) (Since RAMANUJAM’s surface R has logarithmic Ko-

daira dimension 2 it already follows from this proposition that R x A1 is not isomorphic

to A 3 . )

Proposition 2. Let X, Y be two varieties and assume that the > 0. Then any

isomorphism ~: X x Y x ~~ induces an isomorphism of X and Y.

However, the following example which is due to DANIELEWSKI [Da89] shows that the
additional assumption here is essential.

Example 2. Consider the smooth surfaces Yn C C3 defined by the equations

(a) The varieties Yn x A1 are all isomorphic.

(b) (FIESELER) The topological spaces Yn are not homeomorphic. In fact, 
Z/2n. (~r~° denotes the fundamental group at infinity.)

In the construction of DANIELEWSKI the varieties Yn appear as total spaces of princi-

pal C+ -bundles over the prevariety A-the affine line with a point doubled, obtained

by identifying two copies of A1 along A1 B {0}. The interesting point is that these

total spaces are all affine varieties. This immediately implies assertion (a) by forming
the fiber product of two such bundles over the base A and using the fact that every

principal C+ -bundle over an affine variety is trivial (Hilbert’s Theorem 90).
There is a nice geometric description of these examples given by TOM DIECK

and KRAFT. Consider the subgroups C* , C+ C SL2 embedded in the usual way as

diagonal and upper triangular unipotent matrices, respectively. Then the quotient
Y := SL2 /C* by right multiplication with C* is an affine quadric (~ Y2) on which C+
acts from the left. This action is locally free and determines a C+ -bundle over A. (This
can be seen by first forming the quotient C2 B {0} by left multiplication
with C+ and then studying the action of C*.) Moreover, considering the fiber bundle
Y - SL2 / B  p1 where B is the subgroup of all upper triangular matrices it follows

easily that Y is diffeomorphic to the line bundle C~(-2) on p1 and so its fundamental

group at infinity is Z/2. (With a slight modification we also obtain the other examples
Yn of DANIELEWSKI. )

In the paper [Fi94] FIESELER studies (and classifies) C~-actions on normal affine
surfaces. If the action is free (and the surface therefore smooth) then the geometric

(4) An interesting cancellation result for complete varieties can be found in [Fu81].



quotient exists as a smooth affine curve C with several multiple points. If, in addition,
all fibers are reduced then it is a principal C+-bundle over C. Conversely, a principal
C+-bundle on such a non-separated curve is an affine surface if and only if the total

space is separated. As before, all these surfaces become isomorphic when crossed
with AI. In this way FIESELER obtains many new examples of the same kind as in

DANIELEWSKI’S example above.

Remark 2. There is an interesting example of a C+-action on A5 given by WINKEL-
MANN [Wi90] which is a principal bundle over a non-affine variety. Following an idea
of PoPoV we have constructed, starting from this example, an infinite series of afline
varieties Zn of dimension 5, all total spaces of non-equivalent principal C+-bundles

with the property that Zn x ~1 ^~ A6 for all n. So far we have not been able to show

that the Zn are not isomorphic to A~!

Another interesting feature of WINKELMANN’S example is that the quotient ~5 ~~+ is
a non-affine variety which is diffeomorphic to A4. It follows from this that all varieties

Zn are diffeomorphic to A 5.

4. EMBEDDINGS OF VARIETIES AND COMPLEMENTS

The starting point of this problem was the following famous result by ABHYANKAR-

MoH and SUZUKI [AbM75], [Suz74]. It first appeared with a faulty proof in a paper
of SEGRE [Seg57] and was later corrected by CANALS and LLUIS [CaL70] who made
a similar mistake in their arguments!

Theorem 4. All embeddings of the line Al into the plane A~2 are equivalent. ~5~

(Here embedding of a variety Y means an isomorphism of Y with a closed subvariety of

An, and two embeddings a, /?: Y ~ An are called equivalent if there is a (polynomial)
automorphism p of An such that p o a = /?.)
The original proofs given by ABHYANKAR-MOH and SUZUKI are rather different. The

first uses approximate roots and Tschirnhausen transformation whereas the second is

based on subharmonic partitions. There are several new proofs of this result, using

quite different methods, e.g. by RUDOLPH [Rud82] using knot theory, by MIYANISHI
and SUZUKI using resolution of singularities, by GURJAR-MIYANISHI [GuM95] using
the classification of acyclic surfaces and by A’CAMPO-OKA [A095] using Tschirn-
hausen resolution towers. Before we proceed to possible generalizations of this result

we give two equivalent formulations of the theorem.

(5) The result does not hold in positive characteristic p > 0 as one can see from the following

example of an embedded line: L : yp2 - ~ - x2P = 0 [Sa76].



(i) If f : A2 --~ Al is a polynomial map such that the fiber is isomorphic to

then f is a trivial fibration.

(ii) If a(t), b(t) E are two polynomials generating then the degree of one is

a multiple of the degree of the other.

The equivalence of Theorem 4 with (i) is easy. A priori, formulation (ii) is slightly

stronger because it implies the equivalence of any two embeddings under a tame auto-

morphism, i.e., an automorphism from the subgroup generated by the affine transfor-
mations and the Jonquière transformations (x, y) ~ (x,y+axn) (a G C, n E N). But
it is known since JUNG [Ju42] that in dimension 2 every automorphism is tame (see
§5).

A first generalization would be to replace the line A 1 by any other curve. This

does not work in general: It is easy to see that the two embeddings t ~ (t, t‘1 ) and
t ’2014~ (t2, t-1) of ~1 ~ ~0~ are not equivalent. However, it is known that the theorem
generalizes to smooth curves of genus 1 or 2 with only one place at infinity, but again
this fails for higher genus. An example is given by the isomorphic smooth curves

C: y4 ~ x3 + 1 = 0 and D: y7 + x2 + 1 = 0 of genus 3 with one place at infinity which
are not equivalently embedded (cf. [A095]). We should remark here that NEUMANN
used the link at infinity as a tool to classify affine plane curves [Ne89b] (cf. [Ne89a]).

It is an easy exercise to show, using Theorem 4, that all embeddings of the cross

xy = 0 into A2 are equivalent. JELONEK has remarked that a negative solution of the

Embedding Problem for the n-cross xlx2 ~ ~ ~ Xn = 0 would imply that the Jacobian

Conjecture for An is false [Je92].
Another interesting generalization is due to LIN and ZAIDENBERG [ZaL83] (see

also [GuM95]). It concerns all curves homeomorphic to Al (i.e., irreducible and of
Euler characteristic 1 ) .

Theorem 5. Let cp: ~1 --~ A2 be an injective morphism. Then p is equivalent to
one of the maps t - (tP, tq) where p and q are relatively prime. In particular, an
irreducible affine plane curve of Euler characteristic 1 has at most one cusp and is

given by an equation of the form xq + yP = 0, up to equivalence. ~6~

It is well-known that every smooth affine variety of dimension d can be embedded
into A2d+1 and that the bound 2d + 1 is optimal (see [Sr91]. The question whether
these embeddings are all equivalent was settled by a very general embedding theorem

(6) Actually, their result is more general and also includes all reducible curves of Euler char-
acteristic 1.



due to KALIMAN [Ka91] and NORI (unpublished, cf. [Sr91]). A weaker statement was
proved independently by JELONEK [Je87].

Theorem 6. Let Z be a smooth affine variety of dimension d. If n > 2d + 2 then all

embeddings of Z into An are equivalent.(7)

As an example we see that all embeddings of the line A~ into An are equivalent for
n > 3. Thus the only open case are the embeddings of the line into affine 3-space A3.

An important case of the Embedding Problem is given by the hypersurface em-

bedding An (ABHYANKAR-SATHAYE Conjecture(8)). This problem occurs in
the study of C*-actions on affine n-space in the following way (cf. §6). Let us assume
that there is an isolated fixed point Xo and consider the corresponding "zero fiber"

Fo := {x E A~n ( C*x :3 (Here C*x denotes the closure of the C*-orbit of x.)
It follows from BIALYNICKI-BIRULA’S theorem [Bi76] (or from the slice theorem of
LUNA [Lu73]) that Fo contains a unique irreducible component H of codimension
1 which is isomorphic to and defined by a semi-invariant polynomial f, i.e.,

f (t ~ x) = tm f(x) for some m G Z (t E C*). If the action is linearizable then f is
necessarily equivalent to a coordinate function, i.e., the embedding is equivalent to
the standard embedding. A typical situation is described in Example 1 from §2: The
threefold Y carries a C*-action whose zero fiber contains the 2-dimensional component

A 2 given by the semi-invariant y of weight -6. But the action cannot be linearized
because the hypersurface given by y = 1 has Euler characteristic 3.

Remark 3. In this context we should mention two related problems, the Extension
Problem and the Identity Problem. The first one asks if every automorphism of a

closed subvariety Z cAn extends to an automorphism of An. The second asks for
subvarieties Z with the following property: Every automorphism of An fixing pointwise
Z is the identity. These questions have been studied by JELONEK [Je91,93,94].

The Complement Problem is in some way the complementary problem to the

embedding problem for hypersurfaces. Here we assume that we know something about
the complement H of a hypersurface and want to retrieve information about H

itself. Clearly, there are some strong relations between the problems. For example,

(7) The theorem is true for any infinite base field k, and there is also a formulation for singular

varieties; see [Ka91], [Sr91].
~ SATHAYE did ask a weaker question [Sa76] : Given a polynomial map f : An  C such

that f -1 (0) is isomorphic to does it follow that all fibers are isomorphic to 

(SATHAYE Conjecture)



it is easy to see that a positive solution of the SATHAYE Conjecture would imply a

positive answer to the Complement Problem if one of the hypersurfaces is isomorphic
t0 

In dimension 2 we can prove the following result:

Proposition 3. (KRAFT, VUST) Let Ci,C2 C A2 be two irreducible curves and

assume that there is an isomorphism p: A21 A21 Cl .

(a) If the genus of C1 is > 1, then p extends to A2 inducing an isomorphism C2.

(b) If the Euler characteristic of Cl is one, then C2.

The assumption of irreducibility is essential as shown by the following example given

by VusT: Consider the morphism ~: A2 -~ ~2, (x, y) H (xy, y) and let L :_ {y = 0}
be the x-axis and C := {y2 = x3} the cusp. Then U C) = L u C’ where C’
is the smooth curve given by x3y = 1 which is disjoint from L, and ~ induces an

isomorphism A2 B (L U C) ~ A~2 ~ (L U C’).
Another example was suggested by DERKSEN. Start with the configuration of

four projective lines in given by xyz(x - y) = 0. Removing the line z = 0 or the

line y = 0 we obtain two different configurations of three lines in A~2, corresponding
to xy(x - y) = 0 and ~?/(~c 2014 1) = 0, whose complements are isomorphic.

This problem arose in connection with the study of free actions of the additive

group C+ on An . There is the following conjecture:

Conjecture. Every free action of the additive C+ on t~3 is equivalent to a translation

action (s, (x, y, z)) ~ (x + s, y, z).

We can prove this under the additional assumption that the action is separated. The

conjecture is true in dimension 2 (see §5 Corollary 2), but in higher dimension there
are free actions which are not translations as shown by WINKELMANN’S example

([Wi90]; see §3 Remark 2).

5. AUTOMORPHISMS OF AFFINE n-SPACE

The structure of the automorphism group of An-the affine Cremona group-still
remains a mystery. Only in dimension 2 is there a satisfactory description (besides
the trivial case n = 1). For the following discussion let us introduce some notation.
First recall that a polynomial map p _ (cpl, ... , ~pn): c~2 E cC~xl, ... , 
is an isomorphism (i.e., has a polynomial inverse) if and only if it is bijective. This
is equivalent to the condition that the polynomials c~i generate the polynomial ring

(C~xl, ... , xn~.



We denote by Yn the group all polynomial automorphism of An and define the
two subgroups An of affine transformation and ,~n of triangular transformation (also
called the Jonquiere subgroup) in the following way:

Clearly, An is the semidirect product of GLn with the subgroup Tn of translations.

Also, An is an algebraic group whereas ~n is infinite dimensional (for n > 1).

In dimension 2 the structure of ~~ is given by the following theorem which goes
back to VAN DER KULK [Ku53]. Another proof, based on the theory of trees, was
given by DANILOV-GIZATULLIN [GiD75].

Theorem 7. The automorphism group ~2 is the amalgamated product A2 ~;~2 ~2
where ~32 :_ A2 n ~2.~9~

The theorem claims that every automorphism cp has a decomposition of the form

which is unique modulo the obvious relations = and (/y/3)a = for

a E A2 , ~2, ry E ~2- In particular, every element has a well defined length, namely
the minimal number of elements from A2 U ~2 needed to express it as a product.

As an immediate consequence we get a positive answer to the Linearization Prob-

lern in dimension 2. In fact, if a power of an element cp = 03B1k03B3k is the

identity then there must be some cancellation in the product

This is possible only if either /3 := B2 or (3’ := E ~32. In the first case

the conjugate element a11 cpa = ~yla2 ~ ~ ~ has shorter length than c~
and similarly in the second case. Now it follows easily by induction that cp is conjugate
to an element of GL2.

More generally, one knows by a result due to SERRE (see [Se80]) that every
subgroup of bounded length in an amalgamated product is conjugate to a subgroup
of one of the factors. It was shown by WRIGHT [Wr79] that an algebraic subgroup of

~2 (i.e., the image of an algebraic group G acting algebraically on A~2) is of bounded
length. Hence we obtain the following corollary (see [Kam79]):

(9) This holds for any base field k.



Corollary 1. Every algebraic subgroup G of ~2 is conjugate to a subgroup of A2 or

o f ~2 . In particular, every reductive subgroup of ~2 is conjugate to a subgroup of GL2 .

A second application is the following result which goes back to RENTSCHLER [Re68].

Corollary 2. Every locally nilpotent vector field on A~2 ~ can be triangularized, i. e., is

equivalent to one of the form f(x) a where f ( ) x is a p ol y nomial.

Recall that there is a 1-1 correspondence between locally nilpotent vector fields and

C+-actions. Thus, Corollary 2 says that every C+-action on A2 is equivalent to one

of the form t . (x, y) = (x, y + t f (x)).

Remark 4. Another consequence of the structure theorem is the non-existence of

non-trivial forms of A2 = A~ (see [Sh66]). More precisely, if k c C is any subfield and
A a k-algebra such that C ®~ C[x, y] , then A N y] as a Again,
this problem is completely open in dimension > 3. We even do not know if A~ is the
only real form of A~.

It is well-known that a similar amalgamated product structure as in Theorem

7 does not exist in dimension n > 3. For example, consider the following two auto-

mophisms of A3:

Then a E A3, T E J3 and a, T ~ A3 n J3. The composition a o T o a maps (x, y, z)
to (x, y, z + y2), hence a o T o a G J3 which contradicts the uniqueness of the decom-
position. It is also known that Corollary 2 does not generalize to higher dimension:
Consider the locally nilpotent vector filed D := (xz + given by BASS

[Ba84]. Its zero set is given by xz + y2 = 0 and has an isolated singularity at 0. Hence
D cannot be put into triangular form.

The subgroup of 9n generated by An and In is called the group of tame auto-

morphisms. We do not know if every automorphism of An is tame. But it is interesting
to remark here that the main result about embeddings (§4, Theorem 6) holds for the
subgroup of tame automorphism.

(10) This holds for any perfect field k, cf. [Kam75].



6. LINEARIZATION OF ALGEBRAIC GROUP ACTIONS

The Linearization Problem was originally formulated for reductive group actions on
affine space (see [Kam79]):

Given a reductive algebraic group G acting on affine n-space can one

always find a polynomial change of coordinates such that the action becomes
linear?

Of course, a necessary condition is the existence of a fixed point. More precisely,
the fixed point set has to be an affine space Ad whose embedding into An must be

equivalent to a linear one. It is not difficult to see that every non-linearly reductive

group admits an action on some affine space without fixed points (see [KrP85]).
The first results here looked very promising. Every such action on A 2 is linear-

izable as a consequence of the structure theorem (§5, Corollary 1 of Theorem 7), any
torus action with an orbit of codimension one is linearizable by BIALYNICKI-BIRULA

[Bi66/67] (see [KaR82] for related results), and for A3 and A4 it was shown by KRAFT-
PoPoV and PANYUSHEV that every semisimple group action is linearizable [KrP85],
[Pa84]. We refer to [Kr89a, §5] for more details and further references.

In 1989 SCHWARZ discovered the first counterexamples, namely non-linearizable

actions of the orthogonal group 02 on A4 and of SL2 on A7 ((Sc89~, see [KrS89/92]).
Using these results KNOP showed that every connected reductive group which is not a

torus admits a faithful non-linearizable action on some affine space An [Kn91]. Using a
different approach, MASUDA, MOSER-JAUSLIN and PETRIE produced more examples
and discovered the first non-linearizable actions of finite groups, e.g., for dihedral

groups of order > 10 on A4 (see [MaP91] and [MMP91]).
So far, all examples of non-linearizable actions have been obtained from non-

trivial G-vector bundles on representation spaces V of G by using an idea of BASS

and HABOUSH ([BaH87], see [Kr89b]). As usual, a G-vector bundle on a G-variety Y
is an algebraic vector bundle p: v -~ Y together with an action of G such that the

projection p is G-equivariant and the action is linear on the fibers. A G-vector bundle

is called trivial if it is isomorphic to a bundle of the form Y ® W ~ Y where W is a

G-representation.
Since every algebraic vector bundle on affine n-space is trivial by the famous

theorem of QUILLEN and SUSLIN, and hence has an affine space as its total space,
non-trivial G-vector bundles on representation spaces V of G provide us with interest-

ing G-actions on affine space. In fact, many of these turned out to be non-linearizable!

Recently, MEDERER constructed non-trivial equivariant vector bundles for the sym-
metric group S3 over A2. Moreover, he shows that the "moduli space" is infinite



dimensional [Me95].
So far there are no counterexamples to the Linearization Problem for commuta-

tive reductive groups, in particular for tori and for automorphisms of finite order. n 1)

Moreover, the following result of MASUDA, MOSER-JAUSLIN and PETRIE [MMP95]
shows that our previous approach via G-vector bundles cannot produce counterexam-

ples here. (See [KrS95] for a more geometric proof.)

Theorem 8. Let G be a commutative reductive group (i.e., a product of a torus and
a finite commutative group) and let V be a representation of G. Then every G-vector
bundle on V is trivial.

An essential ingredient in the proof is the theorem of GUBELADZE [Gu88] saying that
every vector bundle on a normal affine toric variety is trivial. Here, it can be applied
to the "algebraic quotient" VII G (= the maximal spectrum of the invariant ring) since
G is commutative.

In the last few years a lot of work has been done in the first open case, namely
for C*-actions on A3. We have already seen in §2 and §4 that this problem is strongly
related to the Characterization Problem and the Embedding Problem. A number of

special cases have been settled earlier (see [KoR86/89ab], [Kr90]), some others led to
a list of acyclic hypersurfaces in A~ as possible counterexamples, one of them being
Example 1 in §2. As already mentioned earlier, KALIMAN and MAKAR-LIMANOV have
been able to prove that all these hypersurfaces are non-isomorphic to A~. It is now
reasonable to assume that the following conjecture will be proved in the near future.
We refer to the forthcoming report [KoR95] of KORAS and RUSSELL for a thorough
investigation of the problem.

Conjecture. Every C* -action on A3 is linearizable.

On the other hand, there is absolutely no progress concerning automorphisms of finite
order of A~. For example,

. Is every involution of A3 with an isolated fixed point equivalent to -id ?

. Is every involution of A3 whose fixed point set is of dimension 2 equivalent to a

reflection on a linear plane ?

In their approach to the Linearization Problem KRAFT and SCHWARZ [KrS92] realized
that all non-trivial G-vector bundles became trivial (and the corresponding action
linearizable) if one allows holomorphic changes of coordinates. The explanation of this

(11) In positive characteristic there are counterexamples by ASANUMA [As94].



phenomena was given by a general equivariant Oka-principle proved by HEINZNER and
KUTZSCHEBAUCH [HeK94]:

Theorem 9. Let V be a representation of a complex reductive group. Then every
holomorphic G-vector bundle on V is trivial.

As a consequence, all examples of non-linearizable actions obtained so far become
linearizable if we allow holomorphic changes of coordinates. Thus the linearization
problem in the holomorphic setting is completely open.

Concerning the Fixed Point Problem there are a number of results from topo-
logical transformation groups which can be applied to the algebraic situation. E.g.,
for every action of a torus T = on An the fixed point set is an acyclic smooth

subvariety and in particular non-empty. One also knows that every finite cyclic group
acting on An has fixed points (see [PeR86]), a result which does not hold in the topo-
logical setting. It is based on the existence of an equivariant completion which allows
to apply Lefschetz type arguments. For more details we refer again to the survey
[Kr89a, §3]. So far, we have not been able to construct reductive group actions on
affine n-space without fixed points although we believe that such actions exist for all

semisimple groups. But there is an interesting example over R given by DOVERMANN,
MASUDA and PETRIE [DMP89]:

For every n > 24 there exists an e ff ective fixed point f ree real algebraic action

of the icosahedral group on a real algebraic variety diffeomorphic to 

Substantial progress was made recently by FANKHAUSER [Fa95]. He was able to extend
several results of HSIANG and STRAUME [HsS86] about compact Lie group actions on
acyclic manifolds to the algebraic setting. Among other things he shows:

There exist always fixed points provided the algebraic quotient has at

most dimension 3 or is small compared with the rank of G.

We should point out that all these results about fixed points hold more generally for
actions on acyclic smooth affine varieties and do not use the fact that the underlying
variety is affine n-space.
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