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HARMONIC FUNCTIONS ON LOOP GROUPS

par Leonard GROSS

Séminaire BOURBAKI

50eme annee, 1997-98, n° 846
Juin 1998

1. INTRODUCTION

The loop space, M), of a compact, finite dimensional, Riemannian manifold,
M, supports some natural measures, w, associated to Brownian motion in M. There is

also a gradient operator, V, on functions defined over The Dirichlet form,
associated to the pair, w, V, determines a natural "Laplacian",

V*V, on functions over the loop space. The harmonic functions for this Laplacian will be
discussed and characterized in this lecture in case M is a compact Lie group and the loops
start and end at the identity element. This is part of a long range goal of finding a theorem
of Hodge-deRham type over these particularly interesting infinite dimensional manifolds.

Although the objective of the investigations to be surveyed here is analysis over the infinite
dimensional manifold M), one of the most interesting byproducts has been the
discovery of some surprising unitary transforms for functions over the finite dimensional

compact Lie group M itself. In these "finite dimensional" theorems one typically operates
in Hilbert spaces of the form L2 (M, pt (x)dx) where pt (x)dx is a heat kernel measure rather
than Haar measure. Since these latter theorems can be stated without use of stochastic

processes, I will describe them before the discussion of the infinite dimensional loop group
theory that led to their discovery.

2. HEAT KERNELS ON LIE GROUPS

Denote by G a connected Lie group. Suppose that ( , ) is an inner product on its Lie
algebra, g := Te( G). For each element 03BE E g denote by 03BE the left invariant extension of fl
to G. For any orthonormal basis ei,... , en of g the operator



is a second order differential operator on G. As an operator in L2(G, right invariant Haar
measure), A is a symmetric operator on the domain C°°(G). Moreover it is essentially self-
adjoint on this domain and -A is nonnegative. Consequently there is a semigroup, 
of bounded operators on L2 whose infinitesimal generator is (the self-adjoint version of)
(1/2)A. It happens that if G is unimodular then A is the Laplace-Beltrami operator for
the left invariant Riemannian metric on G which agrees with ( , ) on Te(G).
The fundamental fact we will need is that the operators are given by convolution

by a particularly nice family of functions, pt, on G. Specifically, for each t > 0, there exists
a unique function pt on G such that

The function pt is the heat kernel for (1~2)0 at time t. For a more detailed discussion
of heat kernels on Lie groups and references to proofs see [23] or [73].
The following theorems concern the Hilbert spaces L2 ( G , Pt ( x) dx ). Thus the heat kernel

measures will replace Haar measure in the customary Hilbert spaces dx).
The resulting analysis has come to be called "heat kernel analysis" on G, as distinguished
from harmonic analysis. For us, G will usually be either a compact Lie group or a complex
Lie group.

3. HEAT KERNEL ANALYSIS OVER LIE GROUPS

Let K be a compact, connected Lie group. Denote by ( , ) an Ad K invariant inner
product on its Lie algebra, k = Define the Laplacian on K by Equ.(2.1) and denote
the associated heat kernel on K by pt . Next, consider the complexification, ~~, of K [49].
Kc is a complex Lie group which contains K as a closed subgroup. The Lie algebra of Kc is
kc == k c. The prototypical example is K = SU(2), in which case K~ = SL(2, ~). Now
in general, the given inner product on k extends uniquely to a Hermitian inner product
on the complex Lie algebra kc. Using the real part of this inner product, we may once
more apply the procedure of Section 2 to construct a Laplacian, Ac, on Kc. For example
if ei,... , ed is an orthonormal basis of k then, writing i = B/~T, we have



Moreover, Section 2 assures us, taking G = K~, that there is a heat kernel, on Kc
determined by this Laplacian. But we will choose the time parameter in so that

Write ~l = for the space of holomorphic complex valued functions on Kc. As is
well known, and easy to verify in local holomorphic coordinate charts, is

a closed subspace of 

Theorem 3.1 (Hall’s transform [49]).- Let f E L2(K, pt(x)dx). Then f has a unique
analytic continuation to all of Kc. Denote the analytic continuation by Then

is unitary.

Remark 3.2.- Since Hall’s paper ~49~, there have been two other proofs of Hall’s theorem.
In [19], B. Driver removed the dependence of Hall’s proof on the structure theory of
semi-simple Lie algebras and otherwise simplified the proof. In [48] another proof was
given which depends on stochastic analysis and on the ergodicity theorem of Section
5 of this survey. Driver’s paper [19] also extends Hall’s theorem to groups of compact
type, thereby encompassing the classical case - the Segal-Bargmann transform, which
transforms functions on Rn to holomorphic functions on en. See [48] for an exposition of
the extensive history of the Segal-Bargmann transform, which is the ~’~ predecessor of
Theorem 3.1. 

,

Remark 3.3.- All proofs of Theorem 3.1 depend heavily on the Ad K invariance of the
given inner product ( , ) on k. It seems likely that this is an essential condition. The next
theorem, however, which takes place entirely on the "complex side" does not require an
Ad invariant inner product.

Let G be a connected complex Lie group and g - Te (G) its complex Lie algebra. Denote
by ( , ) a Hermitian inner product on g. As before, we denote by Ac the Laplacian on G
defined as in Equ. (2.1), using the real inner product Re(~, ~). will denote the heat kernel

for G need not be the complexification of a real Lie group and ( , ) need not be
Ad invariant under any particular subgroup. We wish to discuss the Taylor coefficients of
functions in n 

Let T = T(g) be the tensor algebra over the complex vector space g. Denote by J the
two sided ideal in T generated by ~~, ~~ : ç, g}. The universal enveloping
algebra of g is u - T/J. Any function f E 1l (G) defines an element f in the algebraic
dual space U’ as follows. If {3 is a left invariant differential operator on G and f E 
then the map a : ~3 - ({3 f) (e) is complex linear (by the Cauchy-Riemann equations for
f ). As usual we may identify U with the left invariant differential operators on ~l(G). So
the linear functional f - a is in U’. f is the set of all (left invariant) derivatives of f,
evaluated at e. The map f - l is the Taylor map from into U’. It is convenient



to identify U’ with {a E T’ : a(J) = 0~ where T’ denotes the algebraic dual space. We
may use this to define a norm as follows. T’ is the strong direct sum (i.e., direct product)
~~ o(g’)®’~. Denote again by ( , ) the Hermitian inner product on g’ induced by the
given Hermitian inner product on g. Then we may define, for any element a E T’,

Of course the annihilator, J°, is exactly U’. Let

Then J° is a complex Hilbert space in the norm (3.1) and is contained properly in U’.

Theorem 3.4 ([19, 23]).- Let t > 0. Then the Taylor map f - l is isometric from
~l n into J°. I.e.,

Moreover if G is simply connected then the Taylor map is surjective (and therefore uni-

tary).
This kind of theorem has also been proven recently for an infinite dimensional group,

a natural subgroup of the complex orthogonal group on a Hilbert space, [39].
Let us combine Theorems 3.1 and 3.4: If K is a connected, compact Lie group with an

Ad K invariant inner product on its Lie algebra then we may first apply ~lt to a function

f in L2 (K, ptdx) and then apply the Taylor map to the holomorphic function Since

the complexification of the universal enveloping algebra of k is the universal enveloping
algebra of kc we have

Corollary 3.5.- Let t > 0. Let K be a compact, connected Lie group with an Ad K

invariant inner product ( , ) on its Lie algebra, k. For the Hermitian extension of ( , ) to

k~, define J° as in (3.2). Then the map

is an isometry from L2(I~, ptdx) into J°. It is unitary if K is simply connected.
It is useful to give an intrinsic characterization of the isometry Dt in terms of natural

operators. For any element ~ E k let R~ denote right multiplication by ~ in the tensor

algebra T(kc). Since C J the adjoint R~ : T’ -~ T’ leaves the annihilator J° invariant.
Fix t > 0 and denote by Af. the restriction of R~ to J2. R~ raises rank by one and

Af. therefore lowers rank by one. It is a naturally occurring operator in many contexts,



including quantum field theory. The "annihilation operator" A~ is to be interpreted as
the (actually unbounded) operator in 7~ with domain (a E J° : A~a E J°~.

Corollary 3.6 ([42]).- Let t > 0 and assume that K is compact, connected and simply
connected. Then Dt : L2(K, pt(x)dx) ~ Jfl is the unique unitary operator such that

(a) the zero rank tensor (= 1)

and

(b) Dt~ = AxDt.

Here ~ is the left invariant vector field on K extending ~ and is to be interpreted as the
closed operator in L2(K, ptdx) with core C°°(K).

4. THE GRADIENT OPERATOR OVER A PATH GROUP AND LOOP

GROUP

Denote again by K a compact connected Lie group and by k := Te(K) its Lie algebra.
Once again we fix an Ad K invariant inner product on k.

There are several groups consisting of K valued functions which will be of interest to
us. The path group of K is the set

The loop group of K is the set

P is clearly a topological group under pointwise multiplication and uniform convergence,
while ,C is a closed subgroup of P. In addition, there are the finite energy versions of these
two groups. The finite energy path group is the set

Here, as in the following, we will use matrix notation for the translate of the

tangent vector k(s) back to the identity element of K. The finite energy loop group is

It is not hard to see that ~fe is a dense subgroup of P while Lje is a dense subgroup of
L. We are going now to define tangent spaces to the two finite energy groups.

Let



Then H is a Hilbert space and Ho := {h E H : h(1 ) = 0} is a closed subspace. Let
exp : k - K denote the exponential map and define

Then eh( s) is in K for each s and it is elementary that the function s H eh( s) is of finite
energy. Moreover it can easily be shown, e.g. [40] [Lemma 2.1], that the map h - eh(.)
takes a small neighborhood of 0 in H in a one to one way onto a neighborhood of the
identity function, e(~) : s H e, in We are justified, therefore, in regarding the Hilbert
space H as the tangent space to the finite energy path group, Pfe, at the identity element.
Clearly eh E if h E Ho. So we may similarly identify Ho with the tangent space to
L fe at the identity function. It is clear that the function R  t ~ eth is a one parameter
group in Pfe (respectively if h E H (respectively Ho). The two finite energy groups
are examples of Hilbert Lie groups.
The right action of Pfe on P allows one to define the directional derivative of functions

on P as follows. Let F : ~ -~ R be any function. For any element h E H define

if the derivative exists. We are only going to be interested in such directional derivatives in
the finite energy directions h E H because these directional derivative operators, 8h , relate
well to the integration theory over P to be described later. Specifically, an integration by
parts formula holds for 8h if h E H but not if h is merely continuous. Note that for each
h E H the operator 8h defines a left invariant vector field on the path group P.
Now if F : P - R is such that h - (ahF)(1~) is linear and continuous on H then the

gradient of F at k is the element V F( k) E H defined by

As an example, suppose that u E and that 0  sl  s2  ...  Sn  l. Define

One verifies easily that VF(k) exists for all k E P. This class of smooth cylinder functions
plays an important technical role, but fails to separate some interesting sets, as we will
see in the Example 4.1 below. But first let us observe that these differentiation notions
make sense on the loop space £ also, if one replaces H by Ho. Thus if F : ~C -)- R and
k E £ and h E Ho then (4.1) is a meaningful definition of 8hF(k) because is in £ for
all t. We may now define V F(k) E Ho by (4.2) with h restricted, of course, to be in Ho.

Example 4.1.- Let K = SO(3). ,C is now a disjoint union of two closed sets, the two homo-
topy classes, because the fundamental group of K is Z2. Let F(k) = 1 if k is homotopic to
the constant function and let F(k) = 0 on the other homotopy class. F is not a cylinder
function. But it is infinitely differentiable. In fact 8hF(k) = 0 for all k E £ and h E Ho



because keth is in the same homotopy class as k for all t. Thus VF = 0. The main theorem
of the next section asserts that the only harmonic functions on £ are the functions which
are constant on each homotopy class in ,C.

5. BROWNIAN MOTION MEASURE OVER THE PATH GROUP AND

LOOP GROUP

Continuing the notation of Section 4, denote by pt the associated heat kernel on K.
There exists a unique probability measure, P, on the Borel field of the path group P with
the following properties.

(ii) if 0 = so  si  s2  ...  sn  1 then the K valued functions P 
Z = l, .., n, are independent.

Actually such a measure exists even if K is not compact and the inner product is

not Ad K invariant. In his fundamental paper, [75], Wiener proved the existence of this
measure ( Wiener measure) when K = R. For a general Lie group the reader could consult
[22, 26, 54, 62, 64, 72] for existence and properties of P.

In so far as we may regard P as an infinite dimensional manifold, it is the measure P
which will play for us the role of "Riemann-Lebesgue" measure. In order to carry out
our analysis of the desired Laplacian on P it is necessary, here as in finite dimensions,
to understand integration by parts. To this end it is essential to understand first the

properties of P under translation.

Theorem 5.1.- Let ko E P. The translated measure P( .ko) is absolutely continuous with
respect to P if and only if ko E Pje. If ko E Pfe one has a Radon-Nikodym derivative

Moreover if h E H then the function t -3 from R into LP(P) is differentiable for all
p  oo. Its derivative

This theorem has a long history. For a proof and some variations of the theorem see
[67].

Remark 5.2.- Since ~fe is a group, the theorem shows that P(.ko) is equivalent to P(.)
for any element ko One refers to this as quasi-invariance of P under But P
is never invariant under such translations. It is because of this quasi-invariance theorem
that the finite energy subgroup Pfe plays a central role in analysis over P. It should



be emphasized, however, that one cannot do away with the rest of P. Pfe is a set of P
measure zero! Thus one needs P to carry the measure and P fe to determine the allowed
translations. This is typical of infinite dimensional integration theory.
The quasi-invariance of P under right translation by Pfe has its counterpart at the

infinitesimal level. This is the basis of integration by parts.

Corollary 5.3.- If Fi and F2 are smooth cylinder functions (cf. Equ. (4.3)) and h E H,
then

Remark 5.4.- Denote by C°° the smooth cylinder functions. C°° is dense in L2 (P). Equation
(5.1) shows that in the Hilbert space L2(P, P), the operator ~h | C~ has an adjoint ~*h
given on C°° by

In particular the adjoint of a~ ~ C°° is densely defined. Therefore C°° has a closed
extension, which I will simply denote by ah again. It is an important, though seemingly
technical matter, to understand the domains of these closed operators ah, first on P and
later on ~C. For example the function given in Example 4.1 is far from being a cylinder
function; one can’t determine the homotopy class of a curve just from a knowledge of the
curve at finitely many time points. Yet it is precisely these functions (indicator functions
of homotopy classes) which will be the harmonic functions for our Laplacian. Functions
of this kind are in the domain of the closed operator 9~.

Let hl, h2, ... be an orthonormal basis of H. Define

The quadratic form of N is thus the Dirichlet form

The sum on the right is independent of the orthonormal basis of H. Actually this opera-
tor is quite well understood because of its role in quantum field theory. Its spectrum is

{0,1, 2, ... } and N is referred to as the number operator. The version of this operator of
interest for this survey is the analog of this Dirichlet form operator over the loop group
£.

We will now describe the simple modifications necessary to define the corresponding
"Laplacian" over £.

First, the probability measure Po on £ which will replace P is the so called pinned
Brownian motion measure. By definition this is the conditional measure P( l~(1) = e) on



,C. Moreover, as in the unpinned case, an integration by parts formula is a consequence
of the following quasi-invariance theorem.

Theorem 5.5 [63].- Po is quasi-invariant under right translations by elements of 

Corollary 5.6 [42].- Let h E Ho. Then C°°, as a densely defined operator in Po),
has a unique closed extension, which we also denote by Let hl, h2,... be an orthonor-
mal basis of Ho. The operator

is a densely defined self-adjoint operator in L2 (,C, Po) and is independent of the choice of
orthonormal basis.

Theorem 5..7 (Main Theorem) [42].- Assume that K is a compact, connected Lie
group with Ad K invariant inner product on Lie K. Then the null space of No is spanned
by the indicator functions of homotopy classes in £. [Cf. Example 4.1.] In particular, if
.K is simply connected then the null space of No is spanned by the constant functions.

In order to understand the position of this theorem in the rest of mathematics it is

convenient to reformulate it as an ergodicity theorem. Suppose, again, that K is simply
connected. is dense in £ and so are all the orbits of But, as is well known, this
in itself does not imply that the right action of on £ is ergodic.

Theorem 5.8 (Main Theorem’) [42].- The right action of on (£, Po) is ergodic.
That is, if F : ,C -~ ~ is measurable and, for all ko E F(kko) = F(k) a.e. [Po], then
there is a constant c such that F(k) = c a.e. on £.

It should be clear from the previous discussion that the very existence of No (and of N)
as a self-adjoint operator depends on having an integration by parts formula, which itself
depends on having a quasi-invariance theorem. For this reason any attempt to develop a
harmonic analysis over the path or loop space of a general compact Riemannian manifold
will require a quasi-invariance theorem as the first step. The prototypes of such theorems
are the quasi-invariance theorems of Cameron and Martin, developped in the 1940s for
the case in which the target manifold is just the real line, and in particular, Cameron’s
integration by parts formula, [10]. For a general compact target manifold, a breakthrough
in this direction was made by B. Driver [16]. This has been followed by extensive deve-
lopment in the past six years. For a small sample of the work that has been inspired by
[16] see [1, 2, 3, 4, 6, 7, 11, 12, 13, 14, 17, 20, 21, 24, 25, 29, 30, 31, 53, 59, 74] and many
other works by these authors and their coauthors. Some other important works related to
analysis of Dirichlet form operators over loop spaces are listed in the Bibliography.
The abstract machinery for a Hodge-de Rham type theorem in finite or infinite dimen-

sions is well understood [9]. However a key input to that machinery is the existence of
a spectral gap at eigenvalue zero. (See the survey [45] for further discussion of this.) In



the present, loop group, case, the desired objective is the proof that zero is an isolated
eigenvalue of our "Laplacian" No. In spite of much effort, this has not been settled at the
present time. Theorem 5.7 may be regarded as only a small step in that direction. Some
of the previous references focus on the spectral gap problem over P itself (e.g. [31]) or on
the more difficult problem of proving a logarithmic Sobolev inequality [3, 4, 11, 55, 57].
Usually the context for this work has been a path space rather than a loop space. Ho-
wever, for a different and equally natural measure on loop groups, a logarithmic Sobolev
inequality has recently been established [24].

6. PROOF OF MAIN THEOREM

The objective in this section is to sketch how the finite dimensional theorems of Section
3 are linked to the proof of Theorems 5.7 and 5.8. For this purpose we will take K to be
simply connected. It is only Corollary 3.6 which is needed in the proof. This corollary was
proved by stochastic methods in [42] and stimulated the subsequent work [15, 19, 23, 39,
43, 44, 46, 47, 48, 49, 50, 51, 52, 65], much of which is not stochastic in nature.

At the present time it is unavoidable to use a substantial portion of Ito’s stochastic
calculus in the proof of Theorems 5.7 and 5.8, even with the use of Corollary 3.6. For
an exposition of Ito’s stochastic calculus that is well adapted to the present Lie group
context see [22, 26, 58, 62, 64, 71, 72]. For details of the following assertions see [42].

Let b(s), 0  s  1, denote k valued Brownian motion with covariance determined

by the given Ad K invariant inner product ( , ). The solution, g(.), to the stochastic
differential equation

maps the Wiener process 6(~) to the space P and induces the measure P on P. In order to
show that the only functions on L that are invariant under the right action of are the

constants, it suffices to show that the only functions on P that are invariant under the

right action of are functions of the endpoint, g ( 1 ) . Similarly, to show that the only
harmonic functions on L are constants, it suffices to show that the only functions on P for
which 8hF = 0 for all h E Ho are the functions of the endpoint. To this end it suffices to
consider a function F in L2(P, P) and investigate its structure under the assumption that
F(gk) = F(g) a.e. [P] for all k in Now any (say real valued) function in L2(~, P)
has a unique Ito multiple integral representation:

where An = {(s1, s2, ... , Sn) : 0  S1  s2  ...  sn  1} and vn : An - (k’)~n
satisfy standard square integrability conditions. This is the expansion which plays for us



the same role as the double Fourier series expansion in the classical proof of ergodicity of
the irrational flow on the torus.

The first step in the analysis of the invariant function F is a characterization of
the expansion coefficients ~vn ( ~ ) ~.

Proposition 6.1 (Theorem 5.1 of [42]).- F is right invariant if and only if each 
is constant a.e on An, say = an E (k’)®n, and a - (ao, al, a2, ... ) (which is in
T (k)’) is in Jfl, with t = 1.
The proof of Theorems 5.7 and 5.8 may now be concluded with the help of Corollary

3.6. Any function u in L2(K, defines a right invariant function F in L2(P, P)
by means of the equation

It is to be shown that all LIe invariant functions F in L2 have this form. But Proposition
6.1 shows that any invariant L2 function has an Ito expansion whose expansion coef-
ficients ~vn(~)~ are given by an element a in Jp. Moreover the characterization given in
Corollary 3.6 can easily be used to show that the map L2(K, u -3 a is

exactly the map Dl of Corollary 3.6. Since Di is surjective, every LIe invariant function
F in L2 (P, P) has the form (6.3), thereby concluding the proof of the Main Theorems of
Section 5.
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