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REPRESENTATIONS OF HECKE ALGEBRAS AT ROOTS OF UNITY

by Meinolf GECK

Seminaire BOURBAKI

50eme annee, 1997-98, n° 836
Novembre 1997

Hecke algebras arise naturally in the representation theory of finite or p-adic Cheval-
ley groups, as endomorphism algebras of certain induced representations (see Carter [9],
Lusztig [44], and the references there). They may also be viewed as quotients of group
algebras of Artin-Tits braid groups, and then they can be used to construct invariants of
knots and links (Jones [36]).

Another point of view - which we take in this talk - is to regard them abstractly as
deformations of group algebras of finite Coxeter groups, depending on a parameter u. If
we specialize this parameter to a root of unity, we obtain in general a non-semisimple spe-
cialized algebra. The degree of non-semisimplicity is measured in terms of a corresponding
decomposition matrix, which records in which way the irreducible representations of the
generic algebra split up under specialization.
The aim of this talk is to explain some of the main open problems about decomposition

matrices of Hecke algebras, and to report on some significant recent advances in this area.
For applications to the representation theory of a finite Chevalley group G over a field

of characteristic p, the most interesting specializations are those where u is mapped to
a non-zero element in a field of positive characteristic f 7~ p. By Dipper’s theory of
Hom functors [14], a special case of which we describe in Section 1, the corresponding
decomposition matrix is a submatrix of the usual f-modular decomposition matrix of G.
A general factorization result, which we explain in Section 2, shows that our decompo-

sition matrices can be obtained in two steps: one step from u to a root of unity over Q,
and another step from characteristic 0 to characteristic f. A conjecture which was first
formulated by James [32] for Hecke algebras associated to the symmetric group 6n pre-
dicts that "nothing happens" in the second step, as long as f is not too small. (James
actually considers an enlargement of that algebra, namely the q-Schur algebra introduced
by Dipper and himself in [17]; he also gives a precise bound for ~.) A rigorous formulation
of this conjecture, for finite Coxeter groups of any type, will be given in Section 3.

For Hecke algebras associated with 6n, Lascoux, Leclerc and Thibon [39] have conjec-
tured a solution of the first step, by translating the original problem to that of computing



the canonical basis (in the sense of Kashiwara and Lusztig; see [46]) of a certain highest
weight module for an affine Kac-Moody algebra; see Theorem 4.3. In Sections 4 and 5
we explain the main ideas of Ariki’s proof [2] of this conjecture, which builds on work of
Kazhdan and Lusztig [38], Ginzburg (11~, and Lusztig [42, 43].~
We now give an example that illustrates some of the points to be discussed in the sequel.

EXAMPLE 0.1. - Let W be the dihedral group of order 8. It is generated by two elements
s, t which have order 2 and whose product has order 4. Thus, (W, {s, t}) is a Coxeter

system of type B2. Let ~l be the corresponding Iwahori-Hecke algebra over the ring
A = Z[u, u-l~, where u is an indeterminate, see ( 1.1 ) . Then H is an associative algebra
with an identity Ti, generated by elements Ts, Tt such that the following relations hold:

Let K be the field of fractions of A. Then the algebra K1l = K 0 A 1l is semisimple and,
up to equivalence, its irreducible representations are given as follows (see [12, §67C]):

Let Ap be the localization of A in some non-zero prime ideal p, and let kp be its residue
field. We consider the canonical map Ap  kp and determine the corresponding decompo-
sition matrix between the irreducible representations of the algebras K1l and The

1-dimensional representations certainly remain irreducible; but they all become equal over

kp precisely when u + 1 E p. Furthermore, the representation p becomes reducible over kp
if and only if the above two matrices have a common eigenvector. One easily checks that
this happens if and only if u2 + I E p or 2 E p. So, if the image of u in kp is a root of unity
then we find essentially three different cases where we obtain non-trivial decomposition
matrices: (I) u + 1 E p, 2 ft p; (II) U2 + 1 E p, 2 ft p; (III) u + 1 E p, 2 E p.

(I) (II) (III)
ind 1 0 1 0 0 0 1

~s 1 0 0100 1

et 1 0 0 0 1 0 1

~ 1 0 0 0 0 1 1

pOlIO 0 1 2
We may summarize these results as follows; let il be the image of u in kp. Then we have:

If 2, the decomposition matrix only depends on the order of u in k~ .
This is the prototype of the general picture; Conjecture 3.4 below will explain the special
role of the prime 2 by the fact that this is the only prime dividing the order of W ; see

1 Note added June 1998. The generalization of this conjecture to the Dipper-James q-Schur algebra
(see Leclerc and Thibon [40]) has been established recently by Varagnolo and Vasserot [55].



Remark 3.6 for the case where u is not a root of unity in kp. Ariki’s results actually
apply also to Hecke algebras of type Bn ; hence they yield an a priori proof for the matri-
ces (I) and (II). Furthermore, the above matrices are parts of the f-modular decomposition
matrices for the finite groups S05(q), where f does not divide q.

Explicit results have been obtained in a number of cases; see [32, 34, 35, 19, 51] for
classical types and [7, 25, 22, 49, 50] for exceptional types (see also [15] for a survey). In
the latter cases, these computations use in an essential way the computer algebra systems
GAP [52] and MAPLE [10]. But they have also been a stimulus for theoretical research
and a source of evidence-producing examples.

1. HECKE ALGEBRAS AND q-SCHUR ALGEBRAS

In this section, we describe the construction of Hecke algebras and q-Schur algebras,
and explain how they appear in the representation theory of finite Chevalley groups.
1.1. Let A be any commutative ring with 1 and (W, S) a finite Coxeter system, i.e., W
is a finite group and S is a subset of W such that we have a presentation of the form

Let (as)sES be a collection of elements in A such as = at whenever s, t E S are conjugate
in W. Then we let H = HA(W, S, (as)SES) be the associative A-algebra with identity
element Tl, defined by a presentation with generators TS (s E W) and defining relations:

We call H the Iwahori-Hecke algebra associated with (W, S) and with parameters (as)sES.
It is a non-trivial fact that H has a basis w E W ~, which is defined as follows. Any
w E W can be expressed as w = 81 ... sm with si E S. If m is minimal possible, we call
this a reduced expression and set l (w) := m. In this case, the element Tw := 7~ ... T~~ is
independent of the choice of a reduced expression; see [6, Chap. IV, §2, Ex. 23]. Note that
if aS = 1 for all s E S then H is just the group algebra A[W]. We shall assume that all aS
are units in A, which implies that all Tw are invertible in H and that H is a symmetric
algebra. (The latter property will not be used here explicitly, but see [12, §68C].)
The above construction is functorial in the sense that if f : A ~ B is any homomor-

phism of commutative rings, we can regard B as an A-module and then have a canonical
isomorphism B HB(W, S, (bs)sEs) where bS = f(as) for all s E S.

REMARK 1.2. - There is a generalization to the case of finite complex reflection groups,
where the quadratic relations for the generators Ts are replaced by some higher order
polynomial relations. These are the cyclotomic Hecke algebras defined by Broué and
Malle [8]; see also Ariki and Koike [3]. Note, however, that some properties are not yet



established in full generality for them; for example, the existence of a basis over A which
is indexed by the elements of the underlying group and has good properties.

We now explain how Hecke algebras arise in the representation theory of finite Chevalley
groups. We will only consider the simplest possible case as far as modular representations
are concerned, and refer to [9, Chap. 10] and [24, §2] for further reading.
1.3. Assume that W is the Weyl group of an (untwisted) finite Chevalley group G defined
over the finite field with q elements. Consider the permutation module A[G /B] on the
cosets of a Borel subgroup B C G. Then Iwahori has shown that

see [6, Chap. IV, §2, Ex. 22-24]. (If G is a Chevalley group of twisted type, then as may
be some power of q; but note that not all possible choices of the parameters (as) do arise.)
The standard example is the case when G = GLn(q), W = 6n (the symmetric group on
n letters), and B is the subgroup of invertible upper triangular matrices.
Now we take A to be a discrete valuation ring 0 of characteristic 0, whose residue

field k has characteristic f. Assume that £ does not divide q, so that q is an invertible
element of O. Let F be the field of fractions of 0 and assume that (~ is chosen to be large
enough so that F[G] is split. We consider the usual i-modular decomposition matrices
for the algebras and (cf. (2.1) below).

THEOREM 1.4 (Dipper). - The decomposition matrix D of the algebra 
is a submatrix of the decomposition matrix of C~[G~. I f ~ does not divide q - l, then the
embedding of the first matrix into the second is given as follows :

where the rows are labelled by the simple F[G]-modules,

the columns are labelled by the simple k(G)-modules,

and the rows of D correspond to the constituents of F(G/B).

If f does not divide q - 1, this is proved as follows. Let M be an indecomposable
direct summand of C~(G/B~. Since f does not divide the order of B (which is 1)’’
for suitable m, r > 1), the module O[G/B] is projective. So M is in fact a projective
indecomposable 0[G]-module. Now we extend scalars from C~ to F, and write FN =
F 00 N for any 0-module N. Since F[G] is semisimple, the module FM splits up into
a direct sum of simple F[G]-modules, and the multiplicities determine a column of the
decomposition matrix of 0[(7], by Brauer’s reciprocity law (see [12, §18B]).
On the other hand, M corresponds to a primitive idempotent of and

hence to a projective indecomposable module PM for this algebra. Now we note that ex-

tending scalars from 0 to F induces an isomorphism F Endc(F[G/B]).
It follows that the splitting of FM into a direct sum of simple F[G]-modules corresponds



to a splitting of FPM into a direct sum of simple The multi-

plicities are the same as before, and they also determine a column of the decomposition
matrix of The general case is based on the fact that there exists an
exact sequence 0 -~ ~V -~ P -~ O[G/B] - 0 of such that P is projective
and FN and F[G / B] have no irreducible constituent in common; for details see [14, §2].
1.5. Let G = GLn(q). Then Dipper and James have constructed an enlargement of
the Hecke algebra which eventually yields the whole decomposition matrix of G. For this

purpose, consider the symmetric group 6n , regarded as a Coxeter group on the generators
{S1,... , where si = (i, i + 1) for all i. Let Hn be the corresponding Iwahori-Hecke
algebra over a commutative ring A and with parameter u. (Note that all generators si
are conjugate in 6n. ) For each partition A t- n, we have a corresponding Young subgroup
C~~ C 6n; if A has parts Ai, À2, ... we have C~a ^-_’ 6Àl x 6À2 x .... Let Ha be the

subalgebra of Hn generated by the elements Tw for w E 6x, and let indx : be

the representation given by inda(Tw) = Then the module Ma := Hn ®Ha ind03BB is a

Hecke algebra analogue of the permutation module of 6n on the cosets of 6 À. We set

This is the Dipper-James q-Schur algebra, defined and studied in [17, 18]. We have

where CJ is a discrete valuation ring as above and Pa C G denotes the parabolic subgroup
of all invertible block upper triangular matrices with blocks given by the parts of A.

THEOREM 1.6 (Dipper and James [17, §6]). - The decomposition matrix of So(n, q) is

a part of the decomposition matrix of (~~G~ . Moreover, the latter matrix can be calculated
from the decomposition matrices of those algebras So(r, qd) for which dr  n.

There are also q-Schur algebras associated with other types of finite Coxeter groups.
The most far-reaching such generalizations are due to Gruber and Hiss [29], where a result
similar to Theorem 1.6 for finite classical groups and so-called linear primes f is obtained.

2. A GENERAL SETTING FOR DECOMPOSITION MAPS

Let A be any integral domain and H be an associative A-algebra, finitely generated
and free over A. (All of our rings and algebras will have identity elements, and ring
homomorphisms will respect them.) Let K be the field of fractions of A. By extension of
scalars, we obtain a K-algebra KH. (If A ~ B is any homomorphism into a commutative
ring Band M is any A-module, we regard B as an A-module and set BM := B Q9A M.)

Let p ~ A be a non-zero prime ideal. We consider the corresponding localized ring Ap,
and denote its residue field by kp . We wish to describe a setting in which the canonical map



Ap - kp induces a homomorphism dp : Ro(kpH) between the Grothendieck
groups2 of KH and kpH, which we will then call the p-modular decomposition map of H.
The corresponding decomposition matrix will be the matrix of dp with respect to the
standard bases of Ro(KH) and Ro(kpH) consisting of the classes of simple modules.

2.1. The "usual" case of discrete valuation rings. If Ap is a discrete valuation ring,
we can define the desired decomposition map as follows: for a given KH-module V, there
exists a K-basis such that the Ap-submodule M C V spanned by that basis is invariant
under the action of H; then M/pM can be regarded as a kpH-module, and we define dp
by sending the class of V to the class of M/pM. For the details of this construction, see
[12, §16C]. The assumption that Ap is a discrete valuation ring is satisfied if and only if
Ap is Noetherian of dimension 1 and integrally closed in K (see [47, Theorem 11.2]). For
example, this holds if A is the ring of integers in some algebraic number field. This is the
case which is usually considered in the modular representation theory of finite groups.

For applications to Hecke algebras, we have to deal with more general types of rings.

2.2. We consider the following set-up. First, in order to avoid technical complications,
we will assume that A has been chosen large enough so that the algebra kpH is split, i.e.,
the endomorphism ring of any simple module consists only of the scalar multiples of the
identity. (This is no serious condition since every finite-dimensional algebra becomes split
after a finite field extension.)

Next, assume that there exists some discrete valuation ring (~ C K with maximal
ideal J( 0) such that A C 0 and J( 0) n A = p. (This condition is more serious, but
it is satisfied, for example, whenever Ap is a regular local ring, see [47, Ex. 14.4]; this is
sufficient for all our applications. One could avoid that condition by working with general
valuation rings.) Let k be the residue field of 0; we may regard k as an extension of kp .
Applying the discussion in (2.1) with Ap replaced by 0, we obtain a decomposition map

Ro(kH). Since kpH is assumed to be split, the scalar extension from
kp to k defines an isomorphism Ro(kH) which preserves the classes of simple
modules. Identifying these two Grothendieck groups, we obtain a decomposition map

A priori, this map depends on the choice of O. But we have, see [27, §2]:

PROPOSITION 2.3 (Uniqueness of decomposition maps). - Assume that A is integrally
closed in K, and recall that kpH is assumed to be split. Then, in the above setting, the

map Ro(kpH) does not depend on the choice of O.

2Recall that Ro(KH) is the abelian group generated by expressions (V], one for each finite dimensional
KH-module V, subject to relations [V] = [V’] + (V"] for each short exact sequence 0 - V’ - V -
V" - 0 of KH-modules. The group Ro(KH) is free abelian, with a basis {(S] ( S simple}.



It will be useful to indicate briefly how this is proved. Let Rt (K H) be the submonoid
of Ro(KH) consisting of the classes of KH-modules. Let X be an indeterminate over K,
and Maps(H, K[X]) be the monoid of all maps from H to K[X] (with pointwise defined
multiplication). We define a monoid homomorphism Maps(H, K~X~) by
associating with the class of a KH-module V the map which assigns to an element h E H
the characteristic polynomial of 1 Q9 h E KH in its action on V. In a similar way, we also
define a monoid homomorphism x~~ : Maps(H, kp[X]).

Since A is integrally closed in K, the image of xK already lies in Maps(H, A[X]) (see
[27, Lemma 2.10]). Now we have a canonical map tp : Maps(H, A~X~) -3 Maps(H, kp[X]),
given by applying Ap - kp to the coefficients of polynomials. Using the construction of

we easily check that the following diagram is commutative:

where the left hand vertical arrow is given by Finally, the assumption that kpH is
split implies that the Brauer-Nesbitt Lemma holds, i.e., the map is injective (see [27,
Prop. 2.5]). So there is at most one map making (D) commutative.
In particular, Proposition 2.3 is proved, and we have a well-defined decomposition map

(This characterisation of decomposition maps appears in [27, Prop. 2.11]. Note, however,
that the right hand vertical arrow in the diagram in [loc. cit.] has to be defined as above.)
The following result gives a condition for a decomposition map to be "trivial".

THEOREM 2.4 (Tits’ Deformation Theorem). - In the above set-up, assume that KH
is also split and that the radicals of KH and kpH have the same dimension. Then dp is

an isomorphism which preserves the classes of simple modules.

This is proved in [12, §68A] under the assumption that KH and kpH are semisimple.
In order to reduce to this case, we argue as follows. Let (~ C K be a discrete valuation

ring as in (2.2) with residue field k 2 kp , and let J C OH be the intersection of the radical
of KH with OH. Then J is a pure submodule of OH and we set H := Since

the radical acts as 0 on every simple module, we can identify Ro(KH) = Ro(KH). On
the other hand, since J is nilpotent, kJ is contained in the radical of kH. But we have
in fact equality, thanks to our assumptions. (Note that the radicals of kpH and kH have
the same dimension, since kpH is split.) Hence, using the isomorphism kh, we
can also identify = and it remains to apply [12, Cor. 68.20~.
2.5. We apply the above discussion to obtain a factorization result for decomposition
maps (cf. [27, Prop. 2.5]). For this purpose, assume that A is a Noetherian ring with
dim A = 2 and that A is integrally closed in K.



Let p, q be prime ideals of A such that {0~ ~ q C p. Then q has height 1 and dim Aq = 1.
So, by (2.1), we have a well-defined decomposition map dq : Ro(K H) -t Ro(kqH). Assume
also that A/q is integrally closed in its field of fractions kq. Then, since dim A/q = 1, the
localization of A/q in the prime ideal p/q is a discrete valuation ring and so, again by (2.1),
the canonical map kp induces a decomposition map dp*: Ro(kqH) -t Ro(kpH) .

PROPOSITION 2.6 (Factorization of decomposition maps). - Let ~0~ ~ q C p C A be
as in (2.5), and assume also that kpH is split. Then we have a decomposition map dp as
in Proposition 2.3 and the following diagram is commutative:

Indeed, the assumption on A/q implies that the image of xq lies in Maps(H, A/q[X]).
So the composition d) o dq defines a map from to which makes the

diagram (D) commutative. Hence that composition must be equal to dp.
2.7. Let A be as in (2.5). We now fix a height 1 prime ideal q such that A/q is integrally
closed in kq and kqH is split. Let P(q) be the set of all maximal ideals of A which
contain q. We close this section with a result which shows that the decomposition maps
dp, for p E P(q), are "generically" determined by dq. In fact, by Proposition 2.6, we have
a factorization dp = dp~ o dq for all p E P(q) such that kpH is split. We claim that

kpH is split and d) is trivial for all but finitely many p E P(q).
(Here, "trivial" means an isomorphism which preserves the classes of simple modules.)

This is proved as follows (cf. the argument given in [21, Prop. 5.5]). To simplify notation,
let R = A/q and F = kq; note that R is a Dedekind domain. By Wedderburn’s Theorem,
there exists a surjective homomorphism of F-algebras ’ljJ: FH - ®i 1 Mna (F), with

nilpotent, where denotes the full matrix algebra of degree over F.
Now take a basis B of FH which consists of a basis of and a set of elements which

are mapped to an R-basis of We also fix an R-basis of RH and express

each b E B as a linear combination of that basis, where the coefficients are quotients
of elements of R. Taking the product of all denominators in all coefficients of all basis
elements b E B, we see that there exists some 0 ~ d E R such that db E RH for all b E B.
Then we have in fact (B~=i Mni(R[l/d]).
Now let p E P(q) be such that d ~ p/q; note that only finitely many p’s do not satisfy

this condition. Then the quotient map R = A/q -~ kp extends to a map R[l/d] -~ kp, and
extension of scalars along this map gives rise to a surjective homomorphism of kp-algebras

kpH - ®i 1 with nilpotent. We conclude that kpH is split and that
is the radical of kpH, having the same dimension as the radical of FH. Now d:

is induced by R[l/d] -~ kp, and it remains to use Tits’ Deformation Theorem 2.4.



3. DECOMPOSITION MAPS AND ROOTS OF UNITY

We now fix a special choice of the ring A. Let F be an algebraic number field and
R C F be a subring which is a Dedekind ring with field of fractions F. (Examples: R
is the ring of all algebraic integers in F or R is a discrete valuation ring in F.) Let

A = R[v, be the ring of Laurent polynomials over R in an indeterminate v and K
be its field of fractions. Let (W, S) be a finite Coxeter system, and consider the following
generic Iwahori-Hecke algebra:

(It would also be possible to work with a q-Schur algebra or with a cyclotomic algebra;
but let us stick to this specific case.) We will assume throughout that R is large enough;
in particular, R will contain all the square roots and roots of unity that we will need below
and the group algebra F[W~ will be split semisimple. The fact that the parameters as
have square roots implies that the algebra K1l is split semisimple (see [1, 5, 41]).
Our aim is to understand the decomposition maps for 1l associated with the various

prime ideals in A. First note that our ring A satisfies all the conditions of Section 2: since
R is a Dedekind ring, the localization of A in any prime ideal p is a regular local ring;
this implies, in particular, that A is integrally closed in its field of fractions K. (For these
facts, see [47, §19].) Moreover, there always exists a discrete valuation ring CJ as required
in Proposition 2.3 (see [47, Ex. 14.4]). Note also that dim A = 2.
3.1. We consider the following data: an invertible element ( E R and a rational prime
number f which is not invertible in R. Let q C A be the kernel of the map A -~ R,
v ~ (, and p C A be any maximal ideal containing q, whose residue field kp is finite of
characteristic f. Note that A/q = R is integrally closed in its field of fractions, which
is kq = F. Enlarging R if necessary, we can assume that is split. Then all conditions
of Proposition 2.6 are satisfied, and so we have a factorization of decomposition maps:
dp = dpq o dq. Thus, we have the following picture:

. The map dq between the Grothendieck groups of K1l and F1l is induced by the
specialization A - R, v ~ (; we simply denote it d,.

. The map d: is induced by the canonical map where p is the image of p
in R; we will denote it de .

So, our factorization reads dp = dt’ o d,. We now give a number of examples which
illustrate the above set-up. Note that by a general semisimplicity criterion (see [30] or
[27]), the algebra F1l is semisimple unless ( is a root of unity.
EXAMPLE 3.2. - Let p C A be a maximal ideal such that kp has characteristic f > 0
and the image of v in kp is 1. Then is nothing but the group algebra of W over kp.

For r > 0 let (r E R be a root of unity such that (;r = 1. Then, regardless of what
is r, the image of (r in kp is 1. Hence, if we let qr C A be the kernel of the canonical



map A - R, v e (r, then qr C p and we are in the set-up of (3.1). Note that, in the
corresponding factorization dp == dir o the two maps on the right hand side depend
on r but the left hand side does not. Hence, taking once r = 0 and then r > 1, we obtain:

We can interprete this as follows. Since (o = 1, we have F~l = F[W]. Hence de is just the
f-modular decomposition map for W. Since F[W] is split semisimple, Tits’ Deformation
Theorem 2.4 implies that di is an isomorphism which preserves the classes of simple
modules. Thus, the left hand side of the above identity may be regarded as a lift of d)
to ~l. Hence the maps d(r (r > 1 ) may be viewed as approximations to 

EXAMPLE 3.3. - Let W be the Weyl group of a finite Chevalley group G over a field
with q elements, as in (1.3). Assume that q is invertible in Rand F[G] is split. Then we
have EndG(R[G/B]) under the specialization v H ~. Let p c A be a maximal
ideal such that kp has characteristic f > 0 and such that v - JQ E p. Let d > 1 be the

multiplicative order of q modulo f; in particular, d divides f - 1. Since R is large enough,
we can find a primitive 2d-th root of unity ( E R. This can be chosen so that JQ and (
have the same image in kp, and so we have v - ( E p. Hence, each of v - JQ and v - (
generate height 1 prime ideals which are contained in p and such that we are in the set-up
of (3.1). This yields an identity:

Now the left hand side has the following interpretation. The map is the decompo-
sition map which determines a part of the f-modular decomposition matrix of G as in

Proposition 1.4. But, since F has characteristic 0, the algebra EndG(F[G/B])
is semisimple and so, by Tits’ Deformation Theorem 2.4, d/g is an isomorphism which
preserves the classes of simple modules. Thus, the left hand side may be regarded as a
lift of de to 1-l, and the map d, is an approximation to it.
The above examples are taken from [21]. Motivated by the results of explicitly worked-

out examples - as mentioned in the introduction - we can now state:

CONJECTURE 3.4. - In the set-up of ~~.1~, assume that we have = ~l and that ~

is coprime to the order of Wand to all cs (s E S). Then the decomposition map
d~ : Ro(kp 1-l) is an isomorphism which preserves the classes of simple modules.

The condition (l-l = ~1 means that the image of (2 in kp lies in the prime field ~e;
hence so do the parameters of 

In the framework of Example 3.3, this conjecture says that if f does not divide the
order of W, then the part of the f-decomposition matrix of G which is determined by the
Hecke algebra 1-l only depends on the order of q modulo f, but not on q and f themselves.

3R. Rouquier once conjectured that de might be determined by the maps d(r (r > 1), but he found a
counter-example for W = 613 and f = 2.



REMARK 3.5. - The above conjecture has first been stated by James in [32, §4], for
Iwahori-Hecke algebras and q-Schur algebras associated with the symmetric group 6n.
The general form is taken from [21, (5.6)]. Actually, James even gives a weaker condition
on f, namely that df > n where d > 1 is the order of (2. This can also be generalized to
other types (see the hypothesis of [27, Theorem 5.4] for such a generalization). We will
not need to go into this here: the whole point of any form of such conditions is that it

yields a bound for f which is explicitly computable in terms of (W, S). Note that, by the
discussion in (2.7), the conclusion of the above conjecture can be seen to hold for all but
finitely many primes f. Thus, the situation is reminiscent of that in the representation
theory of simple algebraic groups; see [53].

In addition to the examples mentioned in the introduction, the conjecture is known to
hold in the following situation. Assume that W is a finite Weyl group and that c~ ~ 1 for
all s E S. Let Pw = V2l(w) be the Poincaré polynomial of W. Then the conjecture
holds if ( E R is a simple root of Pw. The proof uses the Brauer-Dade theory of blocks
with cyclic defect groups (applied to a finite Chevalley group with Weyl group W) and
an adaptation of this theory to Iwahori-Hecke algebras; see [21].

REMARK 3.6. - In all of the above considerations, q is a height 1 prime ideal so that kq
has characteristic 0. One may ask what happens if kq has characteristic f > 0 in which
case v necessarily maps to an indeterminate over kq . Then, by Fleischmann [20], the map
dq is an isomorphism which preserves the classes of simple modules, unless f is very small
(i.e., a so-called "bad" prime for W). Furthermore, Gyoja [31] has proved that if c~ = 1
for all s E S, then dq has an interesting interpretation in terms of the multiplicities of the
irreducible representations of W in the Kazhdan-Lusztig cell representations of W.

REMARK 3.7. - Let A be any Noetherian, integrally closed, integral domain, and H an
A-algebra, finitely generated and free over A. Assume that dim A = 2, and let q C p be
prime ideals with q of height 1, p maximal, and A/q integrally closed. One might ask if
it is possible to generalize Conjecture 3.4 to this situation. We impose the condition:

Assume that kq,H is semisimple for every height 1 prime ideal q’ C A with q’ c p.
In [27, (3.3)] it is shown for Iwahori-Hecke algebras that then, at least, the Grothendieck
groups of kqH and kpH have the same rank. Moreover, the above semisimplicity conditions
translate to the condition on f in Conjecture 3.4.

In any case, the decomposition maps d~: where ( E R is a root of
unity, are of central importance. However, these are not yet well-understood. For example,
the proofs of the following results which are given in [21, Prop. 5.4 and Prop. 7.4] proceed
by a reduction to related statements about finite groups (via Dipper’s Theorem 1.4).
PROPOSITION 3.8. - Assume that W is a finite Weyl group and that cs =1 for s E S.
Let ( E R be a root of unity of order 2d and consider the specialization A ~ R, v ~ (.



(a) The map d~ : is surjective and is split, where Fo = ~~~.
(b) Let V, V’ be simple KH-modules and Dv, DV’ E Q[ v] be their generic degrees, as

defined in ~5~. If d~([V~) and d~([V’~) are not disjoint, then Dv and Dv~ are divisible
by the same power of the 2d-th cyclotomic polynomial in v.

It would be desirable to prove this entirely in the framework of Iwahori-Hecke algebras.4

4. THE LASCOUX-LECLERC-THIBON CONJECTURE

We shall now consider decomposition maps for generic algebras whose parameter is
specialized to a root of unity over Q. So we work with the ring A = (where v
is an indeterminate) and a prime ideal p C A which is generated by v - (, where ( G C
is a primitive 2d-th root of unity (d > 1). Let 1-ln be the generic Iwahori-Hecke algebra
over A associated with the symmetric group 6n (where the parameters are as == V2 for
s E S). Then the canonical map = C induces a decomposition map

d~: Ro(Ctln), where K = field of fractions of A.

Note that the notation is such that for s E S we have T; = (2TI + (~2 -1)TS in 
4.1. The simple C[6n]-modules are naturally parametrized by the partitions A t- n (see
[33]). Hence so are the simple KHn-modules (using the specialization v ’-)- 1 and Tits’

Deformation Theorem as in Example 3.2). Dipper and James [16] have shown (see [26,
(4.2)] for a different proof) that the simple Ctln -modules are parametrized by the d-
regular partitions ~ F n, that is, those partitions which do not have d parts which are

equal. Moreover, the decomposition matrix Dn = (da~,) associated with d~ has the shape

for some suitable ordering of the rows and columns. For any n > 1, let 0n be a C-

vectorspace with a basis {[03BB] |03BB f n}. Let Kn c 0n be the subspace generated by all
elements P~. := ~~ where ~ ~- n is d-regular. Then Kn and 0n may be identified
with the dual spaces of Ra (CHn ) and Ro respectively, and the embedding
Kn c 0n is the transpose of d~. Thus, the bases {P~,} and ~(~~} of Kn and respectively,
are dual to the standard bases of C 0z and C ®~ given by the simple
modules. We extend this to n = 0, where Fo = /Co = C[0] and 0 is the empty partition.

4 Note added June 1998. Such a proof (for part (a)) is given in the author’s recent paper [23], using an

interpretation of d( in terms of the homomorphism frolll 1i to Lusztig’s "asymptotic algebra" J.



4.2. For any n > 1 we define an element cn E 1in recursively as follows:

It is not difficult to check that cn lies in the center of This allows us to define linear

operators i-resn : ~o  i  d -1 ) as follows. Let V be a simple
Cln-module and c E C be the scalar by which cn acts on V. We set

Since cn-i lies in the center of the space is a ~~,_1-module; moreover, we
have V = see [2, Prop. 2.1]. Now i-resn is defined by sending the class of V
to the class of V~i?.5 Using the description of as dual space in (4.1) we obtain a
map 2-resnr : lCn. Considering all algebras at the same time, we obtain linear

operators (0  i  d -1) such that ç 1Cn for all n, where

Now we bring into play one further object, the Kac-Moody algebra S[d of type and its

universal enveloping algebra U(xCd); (see ~37~). There exists an action of on .~ such

that K is an invariant subspace on which fi acts as i-restr, where fi is a Chevalley generator
for the negative part U-(.~Cd). This action lifts in fact to the corresponding quantized
universal enveloping algebra. (This is due to Hayashi; see the description by Misra and
Miwa [48].) The second statement in the following result is [39, Conjecture 6.9(ii)].

THEOREM 4.3 (Ariki [2]). - 6 The subspace 1C C .~’ is an integrable highest weight mod-
ule with highest weight vector ~~~. Its basis defined in terms of the matrices D~, is
the canonical basis of K as an (in the sense of Kashiwara and Lusztig).

For an introduction to canonical bases, see [46] ; note, however, that the results presented
there are needed in the generality of Lusztig [42, 43]. Lascoux, Leclerc, Thibon [39]
also describe an eflicient algorithm for computing the canonical basis of K, which is

implemented in Mathas’ GAP package SPECHT [52], and in Veigneau’s package ACE [54].
Ariki [2] proves in fact a more general version of the above result, which is also valid

for Iwahori-Hecke algebras of type Bn and for the cyclotomic Hecke algebras associated
with 6n (see [3]). We then obtain even new results about the classification of
the simple modules for these algebras (see Mathas [45]).

5If d = p is a prime then, on the level of the symmetric groups, these operators have an interpretation
in terms of induction/restriction of modules and sorting into p-blocks (see [33, (6.3.17)J). This also works
on the level of ~.,v, where ( plays the role of the prime p. This follows from [35, Theorem 4.29] (the
"Nakayama rule" for (-blocks of 1in) and the general results on representations of 1in in [16].

~In October 1995, Grojnowski also announced a proof of this result and of Theorem 4.7 below (following
the ideas in his note [28]), as well as an extension to Jantzen filtrations, as suggested in [39, §9]. At the
time of this writing, written proofs have not yet appeared.



The idea of Ariki’s proof is to establish a link between itself and a class of simple
modules for an affine Hecke algebra (of which 1in is a quotient). The advantage of working
with affine Hecke algebras is that the simple modules can be described geometrically via
the "Deligne-Langlands conjecture"; see [38] and [11]. Our intention here is not to give a
survey on representations of affine Hecke algebras; we shall use [11, Chap. 7 and 8] as a
reference for the facts about Hn that we shall need.

4.4. Let {EI’... , ~n} be the standard basis of C" and X = Zsi + ... + Zsn. Then

(ai = ~i - is the set of simple roots in a root system of type Its Weyl
group is the symmetric group 6n, acting by permutation on the basis vectors Ei. The

semidirect product W := X x 6n is the extended affine Weyl group of type 
The corresponding affine Hecke algebra is a free A-module Hn with a basis E

X, w E and the following rules for the multiplication: the map To,w is an

algebra homomorphism, we have Tz+y,w = for all x, y E X and w E 6n, and we

have the following Bernstein relations (see [11, Def. 7.1.9 and Lemma 7.1.10]):

(Since si acts as a reflection on X, the right hand side is a well-defined element of Hn.)

LEMMA 4.5. - We have a surjective A-algebra homomorphism 7rn: with

First note that, since v is invertible in A, the elements TS~ are units in 1-ln; we have
1 
= + (~’~ - l)Ti for 1  i  n - 1. The fact that the above map defines a

homomorphism is proved by checking the above defining relations.

4.6. As we did for we write CHn = C0A Hn where C is regarded as an A-module via

the specialization .4 -)- C, v e (. We shall be concerned exclusively with the algebra CHn
and its simple modules. The above construction shows that CHn has countable dimension

over C. Moreover, CHn is finitely generated over its center (see [11, Prop. 7.1.14]). These
two facts imply that every simple CHn-module is finite-dimensional. Let Ro(CHn) be the
Grothendieck group of finite-dimensional CHn -modules.

We now single out a finitely generated subgroup of Ro(CHn ) . Let A = (Ai,... , Àz) be

any composition of n (i.e., we have Ai > 0 for all i, and ~i ~i = n). Let ~Hn C CHn

be the subalgebra generated by To,st (for i ~ Ai, Ai + a2, ... ) and all Tx,l (for x E X).
Assume we have a representation CHn ~ C with for all i, and where

is a power of (2 for all x E X. Let ~ be the corresponding CHn -module and set

Then we let be the subgroup of R0(CHn) which is generated by the compo-
sition factors of for all À, cp as above. - Note that 1f n induces an injective map



Rp(cCHn ), whose image is contained in Moreover, there are

also operators i-resn : defined in a similar way as above, us-

ing the central element + ... + Hn. Note that this element maps to cn
under 1rn, and we have the commutation rule: o = o 7r~.

We can now "lift" the desired statement in Theorem 4.3 to a statement about 

and Note that the canonical basis of J~ is in fact defined as {b.0 ~ b E

B} B {0}, where B is the canonical basis of U-(.~Cd), see [42, Cor.11.10~. Ariki shows that
Theorem 4.3 is a consequence of the following result:

THEOREM 4.7 (Ariki [2, Prop. 4.3]). - There exists a C-linear isomorphism

which commutes with multiplication by any fi on the left hand side and the action of i-
restr on the right hand side. Furthermore, 03C8(B) is the set obtained by taking in the n-th
summand the dual basis of the standard basis given by the simple modules.

5. AFFINE HECKE ALGEBRAS AND CANONICAL BASES

The objective of this section is to present the main ideas behind Ariki’s proof of Theo-
rem 4.7. (We do not claim to have verified all the details.) It is based on:

(1) A classification of the simple CHn-modules in terms of a formula describing their
multiplicities in certain "standard" modules; see [11] and Theorem 5.2 below.

(2) Lusztig’s geometric description of the canonical basis of see [42, 43] and
(5.4) below.

(3) A version of Theorem 4.7 for the case where ( has infinite order and a specialization
argument; see (5.6) and (5.8) below.

Throughout this section, ( may be any non-zero complex number. We consider the affine
Hecke algebra CHn corresponding to the specialization A - C, v ~ (.
The simple modules of CHn , where ( is not a root of unity, have been classified in a

geometric framework by Kazhdan and Lusztig [38]. We begin by discussing an extension
of this result to the general case.

5.1. Let G = GLn(C) and T ç G be the maximal torus consisting of diagonal matrices.
Then the Z-lattice X in (4.4) can be interpreted as Hom(T, CX), where si corresponds to
the map which takes an element of T to its i-th diagonal entry.

Let s E T. Then the pair (s, () determines an algebra homomorphism Z(Hn) - C
(where Z(Hn) is the center of Hn), which depends only on the G-conjugacy class of s.
Regarding C as a Z(Hn)-module via this homomorphism, we form the tensor product



see [11, Def. 8.1.1]. This is a finite-dimensional C-algebra, and we have a natural algebra
homomorphism By [11, Cor. 8.1.4], the action of CHn on any simple
module factors through for some s. Thus, as far as simple modules are concerned,
we are reduced to work with 

Now consider the conjugation action of G on the Lie algebra We set

Then CG(s) acts on JU~ with only finitely many orbits (see [11, Prop. 8.1.17]). Now take
x E Nt and consider the variety of all flags which are fixed by s and by x. By [11,
Remark 8.1.7], this variety is non-empty. Then one can construct a natural 
on H*(~3~), the Borel-Moore homology of ~ix with coefficients in C. This is done through
a K-theoretic interpretation of the algebra which is explained in [11, Prop. 8.15].

The following result has been called by Zelevinski the "p-adic analogue of the Kazhdan-

Lusztig formula for multiplicities of Verma modules" (see [11, p.17]). Its proof, to be
found in [11, Theorem 8.6.23], uses among other things the "Decomposition Theorem" of
Bernstein, Beilinson, Deligne [4] and, hence, ultimately rests on the Weil conjectures.

THEOREM 5.2. - The simple occuring in H*(~3~) have a natural labelling
by CG(s)-orbits in N~ (but not all orbits need occur). Let 0 be such an orbit and

Lo the corresponding simple module. Then the multiplicity of Lo in is given

by 03A3i~0 dim (0, C) ) , where lx : {x} ~ Ns03B6 and IC (0, C) denotes the Deligne-
Goreski-MacPherson intersection cohomology complex on the closure of 0.

Thus, we have a way to get hold of the simple CHn-modules by decomposing the

"standard" modules into simple modules, where the multiplicities are, in prin-

ciple, computable in terms of the geometry of G. Note, however, that the problem of

characterizing the "missing" orbits remains to be solved. If ( is not a root of unity, a

solution is given in [38] and the "non-vanishing result" in [11, §8.8]: in this case, no orbit
is "missing". (Grojnowski [28] announces a solution for this problem in general; see also

Vigneras [56, §2].) We will come back to this point in (5.6) and Proposition 5.9 below.

Now the "standard" modules H*(,~x) can be identified with induced modules as in (4.6).
To see this, we replace s, x by suitable G-conjugates so that x is in Jordan normal form

(and we still have sET). Let A be the composition of n given by the sizes of the

Jordan blocks, and Ciin C CHn the corresponding subalgebra as in (4.6). We have a
representation C with == (2 and = y(s) for all y E X. Using
the induction theorem [38, §6], Ariki obtains the following result in [2, Theorem 3.2]:

THEOREM 5.3. - With the above notation, we have an equality (H*(~3x)~ _ in

the Grothendieck group of CHn-modules, where the module structure on the left hand side

is induced from that on defined in (5.1 ~.



We now turn to the second ingredient, the theory of canonical bases for (quantized)
universal enveloping algebras (see [46]). We shall work exclusively with Lusztig’s geomet-
ric description [42, 43]. Depending on whether ( has finite or infinite order, we consider
an affine algebra of finite or infinite rank. We begin with the case of finite rank.

5.4. The canonical basis B of is defined in terms of a class of perverse sheaves on

certain varieties attached to the affine Dynkin diagram of type The details of this

construction which are important for us can be summarized as follows (see [2, (4.3)]).
There is a natural grading where v are functions on the vertices

(0, ... , of the diagram of type with values in l~ and Uv are finite-dimensional.
The canonical basis B is compatible with this grading, i.e., we have B = IIv Bv where
Bv = B n Now assume that ( has order 2d. Then any v as above determines a

semisimple element s E G = GLn (C) (well-defined up to conjugacy), where n = v(i):
take the diagonal matrix whose eigenvalues are powers of (2 and the dimension of the (2i-
eigenspace is given by v(i). Then, by [42, (12.14) and §15] and [43], the elements of Bv
are naturally in bijection to a set of CG(s)-orbits on Nt (but not all orbits need occur).
Thus, we are in a situation similar to that in Theorem 5.2, but now Lusztig has given an
explicit description of those orbits which do correspond to elements in Bv : these are the
so-called "aperiodic" orbits, see the definition in [42, §15].

Let 0 C Nt be an "aperiodic" orbit and denote by bo the corresponding canonical basis
element. This element is defined in terms of the Deligne-Goreski-MacPherson intersection
cohomology complex on the closure of 0. Taking the alternating sum of the dimensions
of the stalks of the cohomology sheaves of such a complex at points in Nt, we can regard
bo as a C-valued function on Nt which is constant on the orbits of CG(s). Furthermore,
for any orbit 0’ C Nt, we denote by po, the function which takes the value 1 on 0’ and
0 otherwise. Then we have equations

The set will be called a "PBW-type basis" of 

REMARK 5.5. - Ariki notes in [2, (4.3)] that the results in (5.4) actually remain valid
when we set d = oo. In this case, we are working with the infinite rank affine algebra sl~,
of type Aoo (see [37, §7.11]). The canonical basis Boo of can be described as the
union of the canonical bases over all finite rank algebras of type Ar (r > 1). Again, we
have a partition Boo == Boo,v where v are functions on the vertices of the diagram of
type Aoo with only finitely many non-zero values in N. By the same procedure as in (5.4),
but where ( has infinite order, any such v determines an n and a semisimple element
s E G = GLn(C). Now we have a natural bijection between Boo,v and the set of all
CG(s)-orbits in see [42, (12.14) and §14]. Furthermore, we have relations as in (5.4)
expressing the elements of Boo in terms of the elements of a "PBW-type basis" 



We have now geometric descriptions of the simple modules for affine Hecke algebras on
the one hand and of canonical bases on the other hand. The next step consists of bringing
these two descriptions together. We first do this in the case where ( has infinite order.

5.6. A version of Theorem 4.7 for the case where ( has infinite order. Assume

that ( has infinite order. Then, in the set-up of Theorem 5.2, all CG(s)-orbits 0 C Nt
give rise to non-zero simple modules Lo; see [38] and the "non-vanishing result" in [11,
§8.8]. Hence, in this case, we have a natural bijection between the simple CHn-modules
(up to isomorphism) and the set of all pairs (s, 0) where s E G is semisimple (up to

conjugation) and 0 is a CG(s)-orbit in (This is the "Deligne-Langlands conjecture"
for affine Hecke algebras of type 

Next note that, setting formally d = oo, the definitions in (4.6) remain valid (it is not
required there that ( has finite order). Then we observe that the subgroup C

Ro(CHn ) is generated by the classes of simple modules arising from those algebras 
where all eigenvalues of s are powers of (2. (See [2, (4.1), (4.2)] ; note that the transition
between the settings in (4.6) and (5.1) is provided by Theorem 5.3.) Thus, we can define
a C-linear isomorphism

as follows. Let Boo = 1jv be the canonical basis of U-(.~C~) as in Remark 5.5.
Let b E Boo,v. Then b = 60 for a unique orbit 0 C Ns, where n and s E GLn(C) are
determined by v. The orbit 0 gives rise to a simple CHn-module Lo as in Theorem 5.2,
and we set ~00(6) = ~Lo~*, the dual element in (C ®~ Note that, since the

spaces Ro (Q:Hn ) have infinite rank, the map ~~ only becomes an isomorphism when we
actually work in suitable completions of the above vector spaces, where formal infinite

sums of the basis elements are allowed. Keeping this in mind, we can now state:

PROPOSITION 5.7. - Recall that ( is assumed to have infinite order. Then the iso-

morphism ~~ of (5. 6) commutes with multiplication by any f i (a Chevalley generator of
on the left hand side and the action of i-restr on the right hand side.

For the proof, we fix v and a corresponding semisimple element s E GLn(C). Then

we have equations bo = 03A3O’ csOO’ psO’ where 0, 0’ are orbits in By Theorem 5.2

we also have equations ~Mo~ _ ~o, where 0, 0’ are orbits in N~ and where
we set Mo = H* (~3x) for x E O. Now, if we choose an ordering of the orbits 0 which is

compatible with the closure relation, we see that the matrix is square and triangular
with 1 along the diagonal. It follows that the classes of the modules Mo also form a basis

of C 0z Ro (CHn ) . Passing to the dual spaces yields that



are the elements of C 0z which are dual to the "standard"

modules. Hence, we deduce that ~Mo~* for all 0, and we see that it is sufficient
to prove the desired compatibility properties on the level of the "PBW-type basis" on
the one hand and the "standard" modules on the other hand.

The multiplication of a "PBW-type basis" element by a generator /~ can be described

explicitly in purely combinatorial terms (see [2, Lemma 4.2]). We compare this with
the action of i-restr, by describing explicitly the i-restriction of a "standard" module for
CHn as a sum of "standard" modules for In order to achieve this, Ariki uses
the following argument: we know by Theorem 5.3 that a "standard" module for CHn
is given in terms of a certain induced module. This interpretation allows us to regard
that "standard" module as a module for a factor algebra of CHn , namely a cyclotomic
algebra associated with the group (Z/mZ) x 6n for a suitable m and a suitable choice of
parameters (see the proof of [2, Prop. 4.3(1)]). Now, for these algebras, the restriction of
modules is determined combinatorially in terms of a "branching rule", see [2, Prop. 2.1].
This yields the desired compatibility and completes the proof of Proposition 5.7.

5.8. Passage to the case where ( is a primitive root of unity of order 2d.
Assume that ( has order 2d. In order to have separate notations, we also let (’ be a non-
zero complex number of infinite order and denote the corresponding affine Hecke algebra
by CH~. Consider the isomorphism of (5.6)

By [13], we can realize inside by a "folding" procedure. On the other
hand, by a specialization argument, can be regarded as a quotient of RQ~ 
and, hence, (C ®~ Ro (cCHn ) ) * can be identified with a subspace of (C ®~ 
Then Ariki shows in [2, p. 804] that, under these identifications, the image of 
under is contained in ®~ Ro(cCHn))*. Hence, by restriction, gives rise to
an injective map

The effects of specialization and "folding" on the standard modules and on the "PBW-
type basis", respectively, can be described explicitly, and this can be used to show that
03C8d commutes with multiplication by any fi (a Chevalley generator of on the left
hand side and the action of i-restr on the right hand side. By a similar argument as in
the proof of Proposition 5.7, one then also shows that the elements of the canonical basis
of are mapped to the duals of simple modules as required in Theorem 4.7 (see [2,
Prop. 4.3(2)]). Hence, to complete the proof of Theorem 4.7, it is sufficient to show that
9d is surjective. For this purpose, we need a characterization of the "missing" orbits in
Theorem 5.2. This is provided by the following result.



PROPOSITION 5.9. - Assume that ( is a primitive 2d-th root of unity. Then, in the set-

up of Theorem 5..~, the CG(s)-orbit 0 C ,N~ gives rise to a non-zero simple 
La if and only i f 0 is "aperiodic" (in the sense of (S.I~~~.

Ariki observes that a proof of this result can be achieved as follows. First we note that
the construction of Lo, as explained in [11, p. 444 and Theorem 8.6.12], is just a special
case of the geometric construction of canonical basis elements in [42, §2]. In both cases,

one has to consider certain varieties which map properly to and one has to decompose
the direct image of the constant sheaf on such a variety into irreducible perverse sheaves.
Now the known results on the canonical basis, see (5.4), imply that an orbit 0 must be
"aperiodic" if it gives rise to a non-zero simple module Lo. It remains to show that the

rank of is equal to or bigger than the dimension of But this follows from

the injectivity of the map 9d in (5.8).
Thus, Proposition 5.9 and, hence, Theorem 4.7 are proved.
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