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BROWNIAN MOTION IN A POISSON OBSTACLE FIELD

by Tomasz KOMOROWSKI

Séminaire BOURBAKI

51ème année, 1998-99, n° 853
Novembre 1998

1. INTRODUCTION

The problem of a diffusion performed in a medium with randomly distributed static
traps appeared in Physics literature some 80 years ago (cf. e.g. Smoluchowski (1916)). A
common illustration is a motion of a Brownian particle among soft or hard core obstacles of
finite radius with centers Poisson distributed in a d dimensional space, cf. e.g. Grassberger
et al. (1982).

It can be shown, cf. Section 2, that on the average the behavior of the survival prob-
ability St of the particle in the field up to time t, the so called annealed asymptotic, is
given by

Here v is the intensity of the Poisson cloud and c(d, v) is a constant given by (8). This
result has been obtained non-rigorously in Kac and Luttinger (1973-74). The decay rate
of the survival probability is much slower than exponential. The latter could be expected
in light of the result of Kesten, Spitzer, Whitman, cf. the remark after Theorem 1.
The problem of determining the annealed asymptotic is related, as we shall explain in

Section 5 below, to the question of finding a rigorous proof of the so called Lifshitz tail
effect for the Integrated Density of States (IDS) function of the Schrodinger operator with
a random Poisson potential. This question appeared in Physics literature in the context
of quantum theory of a condensed state in the work of Lifshitz, cf. Lifshitz (1965).
The first rigorous argument giving the correct asymptotic of St via large deviation

theory of Wiener sausage asymptotic has been presented by Donsker and Varadhan (1975).
This result has been obtained again via a different technique - the so called Method of

Enlargement of Obstacles (MEO) in Sznitman (1990). The method later became a fun-
damental tool in understanding a rich collection of phenomena associated with Brownian
motion among Poissonian traps such as: the asymptotic of the survival probability 
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in a typical realization of the medium 03C9 - the so called quenched asymptotic, the Pin-
ning Effect and Confinement Property for the trapped Brownian Motion, cf. Sznitman

(1998) and (1991), Povel (1998), the Lifshitz tails for the IDS function of the random
magnetic Schrodinger operator with Poissonian random potential, cf. Erdosz (1998) to
name just a few. Other results go in the direction of determining the behavior of the
Brownian particle performing a long crossing between two distant points of the medium
and consequently lead to the introduction of the so called Lyapunov exponents, cf. Sznit-
man ( 1994), ( 1995a,b) and also the Shape Theorem of Section 3.1 for the quenched case.
The Lyapunov exponents turn out to be very convenient tools in deriving large deviation
results for the quenched and annealed measures associated with the surviving Brownian
process, cf. Sznitman (1995), (1995a,b).

In the context of Lyapunov exponent one can introduce also the notion of Crossing
Brownian Motion (CBM), cf. Section 4. CBM measures appear naturally in certain
physical models of growing interfaces, cf. Krug-Spohn (1991). One of the basic questions
is to understand the relation between the size of transverse fluctuations of the CBM and

the fluctuations of a certain natural random distance function defined by (17). This

direction has been pursued by Wuthrich in Wuthrich (1998).
Lyapunov exponents have been also applied to the analysis of random walks in a random

environment (RWRE) in higher dimensions. The appropriate Shape Theorem has been
proven in this context by Zerner (1997). He used the resulting Lyapunov exponents in the
derivation of the large deviation theorem for random walks in dimension d > 2 satisfying
the so called nestling property.
To describe rigorously the obstacle field we consider P to be a probability measure given

on n - the set of locally finite simple pure point measures on R~

endowed with the canonical 03C3-algebra generated by the mappings

We shall assume that the centers of the obstacles form a cloud of Poisson distributed

points with intensity v > 0, i.e. that

for any Borel measurable function f. Here E denotes the mathematical expectation of
measure P.

Let Z. be the canonical d-dimensional Brownian Motion, Px the Wiener measure corre-

sponding to a Brownian particle starting at x and Ex its corresponding expectation. We
shall assume that the particle interacts with the cloud (j via a potential representing the
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absorption rate of the random medium

where xi are determined from (1) and W is a nonnegative, measurable function whose
support is contained in a ball of radius a > 0 centered at 0.

In what follows we shall also discuss the hard obstacle case. We define then the obstacle
set as A := for some nonpolar set K (i.e. of positive capacity) of finite diameter

xt

a. The particle is instantaneously killed upon entry into the region

Informally speaking, in the hard obstacle case, we take V(. , w) = o0 on the obstacle set
and 0 elsewhere.

The structure of our presentation is as follows. In the first four sections we give a brief
overview of some of the results available in the area. Because of the scope of this paper
we are unable to provide more than a short sketch of the techniques used in the field.
However we try our best to give the reader some, mostly heuristic, explanations of the
presented results while avoiding getting too technical in our presentation.

Section 6 presents the main ingredients of MEO presented here after Sznitman (1998),
which, as we have already mentioned, is crucial in the theory. Here we try to be more
precise than in the previous sections although we maintain our goal of keeping the pre-
sentation as simple as possible.

Finally we close the article with a short review of some open problems in the subject.

2. QUENCHED AND ANNEALED MEASURES

The Brownian motion among the obstacles can be described by the path measures

Here the normalizing constants are given by
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Remark. Let us observe that in the hard obstacle case we have

where Wt :- U ZS + B(0, a) is the tubular neighborhood of radius a of the Brownian

trajectory, the so called "Wiener sausage" .
Intuitively speaking the quenched measure describes the law of the particle conditioned

on the event that it survives among the traps up to time t for a typical configuration of
traps c~. On the other hand the annealed measure arises as a result of averaging over

possible realisations of the random medium.
The question of interest is the asymptotic behavior of the path measures (3), (4) when

t t +00. In the first step we describe the asymptotics of St,úJ and St - the survival
probabilities of the Brownian Motion among the obstacles - for large t. The following
result holds.

with a(U) denoting the principal Dirichlet eigenvalue of the Laplacian - )A corresponding
to the region U. We have written ~d and wd for the fundamental tone and volume of the
unit ball in the d dimensional space respectively.

Remark. At this time it may be worthwhile to mention that motivated by the result
of Kesten, Spitzer and Whitman (cf. Spitzer (1964), p. 40) stating that tends to the

capacity of B(0, a) (the ball of radius a centered at 0) when t fi +~ and (5) one could
mistakenly believe that St decays exponentially, which obviously contradicts (7).
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The following argument gives some plausibility to the lower bounds on the asymptotic
of the normalizing constants. In Section 6 we shall sketch the proof of the upper bound

on St using MEO.

Informally speaking (when W is sufficiently smooth this is in fact accurate) we can
write, using Feynman-Kac formula, that

satisfies the Cauchy problem

Using (9) we obtain that

where Ai , i = 1 , 2, ... denotes the complete set of eigenvalues of the self-adjoint operator
H~, and pi are the corresponding eigenfunctions. Consider now a sufficiently large box
A = (-l, l)d. With probability ~ close to one A contains a ball Bi := B(xl, Rl) of radius
Rl ~ R0(log l)1/d on which V(.,03C9) - 0, Ro = (d 03BD03C9d)1/d . In that case we have an easy

upper bound Ai  the Dirichlet principal eigenvalue of the Laplacian operator
corresponding to the ball Bl. On the other hand we should expect then pi to be localized
in Bl and decay exponentially at a rate a away from x~ which is a consequence of e.g.
formula (2.26) p. 276 of Sznitman (1998). Thus we can suppose that pi(0) - e-alxzl.
Discarding the influence of higher eigenvalues we see that asymptotically should be

greater than or equal to + Choosing now l = but such

that log l N log t, we get

Probabilistically this situation corresponds to the following particle survival strategy.
To survive among the traps until time t the particle starting from the origin travels to
a pocket Bl with no obstacles and stays there for the reminder of time t. This scenario
minimizes the cost in terms of probability P associated with the creation of a pocket free
of obstacles. One has every right to think that there should be no reason for this behavior
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of the Brownian particle to be typical. However, as it turns out, for large t the particle
goes "extra mile" searching for some points zi being "near minima" of a certain random
functional and stays in their vicinity for the remainder of time t, cf. the so called Pinning
Effect described in the following section.

By contrast the good survival strategy of a particle in the annealed case is to stay
inside an obstacle free ball Bt := B(0, Rt) of a certain radius Rt = Rtd+2 with R to be
determined later, where the chance of survival - = 

is much larger than in the quenched case. The probability of an obstacle free hole of such
a radius appearing in the Poisson cloud is - Hence asymptotically we obtain that

Optimizing over all R we find that

Here c(d, v) is given by (8).
The optimal choice of R in (12) is given by

Again as we shall see in the following section, cf. the so called Confinement Property
this is not only the good strategy for survival but also the typical one in the annealed
case.

3. PINNING EFFECT AND CONFINEMENT PROPERTY

3.1. Pinning Effect

We have described above a possible scenario under which the particle survives, in the

quenched case, up to long time t. As we have already pointed out it is far from being clear
that the strategy described there is typical. Furthermore it would be of some interest to
find out which pockets of low potential are selected to stay in by the particle. To motivate
the next result we present the following heuristic after Sznitman (1998).
We recall that according to what we have said in the previous section the presence

of Poisson traps causes a localization effect for the particle expressed in the fact that
most part of the support of any eigenfunction pi of Hw is localized in a relatively small

neighborhood of a certain point zi and the function decays exponentially, say at the rate
from its respective domain of localization. Thus the sequence  cpi,1 >, i > 1

appearing in (11) is almost constant of positive value. Using further (11) we can see that
the asymptotic behavior of St,w is governed by the term
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Thus the particle should go by time t to some pocket of low potential located near a
minimum of a certain random functional of the form

with Rt being some random localization scale. Here Àw (U) denotes the principal Dirichlet
eigenvalue of HW in an open set U.

This heuristic picture has some truth in it as it is shown by Theorem 3 below. Before

presenting the result let us first introduce some notation. Let us denote by

with H(x) - the hitting time of the ball B(x) := B(.r, 1).
The strong Markov property of Brownian Motion implies that

which in turn guarantees the supermultiplicative property of ea (x, y, w). By Liggett’s
ergodic theorem, cf. e.g. Liggett (1985), it is possible to obtain then the following, cf.

Sznitman (1994),

THEOREM 2. - (The shape theorem.) There exists a deterministic nontrivial norm 
on R~ satisfying for any M > 0

Remarks.

1. The name appearing by the above theorem deserves a brief comment. The functions
ex can be related to site "passage times" considered in the first time percolation
theory cf. Kesten (1986), Hammersley-Welsh (1965). The theorem carries then

some analogy to the shape theorem proven for the first passage percolation in
Kesten (1986). The word "shape" refers here to the closed unit balls of the norm
ax.

2. One can introduce also a random distance function given by

It can be proven, cf. Proposition 5.2.2 of Sznitman (1998) that there exists a
positive constant C depending only on the dimension d such that for all > 0,

E R~ with Ix - yl > 4 one has

Here Fa is a certain nonnegative function depending on cv, which is bounded if d > 3
or A > 0 and otherwise of sublogarithmic growth P a.s., cf. Lemma 1.1 of Wuthrich
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(1998). In consequence one can also claim the Shape Theorem with da in place of
ex. The theorem has actually even broader range of applicability and extends also
to Green’s function in place of ea, cf. Theorem 5.2.5 of Sznitman (1998) for more
details.

One can introduce two random scales, Rt,w satisfying

for some x > 0 and Sw (t), which roughly speaking measures the distance of the locus of
the farthest minimum of the random functional

from the origin. There exists such a x > 0 for which

cf. Section 6.3 of Sznitman (1998).
The scale Rt,w is larger than the macroscopic unit scale (log relevant to the

quenched case but is much smaller than the scale where the farthest near min-

ima sites of Ft(~,c~) occur. The importance of these scales is highlighted by Theorem 3
below. Before formulating the result let us introduce a bit more notation. For cv E n we

define the event

from which then it does not move any further than distance Rt,w up to time t] .

Here stands for the skeleton of "near mininima" of Ft(~, c~), i.e.

where and c E (0,1) is a constant. Since for

t » 1, cf. (6.3.15) of Sznitman (1998) we can conclude thanks to (21) that « 

for large t. Hence we can see that the term "near minimum" is indeed well founded.

The statement of the pinning effect is then as follows.

THEOREM 3. - For a sufficiently small x > 0 and l~ a.s. w we have



(853) BROWNIAN MOTION IN A POISSON OBSTACLE FIELD

3.2. Confinement Property

We consider here only the hard obstacle case. The entire theory works also for soft
obstacles (cf. Povel (1998a)). In this situation, as we recall, the particle gets instanta-
neously killed upon the contact with the obstacle field. It is convenient to rescale the
entire problem so that the true obstacles have size é = t-d+2. The Brownian Motion,
after rescaling, is given by 0. We can restrict our attention to those trajectories
which do not leave, up to time s := td+2, the box T :== [-t, t]d.
We have already mentioned that one possible survival strategy of the particle is to stay

inside a ball Bo centered at 0 of radius Ro. This ball minimizes the functional

It can be proven, cf. Povel (1998) Proposition 1, that with large probability there
exist random, open "clearing sets" u w , such that they are "almost" obstacle free and
their complements are contained in the regions having high concentration of obstacles. In
addition by virtue of Proposition 1 of Povel (1998) the clearing sets are "almost" optimal
with respect to the variational problem (22) i.e. for some x > 0 we have

where TeE is the exit time from the spatially rescaled obstacle free region 0~ (cf. (2))
and, as we recall, s := can be defined as T n C~E(c~) - cf. Section 6 for
the definition of and 

By Faber-Krahn inequality (cf. e.g. Chavel (1984)) we can conclude that

In consequence u~ ~ must have both the volume and principal Dirichlet eigenvalue close
to the corresponding quantities for the optimal ball. Using a strengthening of the Faber-
Krahn result due to Hall (1992) one can choose a ball B~, with radius = Ro and such that

is small. This ball contains only a tiny portion of obstacles but it is surrounded
by a dense forest of traps. Hence the rescaled particle must stay inside the ball if it is to
survive up to time s. Along these lines, Sznitman ( 1991 ) for d = 2 and Povel (1998) have
proven that:

THEOREM 4. - For d > 2 there exists xl > 0, 1 > x2 > 0 such that for any w there
is a ball Bo with center in B(o, (Ro + and a radius in 

(~o + for which

Here TBo denotes the exit time from the ball Bo .
At this point let us also mention the following result due to Schmock (1990) in d = l,

Sznitman ( 1991 ) for d = 2 and Povel ( 1998) when d > 3.
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THEOREM 5. - As t t +00, the process (t d12 Z 2 converges in law under Qt to
k rtd+2 r>O

the mixture with weight c~(x)~ f p of the laws of Brownian motion starting from 0 and
conditioned not to exit the ball Ro). p is the principal eigenfunction in

B(0, 

4. CROSSING BROWNIAN MOTION (CBM)

In this section we assume that the shape function W is rotationally invariant and the
resulting random potential V is truncated on a certain level M > 0. We shall discuss the
quenched case only. To our knowledge there are no corresponding results available for the
annealed case.

The law of CBM on is defined by

where, as we recall H(y) is the hitting time of the ball B(y), its ~-algebra and ea
is given by (15).
The measure describes the behavior of the Brownian path in the potential A + V con-

ditioned on the event that it performs a crossing from x to y. One of the questions of
considerable physical interest related to CBM is an interplay between the strength of the
transversal path fluctuation whose magnitude is supposed to be of a typical size N 
and the shape fluctuations of the random sphere given by the distance function defined
in (17). The latter are assumed to be of order ~a(y)~ N Iyl( ç must belong
to interval [0,1] by virtue of Theorem 2. It has been conjectured (cf. ibid) that the
transverse fluctuations should satisfy the scaling identity

More specifically to measure the size of the aforementioned fluctuations let us define

where A(y, ~y) denotes the event that the trajectory starting at the origin and performing
the crossing to y E JRd stays inside a truncated cylinder of radius centered on the axis

ly : ay, a E R and defined as

To measure the shape fluctuation of the distance function da(x, y, cv) around its median

y) we introduce
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The second coefficient measures the fluctuation size in a uniform manner thus obviously
x{1~  x{2~. The following result is a corollary of Sznitman (1996):

We can obtain also, cf. (23), that

Indeed, in consequence of the rotational invariance and spatial homogeneity of the shape
function W we get

where ei == ( l, o, ~ ~ ~ , 0) . From the Shape Theorem 2 we conclude easily that there exists
a certain constant C > 0 for which

Both here and in the sequel C shall stand for any generic constant independent of x, y.
We define Cy a finite set of points on 1) whose cardinality is less than or equal

to Clyld and such that C U B(z).
zECy

Using the definition (24) of x2 we can write that

with

:= [w : the exponent K of the fluctuation of da does not exceed X(2) + 6’].

Applying the strong Markov property of Wiener measure to stopping times H(z) 
H(y) we can estimate the probability Pp on the right hand side of the approximate
equality (27) by
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Using a version of Harnack principle, cf. (5.2.22) of Sznitman (1998) and the definition
(17) we can estimate (28) by

The last line follows from the fact that w E A(~).
Using relation (25) we can write that

(30)
M,(0, z) + y) _ ~a(o~ + (~y - zl + ~a(0, ( y - Z + °

The following lemma is a fairly straightforward consequence of the strong Markov prop-
erty of Wiener measure and the aforementioned Harnack’s principle, cf. Lemma 2.1 in

Wuthrich (1998) for the proof.

LEMMA 1. - There exists a constant C > 0 such that

In consequence we can write that the right hand side of (29) can be estimated by

Applying now an elementary inequality

for all z E aC(y, ~y) and ~y) > 1 together with (26) we can see from (32) that

for some positive constants C, Cl, C2. The right hand side of the above inequality vanishes
for large Iyl provided that 21 - 1 > x2 + ~. Hence we have concluded the first part of the

following result due to Wuthrich (1998).

Remarks.

1. In order to obtain (23) we need the equality X(1) = X(2), which is an open problem
at this time.

2. It would be of considerable interest to prove a lower bound on X(2). It is believed

that in two dimensions X(2) = 2.
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5. INTEGRATED DENSITY OF STATES OF THE RANDOM

SCHRODINGER OPERATOR

Let us consider a Random Schrodinger operator Hw given by (10). By we

denote the number of those Dirichlet eigenvalues of Hw in A, counting multiplicities,
which are less than or equal to A. Here A = (-l, l)d. We define then the thermodynamic
limit

whose existence P a.s. follows from the classical subadditive ergodic theorem, cf. Krengel
(1985) or Carmona-LaCroix (1991). is a deterministic and increasing function called
integrated density of states (IDS). In Quantum Physics 7V(A) describes a volume density
of energy states lying below a fixed energy level A for a Schrodinger operator with random
Poissonian impurities. We are interested in determining the low energy level asymptotic
of IDS, i.e. the behavior of N(À) when ~ ~, 0. We define by L(t) the Laplace transform of
the measure corresponding to IDS.
The classical Tauberian theorem (cf. e.g. Bingham et al. (1987), p. 254) tells us that

the behavior of 7V(A) for small A can be determined from the asymptotic behavior of L(t)
for large t. To characterize the latter we write

where is the appropriate random measure associated with Using the
trace formula and ergodic theorem we can represent the left hand side of (33) as

with rw(t, x, y) the random kernel associated with an L2(Rd) strongly continuous semi-
group

Using the expectation with respect to the Brownian Bridge measure we obtain that

The asymptotic of L(t) and St for large t can be shown to be identical.
Indeed, thanks to (34) we can write that
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On the other hand using again (34) and denoting by Ua the a-neighborhood of U we
obtain

and the last quantity is bounded below by

for a suitable choice of U. Here c(d, v) is given by (8). We recall here that B(0, a) contains
the support of Wand a~, ( ~ ), A(.) stand for the local Dirichlet eigenvalues of 
respectively. Applying now Theorem 1 we obtain the following.

THEOREM 8. - The integrated density of states satisfies

Remarks.

1. It can be proven, cf. Pastur et al. (1992), that in the case when the shape function
W decays at infinity at the rate N » 1 (the so called classical regime),
with a E (d, d + 2), the tails of IDS behave like N(A) - exp~-C(d, v, 
A « 1. The constant C(d, v, W ) depends then on the shape function which is in
sharp contrast with the situation discussed in Theorem 8 where the corresponding
constant depended only on the field intensity v and the dimension d, cf. (35). The
result of the theorem can be extended to cover also the case of the shape function

having a > d + 2 (nonclassical regime).
2. Let us also mention here that an analogous result to Theorem 8 has been obtained

in the dimension two for the magnetic Schrodinger operator

in Erdosz (1998). Here A(xl, x2) _ (-~, 2 ). Erdosz has proved that the

integrated density of states defined for the bottom of the L2-spectrum of Hw, i.e.

B, is given by

6. THE METHOD OF ENLARGEMENT OF OBSTACLES (MEO)

The problems described in Sections 2, 3.1 and 5 highlight the importance of controls
over the local Dirichlet eigenvalues of the open set U. Actually the upper bounds
of the eigenvalues, which correspond to the lower bounds on the quenched or annealed
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asymptotics, are quite easy to derive thanks to the monotonicity property of local eigen-
values with respect to their respective domains. This explains relative simplicity of our
"derivation" of the lower bounds on both quenched and annealed asymptotics given in
Section 2. It is considerably more difficult to obtain lower bounds on They allow
to control St, of Section 2 from above, thanks to the estimates of the type

cf. (3.1.9) of Sznitman (1998).
In the first step we rescale for convenience space and time = E2t with E

corresponding to the inverse of the typical spatial scale of the problem on hand, e.g. the
heuristics of Section 2 suggest that E equals (log in the quenched and t-l~~d+2~ in
annealed case. The true obstacles in the rescaled situation are of size N E. We wish to
obtain lower bounds -the Dirichlet principal eigenvalue of the scaled Schrodinger
operator - 2 0 + E V( ~ ) consider in a region U.

In U we can distinguish three disjoint subregions corresponding to various degrees of
the concentration of obstacles. In the close neighborhood of the first region there is a high
density of obstacles so that the particle entering it "feels" them very quickly and thus gets
trapped in short time. This fact allows to "solidify" those obstacles by imposing there
Dirichlet zero boundary condition, or equivalently to remove this subregion of U from the
consideration without significantly influencing the local eigenvalue.

In the second region the concentration of obstacles is too small to perform the kind
of "surgery" just described without significant distortion of the magnitude of the local
eigenvalue. However it can be proven, cf. the "Volume Control" Theorem 11 below,
that this part of U occupies asymptotically vanishing fraction of volume, as E j 0, so we
can discard it entirely without significantly changing the upper bound on the eigenvalue
coming from the Faber-Krahn isoperimetric theorem, cf. Chavel (1984).
The remaining third part of region U receives no obstacles.
Let us explain now the method by getting an upper estimate of the annealed asymptotic

of St. For simplicity we consider here only the case when d > 3. First we wish to construct
a coarse grained picture of the region where V > 0. Unfortunately the use of a fine scale,
say of order of magnitude of obstacles, will result in too high a number of possible region
shapes. In effect we will not be able to obtain any meaningful control of the survival
probability. This fact provides motivation to enlarge the true obstacles, which are of size
E, say to the size E’, 0  ~  1 in order to lower the combinatorial complexity of the
problem. The density set corresponding to the first region is defined then as the
set having a lot of obstacles in its immediate neighborhood.
More specifically for any fixed integer L > 1 we consider the lattice t~~ := 7 d,

with :_ ~~ylo-° L~. We define D~(c~) as the union of those boxes C from the lattice for
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Here ð > 0, 0  a  ~ are some parameters and cap~ denotes the capacity of the obstacles
lying in the box from the lattice Lk containing C. The parameter no: ( E) determines
the "testing spatial scale" for condition (37) and equals := ~al~g ~. Notice that

~a » E’ » E when ~ ,~ 0.
We have then two crucial spectral controls, cf. Theorems 4.2.3 and 4.2.6 of Sznitman

(1998).

THEOREM 9. - There exists a positive constant C(d, W ) depending only on the dimen-
sion d and the shape function W such that for any M > 0 and o E (0, 03B4C03B3-03B1 (d+2)log L) we

have

where the sup is taken over any cv E S~ and open U C 

To formulate the second result we need a notion of a clearing set. For a given parameter
r > 0 we declare a box C of the unit lattice Z~ to be a clearing box if

If otherwise holds we call C a forest bo~.
Let be the union of all clearing boxes. Suppose that is the R-neighborhood

of We have then the following.

THEOREM 10. - Let M > 0. There exist C(d) > 0, C’(d, M) > l, ro(d, M) E (0, 4)
such that

provided that Ea  r  ro, R/(4r) > C’. sup is taken over all configurations cv and open
sets U.

For the second region we take boxes of size ~ ~03B2 for some 1  03B2  1 from the

appropriate lattice 1Ln1 (e) which are contained in the complement of density boxes and
receive some points of the obstacle cloud. We have then

where sup is taken over all unit size boxes C, 03BA0 > 0 depends on all the parameters
involved except for ~ and w .
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The third and last region is Rd - U BE (cv ) ) . Of course, as we have already
mentioned before, it contains no points of the cloud. Observe that for any unit box C the
sets n C and n C can take no more than and 2~ d~ different possible
shapes respectively. This should be contrasted with the number of possible shapes of the
true obstacle set which is of order of complexity 2e-d » 2~-d~ » when E j 0.

We apply the above framework to obtain an upper bound for the annealed norming
constant St. We start by choosing a large box T :== (-t, t)d.

Let us define now the "essential" event E consisting of those clouds for which 

2c(d, v) and T consists of at most no clearing boxes where

We can easily observe that

From the definition of the clearing set and Theorem 11 we can conclude that

Since the set ~0,1)d - U contains no point of the cloud we can estimate the
left hand side of (38) by

for sufficiently small E (or equivalently for sufficiently large t).
From (38) and (6) we obtain that St is, up to term of order e-2è(d,v)s (s = td+2 ), less

than or equal to

We are ready now to apply Theorems 9, 10 and 11. Set M := 2c(d, v). Define

From Theorem 11 we obtain that
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Observe that the number of possible shapes of U(w ) , V (w ) cannot exceed 2CE ~~, for some
C > 0. For a given deterministic Uo and Vo we consider the event consisting of
those w for which U(w) = Uo, V(w) = Vo. Thanks to (36) we can estimate as follows

In the last line we used Theorem 10. Applying Theorem 9 we obtain then from (39) that

This proves the upper bound in part 2) of Theorem 1.

7. OPEN PROBLEMS

Let us start our review of some of the open questions with the problem of defining a

"right" notion of random geodesics for Brownian motion moving among random traps. We
have already mentioned in Section 4 that da(~, ., w) defined by (17) is a metric. However
it is not a geodesic type of a distance. One can verify that

implies that at least two of x, y, z must be identical. In this context it is worthwhile to

mention the existence of a continuous analogue of the first passage time geodesic given by

Here P(x, y, 1) is the set of Lipschitz paths ~ leading from x to y in time 1. It can

be verified that the analogue of the Shape Theorem 2 holds for oa with the limiting
deterministic norm denoted by ~ca(~). On the other hand one can obtain, cf. Wuthrich

(1998a) that for any Euclidean norm unit vector e
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where is the norm resulting from a shape theorem for the quantities

cf. Theorem 2. One can view for large /3 as some sort of

distance function. In determining the path integral one uses, in light of the fact that the

potential becomes infinite for (3 t +00, only the most "optimal" paths which 
so to say

perform the fastest possible crossings. The proof that the appropriate limit exists 
is not

available yet. It leads also to the question of determining random "pseudo" geodesics, i.e.

tubes of width small in comparison with the crossing distance which contains with large

probability the paths of the CBM. This problem has also connections with better 
formu-

lation of the scaling identity (23) in terms of the intrinsic geodesic instead of Euclidean

cylinders.
In the context of the results presented in Section 5, it is worthwhile to mention that

the approach to the asymptotic of IDS via Tauberian theory is not entirely satisfactory.

A direct proof of the Lifshitz tail could be constructed via counting the number of energy

states lying below certain A for the Dirichlet problem in a sufficiently large "a priori" box.

It is clear that the typical (unit) size associated with the problem is of order of magnitude
Using MEO it should be possible to show that one can in fact put a Dirichlet

boundary on the forest part of the box without distorting significantly the behavior of

IDS for small A. The expected result would probably yield asymptotic of IDS up to higher

order terms, cf. Theorem 8.

Finally let us also mention that the random scales Sw (t) and introduced in the

subsection discussing the pinning effect are rather poorly understood at this time. They

characterize the location of the farthest near minimum of the random functional (20) and

the size of the pocket in which a pinned Brownian Motion is located after arriving in the

vicinity of a relevant near minimum. It would be desirable to get better asymptotic of

those scales than those provided by (19) and (21). In addition it would be of considerable
interest to obtain some better understanding of the magnitude of times at which the

particle arrives at the pinning location. The results in that direction concern mostly the

one dimensional case. A reader is encouraged to consult Section 6.5 of Sznitman (1998)
for details.
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