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DERIVATIVES OF EISENSTEIN SERIES

AND GENERATING FUNCTIONS FOR ARITHMETIC CYCLES

by Stephen S. KUDLA

Seminaire BOURBAKI

52e annee, 1999-2000, n° 876, p. 341 a 368
Juin 2000

The classical formula of Siegel and Weil identifies the values of Siegel-Eisenstein
series at certain critical points as integrals of theta functions. When the critical

point is the center of symmetry for the functional equation, the Fourier coefficients of
the values of the ’even’ Siegel-Eisenstein series thus contain arithmetic information
about the representations of quadratic forms. It is natural to ask for an arithmetic

interpretation of the derivative of the ’odd’ series at their center of symmetry.
I would like to report on my work on a family of identities relating the Fourier

expansions of the derivatives of certain Siegel-Eisenstein series at their center of sym-
metry, on one side, and generating functions for the degrees of 0-cycles on moduli
schemes for abelian varieties, on the other. On the one hand, such identities can be
viewed as generalizations of the Siegel-Weil formula to the case of the derivative. On
the other hand, the identities imply that the generating functions in question, which
are given as power series in q with coefficients arising from arithmetical algebraic
geometry, are in fact the q-expansions of modular forms. This work grows out of re-
sults obtained in collaboration with Steve Rallis [18], [19], [20] and with John Millson
[15], [16], [17]. More recent progress has been made in collaboration with Michael

Rapoport [21], [22], [23] and Tonghai Yang [24], [25]. At present, the identities have
been fully established only in certain special cases as explained below. Nonetheless,
these examples, together with partial results in higher dimensions, suggest the outline
of a more extensive theory.
An additional origin of the investigation described here was the study of the triple

product L-function at the center of the critical strip, in collaboration with Michael
Harris [9] and with Benedict Gross [7]. In particular, a Siegel-Eisenstein series is

a key ingredient in the Rankin-Selberg integral representation of this L-function.
Thus the occurrence of arithmetic geometric quantities in the central derivatives of
the Eisenstein series should reflect their appearance in the central derivative of the

L-function, and hence should provide a relation to the Gross-Zagier formula [8].
Section 1 contains two examples, one recalling the work of Hirzebruch and Zagier

on the modular generating functions for curves on a Hilbert-Blumenthal surface and
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the second illustrating a generating function in the simplest arithmetic case, involving
the derivative of a classical Eisenstein series of weight 1. In section 2, the incoherent

Siegel-Eisenstein series, which should be related to arithmetic generating series, are
defined in general. Section 3,reviews the results of [15], [16] ,[17] on generating functions
for cycles on locally symmetric spaces. These results suggest what one should hope
for in the arithmetic case. In section 4, the generating function for 0-cycles on an
arithmetic surface attached to a Shimura curve is defined, and Conjecture 4.7 relates
it to the central derivative of an incoherent Eisenstein series of weight 2 and genus 2.
The comparison of the nonsingular Fourier coefficients of the two objects is discussed
in sections 5 and 6. Section 7 contains a brief survey of results in higher dimensional
cases as well as a second look at the simplest example of section 1. Some speculations
about further developments are made in section 8.

1. Two examples
2. Central derivatives of Siegel-Eisenstein series
3. Generating functions in the geometric case
4. Generating functions for arithmetic 0-cycles; the case of Shimura curves

5. Non-singular Fourier coefficients
6. Green’s functions and Whittaker functions

7. Further results

8. Final remarks

I would like to warmly thank J.-B. Bost, G. Henniart and M. Rapoport for detailed
comments and advice on the original draft of this report.

Notation

Q, ~, ~ f, AX denote the rational numbers, the adeles, the finite adeles, and the
ideles of Q respectively.
Z = lim Z/nZ, and, for any Z-module M, M = M 0z Z.

n

IF q denotes the finite field with q elements, and Fq denotes an algebraic closure of
it.

( , )p (resp. ( , )A) denotes the quadratic Hilbert symbol for Qp (resp. A).
~ is a fixed nontrivial character of A/Q.
y g = {T = u + iv E > 0~ is the Siegel space of genus g;
f) = is the upper half-plane.

e(x) = e203C0ix

Sym,~ (R) _ {x E = x}, the space of n x n symmetric matrices.



1. TWO EXAMPLES

To fix ideas, it may be useful to consider two examples in classical language. The

first of these illustrates the construction of generating functions for curves on a com-

plex surface. More precisely, it gives a compact quotient version of the Hirzebruch-

Zagier generating function for curves on a Hilbert-Blumenthal surface and a similar

generating function for 0-cycles on such a surface. The second example illustrates

the arithmetic case where cycles on moduli spaces for abelian varieties are defined

by imposing extra endomorphisms. The example involves CM elliptic curves and the

generating function is identified as the central derivative of an Eisenstein series of

weight 1.

1.1. The case of a complex surface.

The results of this section are special cases of joint work with John Millson [15],
[16], [17]. Let V, (, ) be a 4-dimensional rational vector space with a symmetric
bilinear form of signature (2, 2). Let Q(~) - 2 (x, x) be the associated quadratic
form. Fix a lattice L in V on which the form is Z-valued and let

be a subgroup of finite index, where is the identity component of the
Lie group and SO(V)(Q)+ = SO(V)(Q) n The space D of

negative 2-planes in V(R) is isomorphic to the product f) x Bj of two copies of the upper
half-plane and the quotient S = rBD is (the complex points of) a quasi-projective
variety. Now assume that the space V is anisotropic so that S is projective. This

assumption eliminates complications coming from the compactification of the cusps,
which are a significant issue in the Hilbert-Blumenthal case considered by Hirzebruch
and Zagier.

For a vector x E V(Q) with Q(x) > 0, let

be the set of negative 2-planes orthogonal to :r, so that Dx C D is isomorphic to an
embedded upper half-plane Sj C Sj x Sj. The image Z(x, r) of Dx in the quotient S
is a compact curve, the image of the quotient where rx is the stabilizer of

x. Note that the curve Z(x, r) depends only on the r orbit of x. Associated to a

positive integer t, there is a finite sum of such curves

parametrized by the r-orbits in the set of lattice vectors of length t. This is the

analogue of the Hirzebruch-Zagier curve TN on a Hilbert-Blumenthal surface [11]. Let



~Z(t, L)] E H2(S, Q) be the cohomology class of Z(t, L), and let [Z(0, L)] E H2(S, Q)
be the cohomology class of the invariant 

on 5) x 5). As in ~11~, one can form a generating function

where q = e(7), for an auxiliary variable T = u + iv E Sj. The analogue of the result
of Hirzebruch-Zagier ~11~ is a special case of ~15~, ~1~~, ~17~, see Theorem 3.1 below.

THEOREM 1.1. - The generating function L) is an elliptic modular form of
weight 2, valued in H2 (S, C) .

Taking the intersection product with the cohomology class of an arbitrary curve C
on S one obtains:

COROLLARY 1.2. - For a curve C on S, the generating function for intersection
numbers

is a modular f orm of weight 2. Here vol(C) = f C u .

One can also define a generating function for 0-cycles on S as follows. For a pair
of vectors x = [x1,x2] ~ V(Q)2 with matrix of inner products Q(x) 
Sym2(Q), there is an associated cycle Dx = Dxl n Dx2 C D. If Q(x) is nonsingular,
then Dx is a point when Q(x) is positive definite and is empty otherwise. If Q(x) has
rank 1, then D~ = DXl = Dx2 is a curve when ~(~) > 0 (the components xl and x~~
are colinear since V is anisotropic) and is empty otherwise. Finally, if = 0, then
x = 0 and Dx = D. Let Z(x, F) be the image of Dx in the quotient S; again, this
depends only on the F-orbit of x. For T E Sym2(Z), let

If T > 0 is positive definite, Z(T, L) is either empty or a finite sum of points on S. If
T > 0, has rank 1, then Z(T, L) is either empty or a finite sum of curves on S, and
if T = 0, then Z(o, L) = S. Let ~Z(T, L)~ E (S, Q) be the cohomology class of

Z(T, L), where r(T) = rank(T). The generating function in this case is

(l)This is twice the form used in (11~, p.104, since the Z(t, L)’s of (1.1) are twice the corresponding
cycles in [11].



where T E 5)2, the Siegel space of genus 2, and qT = e(tr(TT)). Note that the terms
for singular T’s are obtained by shifting by suitable powers of ~c~~. The coefficients of
this generating function lie in H4(S, C) , and ~15~, ~16~, [17] yield the following result.

THEOREM 1. 3. - The generating f unction 03C62 (T, L) is a Siegel modular f orm o f weight
2 and genus 2 valued in H4(S, C) .

Applying the degree map H4(S, (C) -~ C, one obtains a scalar valued Siegel modular
form.

COROLLARY 1.4. - The generating function

is a Siegel modular f orm of weight 2 and genus 2.

In particular, the positive definite Fourier coefficients of L)) are the de-
grees of the 0-cycles Z(T, L) on the surface S. The volumes of curves on S are taken
with respect to the restriction of the invariant of (1.2) and

Theorems 1.1 and 1.3 are proved by constructing a theta function 81 (T, L) for T E Sj ,
resp. 92(T, L) for T G Sj2, valued in closed (1, I)-forms, resp. closed (2, 2)-forms
on S. The generating function is the cohomology class of this theta function, i.e.,

L)~ for i = 1, 2, and hence is modular. In addition, the generating
function of Corollary 1.2, resp. Corollary 1.4, is obtained as the integral of B1 (T, L)
over the curve C, resp. 82 (T, L) over S. For suitable F’s, this last integral over S is a
constant multiple of the group theoretic integral of the theta function which occurs in
the Siegel-Weil formula, and hence coincides with a special value of a Siegel-Eisenstein
series of genus 2 at the point s = 2, [13] and Proposition 3.2 below.

COROLLARY 1.5. - There is a nonzero constant c such that

for a suitable Siegel-Eisenstein series E(T, s, L) of genus 2 and weight 2.

In the case in which S is a product of modular curves, such a geometric interpre-
tation of the Fourier coefficients of a Siegel-Eisenstein series was observed by Gross
and Keating [6].



1.2. Interlude.

More general results of this type, [15], [16], [17], and [13], concerning generating
functions for cycles of codimension n on Shimura varieties X defined by rational

quadratic forms of signature (m - 2, 2) are discussed in section 3 below. Note that
the complex dimension of X is m - 2. The main aim of this report is to explain the
first steps in establishing a similar theory in the arithmetic case. Roughly speaking,
this means the following. First, one wants to consider cycles of codimension n on

integral models x of the Shimura varieties X and their classes in the arithmetic Chow

groups CH (~), [4]. For 2  m  4, integral models can be obtained as moduli

spaces of suitable abelian varieties, and cycles can be defined as the loci where the
abelian varieties in question are equipped with additional endomorphisms of a certain

type. The theta functions valued in the deRham complex are not available in this

context, and so it is not clear at present how to define generating functions for cycles
of arbitrary codimension. If one considers 0-cycles, however, one may apply the

arithmetic degree map deg : CH (x) --j R. One may then look for an analogue
of Corollary 1.5 and Proposition 3.2, where the Siegel-Eisenstein series will now have

genus n = m 2014 1 and the critical point will be so == ~- 2014 n21 = 0, i.e., the central

point on the real axis for the functional equation of the Eisenstein series. Moreover,
it turns out that the ’correct’ Eisenstein series of genus n and weight will have a

zero at this point, so that one should look at its first derivative E’(T, 0, L). The case
of the arithmetic surfaces attached to Shimura curves is discussed at length below in
sections 4-6, and the analogue of Corollary 1.5 is given in Conjecture 4.7. The simplest
example, however, occurs for m = 2. This case involves only classical objects, e.g.,

elliptic curves with complex multiplication and Eisenstein series of weight 1 for SL2.

1.3. Derivatives of Eisenstein series of weight 1.

This section describes the simplest case in which the derivative at s = 0 of an

Eisenstein series can be identified with a generating function for the arithmetic degrees
of 0-cycles on a moduli scheme. These results are joint work with Michael Rapoport
and Tonghai Yang [24]. Fix a prime d = 3 mod 4 with d > 3, and let k = Q(B/~) be
the corresponding imaginary quadratic field with ring of integers C~~ and associated

Dirichlet character xd. Let

where L(s, xd) is the Dirichlet L-series of xd. For a nonzero integer n e Z, let p(n) be
the number of ideals in (~~ of norm n. For example, note that, for a prime p, p(p) = 0
if p is inert in k, p(p) = 2 is p is split in k, and p(d) = 1.



There are two normalized Eisenstein series of weight 1 for r = SL2(Z) attached to
k. For T = u + iv E .~, and s E C with Re(s) > 1, let

The entire analytic continuations of these series in s satisfy the functional equations

A general construction of series of this sort is described in section 2 below. A case of
the Siegel-Weil formula due to Hecke describes the value at s = 0 of the even series:

where hk is the class number of k, the ideal a runs over representatives of the ideal
classes of k, and 9(T, a) is the binary theta series attached to a. For the odd series,
E* (T, 0) = 0, and the function of interest is the (negative of the) leading term

THEOREM 1.6. - The modular form d) of weight 1 has Fourier expansion

where, f or t > 0,

where the sum runs over primes p inert in k,

is the exponential integral.



The idea now is to give an interpretation of these coefficients as the degrees in
the sense of arithmetic geometry of certain 0-cycles on the coarse moduli scheme 
for elliptic curves (E, L) with complex multiplication ¿ : End(E) by Ok. This
scheme over C~~ can be identified with where H is the Hilbert class field
of k. For such a curve (E, /.), the space of special endomorphisms is the Z-module

This space has a Z-valued quadratic form Q defined by x2 = -(~(x) ~ idE. For
t E Z, let Z(t) be the coarse moduli scheme whose points over an algebraically closed
field correspond to triples (E, c, ~) where x E V(E, c) with Q(x) = t. The scheme
Z(t) - M is the locus of (E, L)’s with an extra multiplication, anticommuting with
the action of Ok. Such extra endomorphisms can only exist for a supersingular curve
E in characteristic p for a prime p which is not split in k. Then Z(t) = Spec(.R(t))
where R(t) is an Artin algebra in which p is nilpotent. Let

The second main result of [24] is a calculation of this degree; this calculation depends
in an essential way on the results of Gross [5].

A sort of geometric interpretation of the remaining terms will be discussed in
section 7 below, cf. also [24].

2. CENTRAL DERIVATIVES OF SIEGEL-EISENSTEIN SERIES

A general construction of ’even’ and ’odd’ Siegel-Eisenstein series is best described
in representation theoretic language, and is connected with the Siegel-Weil formula at
the central critical point. These series, which will be called coherent and incoherent
series respectively, for reasons explained below, will have integral or half-integral
weight depending on the parity of the dimension of the relevant quadratic spaces.
Hence it is necessary to work on the metaplectic group.

Let G = Sp2n be the symplectic group of rank n over Q and let P = MN be the
maximal parabolic with Levi factor M ~ GLn and unipotent radical N ~ Symn. Let



where is the twofold metaplectic cover of and let PA and MA be
the subgroups of GA corresponding to P and M. Let GQ be SP2n(Q) for n odd resp.
the image of this group in Mp2n (A) under the canonical splitting, if n is even. For

each place p  oo of Q, there are groups Gp, Pp and Mp, defined analogously.
A quadratic character x of A" /Qx determines a character x = x’~ of MA, trivial on

MQ = MA n GQ, and for s E C, one has the degenerate principal series representation

of GA. (The character depends on the fixed choice of the nontrivial additive
character ~ of A/Q in the metaplectic case.)

For E I (s, x), the Siegel-Eisenstein series is defined for Re(s) > n21 by

From the standard theory of Eisenstein series one knows that this function has a
meromorphic analytic continuation to the whole s-plane and satisfies a functional
equation relating s and -s. In addition, it has no poles on the line Re(s) = 0
(unitary axis). In particular, there is an intertwining map

from the degenerate principal series at s = 0 to the space A(G) of automorphic forms
on GA .

The image and kernel of this map can be described in terms of representations
associated to quadratic forms as follows.
A rational vector space V of dimension m with a nondegenerate quadratic form Q

determines a quadratic character xV of AX jQx by

where ( , )~ is the global quadratic Hilbert symbol. For such a space (V, Q), there is
a Weil representation cvv of GA on the Schwartz space determined by ~.
This gives rise to a GA- intertwining map

where so = 2 - Specializing to the case xv = x and m = n + 1, one obtains an
irreducible constituent II(V) = w of 1(0, x).

Similarly, for each place p  oo, there is an analogous local construction which
yields an irreducible constituent IIp(Vp) of the local induced representation 7p(0, xvp )
of Gp associated to each quadratic space Vp over Qp of dimension n + 1 and character

Then, for a global space V, one has



where Vp = V 0Q Qp and the primes indicate the restricted tensor products. For
a finite prime p, there are precisely two possible quadratic spaces U+ and Y~ over
Qp, for a fixed n and character ~p. They are distinguished by their Hasse invariants
Ep( p~) _ ~l, and, in fact, [19],

For p = oo, the quadratic spaces of dimension n + 1 and character x~ are deter-
mined by their signature, and fall into two groups according to their Hasse invariant.
The local induced representation h (0, Xoo) is the direct sum of the corresponding

[18]. For example, for n = 4 the quadratic spaces over I~ of signa-
tures (5,0), and (1,4) have Hasse invariant +1, while that of signature (3, 2) has
Hasse invariant -1, and

in the obvious notation. Here x~ = 1.

If a collection of local quadratic spaces C = {Vp} is the set of localizations of a

global space V, then the product formula for the Hasse invariants asserts that

Such a collection and the Eisenstein series associated to it will be called coherent. On
the other hand, the collection C of local quadratic spaces obtained by choosing one
prime po (e.g., po = oo) and switching the space Vpo to a space Vpo with the opposite
Hasse invariant has

so that such a collection cannot be the set of localizations of any global quadratic
space. In this case, the collection C and the Eisenstein series associated to it will be

called incoherent. The irreducible admissible representation

of GA is also a constituent of 1(0, x). Then there is a direct sum decomposition

where V runs over all global quadratic spaces of dimension n + 1 and character x,
and C runs over all incoherent collections, wh ere E(C) _ -l, as just described. One
then obtains a description of the kernel and image of the map E(0) in terms of the
II(V)’s and II(C)’s, [14], [20], [9].



THEOREM 2.1. - (i)

(ii) Each automorphic representation II(Y) in the image

coincides with space of (regularized) theta integrals

attached to the global quadratic space V. Here, for p E g E GA and

h E 

The integral I (g, ~p) must be defined by a regularization procedure [20] whenever
V is isotropic.

Part (ii) of Theorem 1.2 is essentially the Siegel-Weil formula in the present context,
[20], [33]. Note that the theta functions involve global arithmetic, e.g., the number
of solutions of diophantine equations of the form Q(x) = T for T E and

x E Ln for a lattice L c V(Q), whereas the Eisenstein series is constructed from local
data.

Problem. - What is the arithmetic content of the first derivative E’(g, 0, ~) when
~ E n(C) with E(c) _ -1?

Remark 2.2. - The results to be discussed in the remainder of the talk suggest an
answer to this question, at least for the following particular case:

Let V be a rational quadratic space, as above, with signature (n - 1, 2), and
let C be the collection of local quadratic spaces obtained from by replacing
Voo by the space V~ of signature (n + 1, 0). Let E S((V~)n) be the Gaussian

= and let ~~~+1)/2(s) E be the corresponding sec-
tion ; it is the unique eigenvector for K~ of weight nt1. For any cp E 

with corresponding section 03A6f(s) E 

Then the central derivative E’ (g, 0, ~) should be related to a generating function for
the degrees of 0-cycles on an integral model of the Shimura variety associated to the
group GSpin(V).



Remark ~. ~. - For comparison with the generating functions considered below, it is
convenient to write the Eisenstein series in a more classical language. For T = u+iv E

the Siegel space of genus n, and for cp E let

’ 

3. GENERATING FUNCTIONS IN THE GEOMETRIC CASE

This section describes the results of [15], [16], [17], and [13] on generating functions
for the cohomology classes of special cycles in the case of O(n - 1 , 2) , special cases of
which were described in section 1.1. These results suggest what one might hope to

prove in the arithmetic case.

For a rational quadratic space V of signature (n -1, 2), let H = GSpin(V) and let
D be the space of oriented negative 2-planes in V (I~) . The space D is isomorphic to
two copies of a bounded domain of type IV in [10], [28], and the group 
acts on it by holomorphic automorphisms. For a compact open subgroup K C H(Af),
the orbit space

is the set of complex points of a quasi-projective variety XK defined over Q, the
Shimura variety attached to H, D and K. The variety XK is in fact projective if V

is anisotropic and smooth if K is sufficiently small.

be the set of z’s which are orthogonal to all components of x. If the matrix T =

Q(x) = 2 ((xi, x~)) is positive definite, i.e., if the components of X span a positive

r-plane, then Dx has complex codimension r in D. If, in addition, x E then

xl is a rational quadratic space of signature (n - r - 1,2), the stabilizer Hx of x in
H is isomorphic to and there is a natural map of Shimura varieties

giving a cycle of codimension r on XK(C) . Given a function p E and

T E Symr(Q»a, there is a weighted linear combination Z(T, cp) of such cycles ~~3~,
and the resulting cohomology classes ~Z(T, E H2r (X K ), where H* (X K) is the

cohomology of XK(C) with complex coefficients [17]. Examples are given by (1.1)



and (1.4) in section 1.1, where cp is the characteristic function of (L)r C for

L = L 0z Z. If T is only positive semi-definite with rank(T) = r(T), the associated
cycles have codimension r(T) and their cohomology classes lie in (X~).

To form a generating function, let T = u + iv E Sjr, the Siegel space of genus r,
and let qT = e(tr(TT)).

THEOREM 3.1 ([17]). - For p E and for a suitable choice of a Kahler

form w on XK (C), the generating series

is the q-ezpansion of a holomorphic Siegel modular form of weight and genus r

valued in H2r (X K ) ~

The proof of this result depends on a construction of a theta function taking values
in the space of closed 2r forms on XK (C) . This method is quite general and applies
to the locally symmetric spaces associated to 0(p, q), 7(p,) and Sp(p, q), cf. [15],
~16~, and ~17~. °

Specializing to the case where V is anisotropic and r = n -1 and applying deg :
H2(n-1) (XK) .~ (~~ one obtains a holomorphic Siegel modular form of genus n - 1
and weight n 21,

By the Siegel-Weil formula [20], this form is, in turn, a value of an Eisenstein series.
More precisely, let

The machinery described in section 2 carries over, except that the map Av :
S(V(A)) --~ I(so, x) now takes values in the induced representation at the point
so = ~. Let E(g, s, ~) be the Siegel-Eisenstein series associated to the section

n+1

(s) ~ ~ f(s), = w(cp) for the weight function ~p E 
The Siegel-Weil formula for the anisotropic space V then implies the following
generalization of Corollary 1.5 above [13] :

PROPOSITION 3.2. - For T = u + iv E and for a weight function p E



In particular, the positive definite Fourier coefficients of this Eisenstein series are the
degrees of the (weighted) 0-cycles Z(T, ~p) on XK.

4. GENERATING FUNCTIONS FOR ARITHMETIC 0-CYCLES:
THE CASE OF SHIMURA CURVES

This section describes the generating function for the arithmetic degrees of 0-cycles
on the arithmetic surface X associated to a Shimura curve X over Q. The series of
interest will be analogous to the series L)) for a complex surface given in
Corollary 1.4 and will have the form

where T = ~c + iv E ~2 and the are certain classes in the top
arithmetic Chow group of the arithmetic surface ~, [4]. As in the second example of
section 1, the definition of the relevant cycles will depend on a modular interpretation.
To give a more detailed explanation, it is convenient to begin with the geometric
situation of section 3.

Fix an indefinite division quaternion algebra B over Q. The space V = {x E B ]
tr(x) = 0~, equipped with the restriction of the reduced norm of B, is a three dimen-
sional quadratic space over Q of signature (1, 2). The group H = GSpin(V) acts
on V by conjugation. The Shimura curve XK associated to a compact open subgroup
K c H(A f), is a moduli space for abelian surfaces with O B-action and level structure,
where O B is a maximal order in B. For example, suppose that K = (OB0zZ) x. Then
X = X K is the (coarse) moduli scheme over Q for pairs (A, L) consisting of an abelian
surface A together with an action L : C~B ~ End(A) of 0 B, and X((C) ^~ where

rB = (~B)+ is the group of norm 1 units on OB.
The 0-cycles on X defined in section 3 can also be defined by specifying additional

endomorphisms.

DEFINITION 4.1. - For an abelian surface (A, e) with OB-action, the space of special
endomorphisms is

This space is equipped with a Z-valued quadratic f orm defined, for a special endomor-
phism x E V(A, L), by ~2 = -Q(x) . lA.

DEFINITION 4.2. - For t E Z>o, the special cycle Z(t) is the locus of triples (A, c, x)
where x E V(A, c) with Q(x) = t.



In fact, one then has Z(t) = Z(t, p) where Z(t, p) is the 0-cycle on X = XK defined
in section 3 for the weight function p E S(v(~ f))K, the characteristic function of the
set V(Af) n (OB ~~ 

The 0-cycle Z(t) on X is rational over Q and is analogous to the set of CM
points on the modular curve associated to the imaginary quadratic field Q(V~). For
T = u + iv G .~, the upper halfplane and q = e(T), the degree generating function
(3.1) in the present case

is the value at s = 2 of an Eisenstein series of weight 2 for a congruence subgroup
of SL2(Z), cf. Proposition 3.2. Here vol(X) is the volume of 0393BB with
respect to - £ y-2 dx  dy.
Now consider the arithmetic case. Let X be the coarse moduli scheme over S =

Spec(Z) for abelian surfaces (A, L) with OB-action satisfying Drinfeld’s ’special’ con-
dition [2]. The arithmetic surface X has generic fiber 3~Q = X, the canonical model of
the Shimura curve; 3~ has good reduction at all primes p ~ D(B), where D(B) is the
product of the primes p such that Bp = B 0Q Qp is a division algebra. The points
of  over an algebraically closed field k correspond to isomorphism classes of (A, L)’s
over k.

For an abelian scheme (A, L) over a connected base, the space of special endomor-
phisms L) with its Z-valued quadratic form Q is defined as before.

DEFINITION 4.3. - For T E the arithmetic special cycle (T) is the lo-
cus of triples (A, L, x), where ~ _ x2~ E V(A, L)2 is a pair of special endomorphisms
xi E V(A, L) with Q(x) = - T.

PROPOSITION 4.4 ([23]). - The cycle 3(T) is either empty or is supported in the set
o f supersingular points of a single fiber where p is determined by T, as described
in Lemma 4.5 below. D(B), or if but p ~ T, then 3 (T) is a 0-cycle on
Xp. If and then 3(T) is a union, with multiplicities, of components of
the fiber ~p (and some additional embedded components).
Sketch of proof. - The proof of this result illustrates the way in which the basic
structure of the cycle 3(T) is determined by the space v (A, L) . Observe that, for a
geometric point (A, L) of  and viewing A up to isogeny,

for an elliptic curve E. In the second case, C is an imaginary quadratic
field which splits B, and, in the third case, which occurs only in characteristic p > 0,



End° (E) ^~ B is the quaternion algebra over Q ramified at oo and p. In this case,
write where B(p) is the definite quaternion algebra over Q whose
local invariants differ from those of B precisely at oo and p. Then, in the three cases,

Q, C, and B(p) respectively, and

It follows 0, i.e., the cycle 3(T) has no points in characteristic 0. If

3(T) meets the fiber 3ip at p, then 3(T) n 3ip is contained in the supersingular locus
of 3ip, and the rational quadratic space represents T, i.e., there exists a pair of
vectors x = (Q) such that (x) = T. This last condition implies
that 3(T) is supported in a single fiber, due to the following simple observation.

LEMMA 4.5. - (i) The quadratic spaces have the same determinant as V, i.e.,
= det(V) E ~" ~~" ~2.

(ii ) For a given T E Sym2(Q) with det(T) ~ 0, there is a unique three dimensional
rational quadratic space VT with det(VT) = det(V) which represents T; the quadratic
form on VT has matrix

Thus, if VT is not isomorphic to any of the V(p)’s then 3(T) is empty, while if
for some p, then 3(T) is supported in the supersingular locus of ~p.

DEFINITION 4.6. - A matrix T G will be called irregular 2 f VT ~ V(p)
where p D(B) and Otherwise T will be called regular.

The assertions about the irregular case require a more detailed argument, using
the p-adic uniformization of the formal completion of [23]. D

~2014~2
The arithmetic Chow group CH (3i) is generated by pairs (3, g) where 3 is a

0-cycle on  and g is a smooth (1, I)-form on X(C), modulo a suitable equivalence,
[4], [32]. There is a degree map deg : -~ ?.

For T E regular, let

Then 3(T) = Spec(R(T)) for an Artin ring R(T) in which p is nilpotent, and the
corresponding positive definite coefficients of the generating function (4.1) are given
by



For nonsingular T E Sym2(Z) with signature (1,1) or (0,2), set

where g (T, v ) is a smooth ( l,1 )-form, depending on T and v, which is described in
(6.3) of section 6.

Finally, if T G has rank 1, then, in effect, only one special endomor-
phism had been imposed, so that there is an associated divisor 3(T) on ~. A Green’s
function v) for this divisor is constructed in section 6, below. This function

continues to make sense when T  0. There is a resulting class

where 3(T) is empty when T  0. Let Wx be the relative dualizing sheaf of  over
Spec(Z), with metric coming from the uniformization of by D, viewed as an
element of CH (~) via the isomorphism and let

This class plays a role analogous to that of ~cv~, the Kahler class, in section 3 above.
Using the arithmetic intersection pairing CH (~) x CH - the full

arithmetic generating function (4.1), analogous to ~deg given in Corollary 1.4 and
(3.1) in the geometric case, is then

where suitable terms have been added(2) for irregular T.
In the present situation, the construction of Remark 2.3 yields an incoherent Eisen-

stein series E(T, s, cp) of weight 2 associated to p E S(V (~ f)2), the characteristic
function of V (~ f ) ) 2.
CONJECTURE 4.7. - The generating function ~deg (T) is a Siegel modular form of
weight 2, more precisely

The main results in this direction assert that many of the Fourier coefficients of
the two series coincide. Recall that D(B) is the product of the primes p at which Bp
is division. Also put v~°°~ = V, so that there is a rational quadratic space associated
to each place of Q. By Lemma 4.5, a given nonsingular T E Sym2(Q) is represented
by at most one of these spaces. If T is positive definite, this space, if it exists, must

~2~ by a still not very satisfactory procedure



be one of the for a finite prime p, while if T has signature (l,1) or (0, 2), then
this space can only be V = V~°°> . -

THEOREM 4.8 ([14]). - Suppose that T E is nonsingular.
(i) If T is not represented by any ~~r~, then the T-th Fourier coefficient of both

sides of (4.10) vanish.

(ii) If T is represented by with p ~ 2D(B), including p = oo, then the T-th
Fourier coefficients of the two sides of (4.10) agree, i.e.,

In fact, work in progress [25] should extend (4.11) to all T of rank 1.
The proof of (ii) is similar to the proof of the main identity at the heart of the

Gross-Zagier formula [8] ; it amounts to an explicit computation of the two quantities,
one from arithmetic geometry, the other from automorphic forms. A sketch of the
proof is given in the next two sections.

5. NON-SINGULAR FOURIER COEFFICIENTS

The Fourier coefficients of the central derivative of an incoherent Eisenstein series

E(T, s, p) associated to a rational quadratic space V of signature (n -1, 2), as defined
as in Remark 2.3, have an interesting structure.

For each prime p  oo, define a quadratic space of dimension n + 1 and the

same determinant as that of V as follows. Let V(°) = V. For a finite prime p, 
has signature (n + 1,0) and local Hasse invariants at finite primes f determined by

For each nonsingular T E Symn(Q), there is a rational quadratic space VT of dimen-
sion n + 1 and the same determinant as V defined by equation (4.3).

It is well known that if the function cp = ~)poo~p ~ is factorizable

and Re(s) > n21, then each nonsingular Fourier coefficient of E(T, s, p) is given by a
product

of local (degenerate) Whittaker functions, [20]. In classical language, the archimedean
factor is a confluent hypergeometric function of a matrix argument studied by Shimura

[30], while the product over the finite primes is the Siegel series.



PROPOSITION 5.1 ([14], section 6). - (i) If VT is not isomorphic to any Y~p~, then

(ii) If VT ~ V(p) for a finite prime, then WT,p(O, pp) = 0 and

where A~T ~ (~p) is, up to a factor at p, the Fourier coefficient of a theta integral (c f .
(2.2)~ attached to 

(iii) If VT  = V,

where is the T-th Fourier coefficient of a theta integral attached to V.

Idea of proof of Theorem 4.8 for p  oo. Restricting to the case n = 2 as in

section 4, suppose that T E Sym2(Z) is nonsingular with VT  for a finite prime
p ~ 2D(B). In this case, using Proposition 5.1, the identity to be proved in (ii) of
Theorem 4.8 amounts to

This identity, which is of the same nature as the identities between heights and
Fourier coefficients involved in the Gross-Zagier formula, is proved by computing the
two sides explicitly.
On the geometric side, since T is regular, 3(T) is a collection of supersingular

points on each counted with a certain multiplicity. This multiplicity is the length
of the local Artin ring associated to the deformations of the triple (A, c, x), where
x is a pair of special endomorphisms. By the Serre-Tate Theorem, one can pass to
the deformations of (A(p), c, x) where A(p) is corresponding p--divisible group with
the action ¿ of (DB)p = O B 0z Zp ~ M2(Zp) and a pair of special endomorphisms x.
Since A is isogenous to E x E for a supersingular elliptic curve E, one reduces, via the
idempotents in to the problem of deforming (E(p), x) for a pair x = 
of endomorphisms of the p-di visible group of such a curve. Note that E(p) is a

p-divisible formal group of dimension 1 and height 2. The length of the associated
Artin ring is then obtained by specializing a beautiful result of Gross and Keating [6].

They consider the deformations of a collection (X, X’, y) where X and X’ are formal
groups of dimension 1 and height 2 over Fp and y = y2, y3~ is a triple of nonzero
isogenies y2 : ~ -~ X’. Note that the universal deformation ring of the pair (X, X’) is
W[[t,t’]], where W = is the ring of Witt vectors of Fp.

PROPOSITION 5.2 (Gross-Keating, [6], Proposition 5.4). - Suppose that the matrix
Q o f inner products of the triple y = y2, y3~ with respect to the degree quadratic
form on Hom(X, X’) has invariants al  a2  a3. For p odd, this means that



Q E Sym3(Zp) is equivalent to diag(Elpal, ~2pa2, E3pa3) for units E2 E Z p.
Then the length of the deformation ring of (~, X’, y) is given by:

Specialized to the case where YI is an isomorphism, so that al = 0, one obtains
an explicit formula for the multiplicity ~~ (T ) of a point in 3(T), and, in particular,
observes that this multiplicity depends only on the GL2(Zp)-equivalence class of T,
and not on the particular point. Thus, the left hand side of (5.2) has the form
(~p(T) ~ ( # points in 3(T))).
On the other hand, for 2, the quantity WT,p(s, on the analytic side of

(5.2) can be computed from the result of Kitaoka [12]. More precisely, the quadratic
form on the lattice Lp = (C~B ~ Zp) n Vp has matrix So = diag(l, 1, -1) for a suitable
basis. Let

be the quadratic form obtained from So by adding r hyperbolic planes. Then

for a root of unity where

is the classical representation density of T by Sr as defined by Siegel, [12]. This

quantity has the form T ) = T ) for a polynomial Ap (X, T ), which was
first calculated in this case by Kitaoka ~12~ ~3~ . When T is such that pp) = 0,
and T E Sym2(Zp) is G’L2(Zp)-equivalent to diag(Elpa, E2pb), then Kitaoka’s formula
yields

~~ Recently, it has been calculated in general, for p ~ 2, by F. Sato and Y. Hironaka, [29].



Remarkably,

where 6p (T) is the multiplicity computed via the Gross-Keating formula! Finally, by a
straightforward counting argument, the number of points in 3(T) is given by A~T ~ (cp),
up to simple factors, independent of T, which compensate for the extra p2 - 1 and
the factor vol(X(C)). 0

6. GREEN’S FUNCTIONS AND WHITTAKER FUNCTIONS

The classes 3(T, v) in the arithmetic Chow groups of integral models of Shimura
curves involve the Green’s functions defined in [14], section 11. This section describes
the construction of such functions. First, suppose that V is a rational quadratic
space of signature (~ 2014 1, 2), as in section 3, and recall that for t E Q>o and for cp E

there is a divisor Z(t, p) on XK, given as a weighted sum of the images
in XK of the divisors Dx in D. A Green’s function of logarithmic type for Z(t, p)
in the sense of Gillet-Soule [4] can be constructed by averaging rapidly decreasing
Green’s functions for Dx’s. Next, in the case of a Shimura curve (n = 2), the smooth
(1,1)-form g(T, v) used in the construction of the terms for indefinite T’s in the
generating function of arithmetic degrees is defined via the star product. The notation
is that of section 3.

For an oriented negative 2-plane z E D, let pr~ be the projection to z with respect
to the orthogonal decomposition V(R) = z + For x E V(R), 0, the quantity

is nonnegative and vanishes if and only if z E Dx . Let

is the exponential integral. Since -Ei(-r) decays exponentially as r goes to infinity
and behaves like - log(r) + 0(1) as r goes to 0, the function ç(x) has a logarithmic



singularity along the (possibly empty) divisor Dx and decays very rapidly away from
Dx. In addition, it satisfies the Green’s equation:

for a smooth (1, I)-form on D, and hence defines a Green’s form of log type for
Dx, in the sense of Gillet-Soule.

Note that R(hx, hz) = R(x, z) for h E so that hz) = z) as
well. For v > 0 and t E Q>o, and a weight function p E the sum

depends only on the orbit H(Q)(z, h)K of the point (z, h) E D x H(~ f). Thus,
g(t, v, p) defines a Green’s function of logarithmic type for the divisor Z(t, defined
in section 3 (for r == 1), on X K .

In the case n = 2, for the space V considered in section 4, and a pair of vectors
x = ~2~ E such that 0, the integral

of the *-product of the associated Green’s functions [4] is well defined and satisfies

A(hx) = A(x) for all h E This implies that A(x) actually only depends
on the matrix of inner products Q(x), i.e.,

One can view A(x) as the ’archimedean height pairing’ of the 0-cycles D~1 and D;~~
in D. In fact this quantity has the following rather surprising additional invariance:

THEOREM 6.1 ([14], section 13). - For any k G SO(2), and any x,

Note that, even when Q (xl ) > 0 and Q (x2 ) > 0, so that one initially has a pair of
0-cycles D~1 and Dx2 in D, eventually, after rotation, one encounters a pair of vectors
xl and x2 with Q(x2)  0, so that the cycle Dx2 has vanished (!) and is replaced,
in some sense, by the geodesic arc {z E E z ~ . Nonetheless, the ’archimedean
height pairing’ A(x) is invariant under such a deformation.

It follows that, writing v E as v = ata for a G the quantity
A(xa) depends only on v and not on the choice of a. Then, for a nonsingular T E
Sym2(Z), one has a smooth (1, I)-form



on X, where p = y-2 is the characteristic function of the set 

and rB = C~B . This is the form used in the definition (4.6) of 3(T, v) when T has
signature (1,1) or (0,2). Note that the sum is nonempty precisely when V represents
T.

Idea of proof of Theorem 4.8 f or p = oo. Again using Proposition 5.1, the identity
to be proved in this case is

The left hand side is simply

where v = ata, as before and Ao is given by (6.2). Then some transformations of the
integral representations of the matrix argument confluent hypergeometric function of
Shimura’s paper [30] together with a manipulation of the integral defining A shows
that

where Coo is an innocuous constant. Again, the sum in (6.4) counts pairs of lattice vec-
tors modulo f B and coincides with the Fourier coefficient of the theta integral,
up to a constant which absorbs Coo and provides the required vol(X(C)) factor. D

7. FURTHER RESULTS

One would like to identify the central derivative E’ (T, 0, cp) of the incoherent Eisen-
stein series (2.3) as a generating function for arithmetic degrees in the general case. In
the series of papers [24], [22], [21] the cases n = 1, 3 and 4 are considered. In each of
these cases (and also for n = 5), the Shimura variety X associated to H = GSpin(V)
is of PEL type, i.e., can be interpreted as a moduli space for abelian varieties (A, c)
with a specified endomorphism ring, due to the existence of an accidental isomor-
phism. This allows one to give a modular definition of an integral model of XK,
at least over for a suitable N depending on the compact open sub-
group K. For each abelian scheme (A, c), there is a space of special endomorphisms
V(A, c), equipped with a Z-valued quadratic form. Special cycles on  are then de-
fined by imposing collections of such endomorphisms, as in section 4 and the example
of section 1.3 above.

The case n = 1. This case is considered in [24] and is described in classical language
in section 1.3 above. From the point of view now developed it amounts to the following.
An imaginary quadratic field k = Q(~/~) with quadratic form Q(x) = 
gives a rational quadratic space (V, Q) of signature (0,2). The group GSpin(V) is



then the torus over Q with and  ~ Spec( OH) is the restriction
of scalars to Spec(Z) of the coarse moduli space over C~~ of elliptic curves (A, c) with
complex multiplication by Ok. In this case the space of special endomorphisms (1.6)
is

This space is zero unless A is a supersingular elliptic curve in characteristic p, where

p is not split in k, in which case, V(A, c) ~~ ~ ^~ the rational quadratic space
given by VCp) == ~ with quadratic form = For T = u + iv E Sj, the

generating function is then given by

Here, for t > 0, 3 (t, v) = (3(t) , 0) E CH1 (3~) where .~(t) is the locus of (A, c, xl ’s where
x with Q(x) = -x2 = t. For t  0, ~(t, v) _ (0, g(t, v)) E CH1 (3~), where
g(t, v) is the function on x given by (6.1). Here K ~ k.
Note that in this case, D consists of two points (via the two possible orientations of
V(R)), and R(x, z) = so that z) _ precisely as

in [24]. This gives an improved version of Theorem 1.7 :

THEOREM 7.1 ([24]). - When d - 3 mod (4) is a prime and for a suitable definition
of the constant term deg(3(0, v)),

where cp is the characteristic function of Ok C Y (~ f ) and vol(X ((C) ) = hk is the class
number of k.

The result is proved by a direct calculation of both sides, using the results of

Gross [5] to compute multiplicities on the moduli space. The restriction to prime
discriminant is only made to streamline the calculations.

The higher dimensional cases treated so far exhibit some new phenomena.
The case n = 3. This case is considered in [22]. The incoherent Eisenstein series

(2.2) associated to a rational quadratic space of signature (2, 2) will have weight 2
and genus 3. To define the relevant moduli problem and generating function for

arithmetic degrees, let C(V) = C+ (V ) C C- (V) be the Clifford algebra of V with its

22-grading. Then the center of C+ (V) is a real quadratic field k (possibly ~ _ ~ ~ ~),
and C+(V) has the form Bo for an indefinite quaternion algebra Bo over Q. The

associated Shimura variety X is a surface whose complex points parametrize polarized
abelian varieties (A, c) of dimension 8 with an action of a maximal order in C(V) 0 k.
Included among the X’s are products of modular curves (k _ ~ ~ Q, Bo = A12(Q)),
products of Shimura curves (k _ ~ ~ Q, Bo division), Hilbert-Blumenthal surfaces

( k a field, Bo = M2(Q)) and their twisted (quaternionic) analogues (k a field, Bo
division). An integral model X of X over is defined as the moduli



space of polarized abelian schemes with such an action, level structure, etc. The

space of special endomorphisms of a given (A, c) is then

where * denotes the Rosati involution of A. As before, this space has a Z-valued

quadratic form defined by x2 == Q(x) . lA. Again, a key point is that, for (A, c)
supersingular, the space V (A, c) V(p) is the 4 dimensional rational quadratic
space defined by (5.1 ) above. For T E the special cycle 3(T) is the locus
of (A, c, xl’s where x E V(A, c)3 with Q(x) = T. This cycle is either empty or is

supported in the supersingular locus ~p s~ of the fiber at p for the unique prime p for
which Here one assumes that p ~ N, so that p is a prime of good reduction;
in particular, p is not ramified in k.

If a prime p ~ N splits in k, then the supersingular locus ~~ s~ consists of a finite
set of points. If p is inert in k, then ~p s~ has dimension 1 and is, in fact, a union of
pI’S [31], [22], section 4, crossing at Fp2 rational points.

Let cp E be the characteristic function of for a lattice L c V(Q)
such that Lp is self dual for all and let E(T, s, cp) be the associated incoherent
Eisenstein series (2.3) of weight 2.

(i) If VT is not isomorphic to any is empty and ET (T, 0, cp) = 0.
(ii) If VT ~ V(p) for a prime p  N which splits in k, then there is a class 3(T) _

(3 (T) , 0) E CH3 (~) and

for a constant C independent of T.

(iii) Suppose that VT  for a prime p ~ N which is inert in k. If p ~ T, then

3(T) consists of a finite number of points, there is a class (T) _ (3(T) , 0) E 
and, again,

then 3(T) is a union of components of the supersingular locus ~~ S~ .

Here, T E will be called irregular if VT  with p ~ N inert in k
and p ~ T . The situation for e.g., p ramified in k, has not yet been studied.

Here, as in (4.5), deg(3(T)) = log !R(T)~ for the Artin ring R(T) defining 3 (T) , so
that the fact that X is only defined over and need not be proper will

not be important. These issues will be essential, however, if one wants to define the
full generating function ~deg (T) and compare it to E’ (T, o, cp) . The proof of (7.2) and
(7.3), where 3(T) is a 0-cycle, again comes down to a relation between derivatives
of representation densities for quadratic forms and the result of Gross and Keating
described in Proposition 5.2 above, now in its full generality. Indeed, that result was



obtained in connection with the study of the derivative of a Siegel-Eisenstein series
of weight 2, due to the connection of such a series with the triple product L-function
~3~, ~27~, ~9~, ~7~.

The case n = 4. This case is considered in [21]. Here the Shimura varieties are

(twisted) Siegel 3-folds, and the pattern is similar to that for n = 3. The one new
point is that the ’regularity’ condition on T E Sym4(Z) required to obtain a 0-cycle
in the supersingular locus (which is again a curve with P~ components) becomes:
VT ^~ and T represents lover One then obtains an analogue of Theorem
6.2, with the comparison again based on [6].

8. FINAL REMARKS

Beyond the range of the accidental isomorphisms, i.e., for n > 6, the Shimura
varieties associated to GSpin(V) for rational quadratic spaces V of signature (n-1, 2)
are no longer of PEL type, so that the modular interpretation of points, special
endomorphisms, and other tools used before are no longer available. Instead, it will
be necessary to work with integral models defined by suitable types of Hodge classes,
etc., [26]. Presumably there is a good notion of special endomorphisms or special
Hodge classes in this situation which cut out the required cycles. This theory remains
to be established.

Even in the range 2 5, many difficulties lie in the way of a full treatment
of the generating function for ~deg(T). For example, there is the problem of the
contribution of irregular T’s, which occur even in the case of good reduction. The
contribution of the singular T’s is ’global’ and will presumably involve models over

Z, detailed information about the fibers of bad reduction, etc. Much work remains to
be done.

In addition, there is the question of defining modular arithmetic generating func-
tions ~r (7), analogous to the series ~r (T) of Theorem 3.1 above, valued in arithmetic
Chow groups CH (3~) for arbitrary codimension. Of course the image of such series
under the cycle class map should be the generating series discussed in section 3. Re-
cent work of Borcherds [I], which gives a generating function involving the classes
of the divisors Z(t, cp) on in the Chow group rather than in

cohomology, will be relevant here.

In all cases, it remains to work out the modifications required in the case of non-

compact quotient.
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