Sur la théorie élémentaire des groupes libres
Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Exposé no. 922, pp. 363-402.

Sela a annoncé une solution complète d'un problème de Tarski, qui demanda vers 1945 quels sont les groupes de type fini qui ont la même théorie élémentaire qu'un groupe libre. Nous discuterons des travaux de Remeslennikov, Kharlampovich-Myasnikov, Sela, Champetier-Guirardel et autres sur la structure des groupes limites (les groupes de type fini qui sont “limites”de groupes libres, ou encore, qui ont la même théorie universelle qu'un groupe libre). Nous indiquerons quelques outils utilisés par Sela (dont des techniques de Rips, Rips-Sela, Bestvina-Feighn et autres sur les actions de groupes sur les arbres).

Sela has announced a complete solution of Tarski's problem, who asked around 1945 what are the finitely generated groups having the same elementary theory as a free group. We will talk about the works of Remeslennikov, Kharlampovich-Myasnikov, Sela, Champetier-Guirardel and others on the structure of the limit groups (the finitely generated groups thar are “limits”of free groups, or equivalently that have the same universal theory as a free group. We will indicate some of the tools used by Sela (including technics of Rips, Rips-Sela, Bestvina-Feighn and others on group actions on trees).

Classification : 03C60, 20E05, 20E08
Mot clés : formule du premier ordre, théorie élémentaire, problème de Tarski, groupe libre, groupe limite, action de groupe sur les arbres
Keywords: first order formula, elementary theory, Tarski's problem, free group, limit group, groups action on trees
@incollection{SB_2002-2003__45__363_0,
     author = {Paulin, Fr\'ed\'eric},
     title = {Sur la th\'eorie \'el\'ementaire des groupes libres},
     booktitle = {S\'eminaire Bourbaki : volume 2002/2003, expos\'es 909-923},
     series = {Ast\'erisque},
     note = {talk:922},
     pages = {363--402},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {294},
     year = {2004},
     mrnumber = {2111650},
     zbl = {1069.20030},
     language = {fr},
     url = {http://archive.numdam.org/item/SB_2002-2003__45__363_0/}
}
TY  - CHAP
AU  - Paulin, Frédéric
TI  - Sur la théorie élémentaire des groupes libres
BT  - Séminaire Bourbaki : volume 2002/2003, exposés 909-923
AU  - Collectif
T3  - Astérisque
N1  - talk:922
PY  - 2004
SP  - 363
EP  - 402
IS  - 294
PB  - Association des amis de Nicolas Bourbaki, Société mathématique de France
PP  - Paris
UR  - http://archive.numdam.org/item/SB_2002-2003__45__363_0/
LA  - fr
ID  - SB_2002-2003__45__363_0
ER  - 
%0 Book Section
%A Paulin, Frédéric
%T Sur la théorie élémentaire des groupes libres
%B Séminaire Bourbaki : volume 2002/2003, exposés 909-923
%A Collectif
%S Astérisque
%Z talk:922
%D 2004
%P 363-402
%N 294
%I Association des amis de Nicolas Bourbaki, Société mathématique de France
%C Paris
%U http://archive.numdam.org/item/SB_2002-2003__45__363_0/
%G fr
%F SB_2002-2003__45__363_0
Paulin, Frédéric. Sur la théorie élémentaire des groupes libres, dans Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Exposé no. 922, pp. 363-402. http://archive.numdam.org/item/SB_2002-2003__45__363_0/

[Bas] H. Bass - “Covering theory for graphs of groups”, J. Pure Appl. Math. 89 (1993), p. 3-47. | MR | Zbl

[Bau1] G. Baumslag - “On generalized free products”, Math. Z. 78 (1962), p. 423-438. | MR | Zbl

[Bau] -, Topics in combinatorial group theory, Lect. in Math., Birkhäuser, 1993. | MR

[BMR] G. Baumslag, A. Myasnikov & V. N. Remeslennikov - “Algebraic geometry over groups I. Algebraic sets and ideal theory”, J. Algebra 219 (1999), p. 16-79. | MR | Zbl

[BF1] M. Bestvina & M. Feighn - “Bounding the complexity of simplicial group actions on trees”, Invent. Math. 103 (1991), p. 449-469. | MR | Zbl

[BF2] -, “A combination theorem for negatively curved groups”, J. Differential Geom. 35 (1992), p. 85-101, Addendum, 43 (1996), p. 783-788. | MR | Zbl

[BF3] -, “Stable actions of groups on real trees”, Invent. Math. 121 (1995), p. 287-321. | MR | Zbl

[BF4] -, “Notes on Sela's work : limit groups and Makanin-Razborov diagrams”, prépublication, Univ. Utah, oct. 2003.

[Bou] N. Bourbaki - Topologie générale, chap. 1 à 4, Hermann, Paris, 1971. | MR | Zbl

[Bow] B. Bowditch - “Cut points and canonical splittings of hyperbolic groups”, Acta Math. 180 (1998), p. 145-186. | MR | Zbl

[Cham] C. Champetier - “L'espace des groupes de type fini”, Topology 39 (2000), p. 657-680. | MR | Zbl

[CG] C. Champetier & V. Guirardel - “Limit groups as limits of free groups : compactifying the set of free groups”, à paraître dans Israel J. Math. | MR | Zbl

[CK] C. C. Chang & H. J. Keisler - Model theory, Studia Logica, vol. 73, North-Holand, 1973. | MR | Zbl

[Chat] Z. Chatzidakis - “Limit groups, viewed by a logician”, Notes d'exposés, http://www.logique.jussieu.fr/~zoe, 2001.

[Chi] I. Chiswell - Introduction to Λ-trees, World Scientific, 2001. | MR | Zbl

[Dun] M. J. Dunwoody - “Groups acting on protrees”, J. London Math. Soc. (2) 56 (1997), p. 125-136. | MR | Zbl

[DS] M. J. Dunwoody & M. E. Sageev - “JSJ-splittings for finitely presented groups over slender groups”, Invent. Math. 135 (1999), p. 25-44. | MR | Zbl

[For] M. Forester - “On uniqueness of JSJ decompositions of finitely generated groups”, Comm. Math. Helv 78 (2003), p. 740-751. | MR | Zbl

[FP] K. Fujiwara & P. Papasoglu - “JSJ-splittings and complexes of groups”, prépublication Orsay, 1998.

[GLP] D. Gaboriau, G. Levitt & F. Paulin - “Pseudogroups of isometries of and Rips’ theorem on free actions on -trees”, Israel J. Math. 87 (1994), p. 403-428. | MR | Zbl

[Ghy1] É. Ghys - “Les groupes hyperboliques”, in Sém. Bourbaki (1989/90), Astérisque, vol. 189-190, Société Mathématique de France, 1990, exp. no 722, p. 203-238. | Numdam | MR | Zbl

[Ghy2] -, “Les groupes aléatoires [d'après Misha Gromov,...]”, in Sém. Bourbaki (2002/03), Astérisque, Société Mathématique de France, 2004, exp. no 916, ce volume. | Numdam | Zbl

[Gri] R. I. Grigorchuk - “Degrees of growth of finitely generated groups and the theory of invariant means”, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), p. 939-985. | MR | Zbl

[Gro] S. Gross - PhD Thesis, The Hebrew University, 2001.

[Gui] V. Guirardel - “Limit groups and groups acting on n-trees”, prépublication Univ. Toulouse, 2003.

[HV] P. De La Harpe & A. Valette - La propriété T de Kazhdan pour les groupes localement compacts, Astérisque, vol. 175, Société Mathématique de France, 1989. | Numdam | Zbl

[Hat] A. Hatcher - Algebraic topology, Cambridge Univ. Press, 2002, http://www.math.cornell.edu/~hatcher. | MR | Zbl

[HS] H. Hendriks & A. Shastri - “A splitting theorem for surfaces”, in Topological structures, II, Proc. Symp. Topo. Geom. (Amsterdam, 1978), Part 1, Math. Centre Tracts, vol. 115, Math. Centrum, Amsterdam, 1979, p. 117-121. | MR | Zbl

[JS] W. H. Jaco & P. B. Shalen - Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., vol. 220, American Mathematical Society, 1979. | MR | Zbl

[Joh] K. Johannson - Homotopy equivalences of 3-manifolds with boundaries, Lect. Notes in Math., vol. 761, Springer Verlag, 1979. | MR | Zbl

[KM0] O. Kharlampovich & A. Myasnikov - “Tarski's problem about the elementary theory of free groups has a positive solution”, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), p. 101-108. | MR | Zbl

[KM1] -, “Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz”, J. Algebra 200 (1998), p. 472-516. | MR | Zbl

[KM2] -, “Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups”, J. Algebra 200 (1998), p. 517-570. | MR | Zbl

[KM3a] -, “Implicit function theorem over free groups”, prépublication, révisée 2003, http://www.math.mcgill.ca/~olga, 1999.

[KM3b] -, “Algebraic geometry over free groups : lifting solutions into generic points”, in Group theory : algorithms, language, logic (A. Borovik, 'ed.), Contemp. Math., American Mathematical Society, à paraître. | Zbl

[KM4a] -, “Equations over fully residually free groups”, prépublication, révisée 2003, http://www.math.mcgill.ca/~olga, 1999.

[KM4b] -, “Effective JSJ decompositions”, in Group theory : algorithms, language, logic (A. Borovik, 'ed.), Contemp. Math., American Mathematical Society, à paraître.

[KM5] -, “Elementary theory of free nonabelian groups”, prépublication, révisée 2003, http://www.math.mcgill.ca/~olga, 1999.

[Lev] G. Levitt - “Automorphisms of hyperbolic groups and graphs of groups”, prépublication Univ. Toulouse, Oct. 2002. | Zbl

[Lyn1] R. C. Lyndon - “The equation a2b2=c2 in free groups”, Michigan Math. J. 6 (1959), p. 89-95. | MR | Zbl

[Lyn2] -, “Equations in free groups”, Trans. Amer. Math. Soc. 96 (1960), p. 445-457. | MR | Zbl

[LS] R. C. Lyndon & P. E. Schupp - Combinatorial group theory, Ergeb. Math. Grenz., vol. 89, Springer Verlag, 1977. | MR | Zbl

[Mak1] G. S. Makanin - “Equations in a free group”, Math. USSR-Izv. 21 (1983), p. 449-469. | MR | Zbl

[Mak2] -, “Decidability of the universal and positive theories of a free group”, Math. USSR-Izv. 25 (1985), p. 75-88. | Zbl

[Mer] Yu. I. Merzlyakov - “Positive formula on free groups”, Algebra i Logika 5 (1966), p. 25-42. | MR | Zbl

[Pau1] F. Paulin - “Topologie de Gromov équivariante, structures hyperboliques et arbres réels”, Invent. Math. 94 (1988), p. 53-80. | MR | Zbl

[Pau2] -, “Actions de groupes sur les arbres”, in Sém. Bourbaki (1995/96), Astérisque, vol. 241, Société Mathématique de France, 1997, exp. no 808, p. 97-137. | Numdam | MR | Zbl

[Raz] A. A. Razborov - “On systems of equations in a free group”, Math. USSR-Izv. 25 (1985), p. 115-162. | MR | Zbl

[Rem] V. N. Remeslennikov - -free groups”, Siberian Math. J. 30 (1989), p. 998-1001. | MR | Zbl

[RS] E. Rips & Z. Sela - “Cyclic splittings of finitely presented groups and the canonical JSJ decomposition”, Ann. of Math. 146 (1997), p. 53-104. | MR | Zbl

[Sac] G. S. Sacerdote - “Elementary properties of free groups”, Trans. Amer. Math. Soc. 178 (1973), p. 127-138. | MR | Zbl

[Sel1] Z. Sela - “Diophantine geometry over groups I : Makanin-Razborov diagrams”, Publ. Math. Inst. Hautes Études Sci. 93 (2001), p. 31-105. | Numdam | MR | Zbl

[Sel2] -, “Diophantine geometry over groups II : completions, closures and formal solutions”, Israel J. Math. 134 (2003), p. 173-254. | MR | Zbl

[Sel3] -, “Diophantine geometry over groups III : rigid and solid solutions”, prépublication, 49 pages, http://www.ma.huji.ac.il/~zlil, 2001 à paraître dans Israel J. Math.

[Sel4] -, “Diophantine geometry over groups IV : an iterative procedure for validation of a sentence”, prépublication, 106 pages, http://www.ma.huji.ac.il/~zlil, Juil. 2001 à paraître dans Israel J. Math. | Zbl

[Sel5] -, “Diophantine geometry over groups V : quantifier elimination”, prépublication, 223 pages, http://www.ma.huji.ac.il/~zlil, Oct. 2001 à paraître, partie I dans Israel J. Math., partie II dans Geom. Funct. Anal.

[Sel6] -, “Diophantine geometry over groups VI : the elementary theory of a free group”, prépublication, 14 pages, http://www.ma.huji.ac.il/~zlil, Oct. 2001 à paraître dans Geom. Funct. Anal. | Zbl

[Sel7] -, “Diophantine geometry over groups VII : the elementary theory of a hyperbolic group”, prépublication, 65 pages, http://www.ma.huji.ac.il/~zlil, Mars 2002.

[Ser] J.-P. Serre - Arbres, amalgames 1983. | Numdam | MR | Zbl

[Tar] A. Tarski - “Some notions and methods on the borderline of algebra and metamathematics”, in Proc. I.C.M. (Cambridge, 1950), vol. 1, American Mathematical Society, 1952, p. 705-720. | MR | Zbl

[ZVC] H. Zieschang, E. Vogt & H. Coldewey - Surfaces and planar discontinuous groups, Lect. Notes in Math., vol. 835, Springer Verlag, 1980. | MR | Zbl