Capacité analytique et le problème de Painlevé
Séminaire Bourbaki : volume 2003/2004, exposés 924-937, Astérisque, no. 299 (2005), Exposé no. 936, pp. 301-328.

Le problème de Painlevé consiste à trouver une caractérisation géométrique des sous-ensembles du plan complexe qui sont effaçables pour les fonctions holomorphes bornées. Ce problème d'analyse complexe a connu ces dernières années des avancées étonnantes, essentiellement grâce au développement de techniques fines d'analyse réelle et de théorie de la mesure géométrique. Dans cet exposé, nous allons présenter et discuter une solution proposée par X. Tolsa en termes de courbure de Menger au problème de Painlevé.

The Painlevé problem consists in finding a geometric characterization of removable sets for bounded analytic functions in the complex plane. This problem of complex analysis has known very striking results in the last years. These progress are based on recent developments in real analysis and geometric measure theory. In this talk, we will present and discuss a solution to the Painlevé problem proposed by X. Tolsa in terms of Menger curvature.

Classification : 28A75, 30C85, 42B20
Mot clés : capacité analytique, rectifiabilité, intégrale de Cauchy, courbure de Menger, ensembles uniformément rectifiables
Keywords: analytic capacity, rectifiability, Cauchy integral, Menger curvature, uniformly rectifiable sets
@incollection{SB_2003-2004__46__301_0,
     author = {Pajot, Herv\'e},
     title = {Capacit\'e analytique et le probl\`eme de {Painlev\'e}},
     booktitle = {S\'eminaire Bourbaki : volume 2003/2004, expos\'es 924-937},
     series = {Ast\'erisque},
     note = {talk:936},
     pages = {301--328},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {299},
     year = {2005},
     mrnumber = {2167211},
     zbl = {1129.30310},
     language = {fr},
     url = {http://archive.numdam.org/item/SB_2003-2004__46__301_0/}
}
TY  - CHAP
AU  - Pajot, Hervé
TI  - Capacité analytique et le problème de Painlevé
BT  - Séminaire Bourbaki : volume 2003/2004, exposés 924-937
AU  - Collectif
T3  - Astérisque
N1  - talk:936
PY  - 2005
SP  - 301
EP  - 328
IS  - 299
PB  - Association des amis de Nicolas Bourbaki, Société mathématique de France
PP  - Paris
UR  - http://archive.numdam.org/item/SB_2003-2004__46__301_0/
LA  - fr
ID  - SB_2003-2004__46__301_0
ER  - 
%0 Book Section
%A Pajot, Hervé
%T Capacité analytique et le problème de Painlevé
%B Séminaire Bourbaki : volume 2003/2004, exposés 924-937
%A Collectif
%S Astérisque
%Z talk:936
%D 2005
%P 301-328
%N 299
%I Association des amis de Nicolas Bourbaki, Société mathématique de France
%C Paris
%U http://archive.numdam.org/item/SB_2003-2004__46__301_0/
%G fr
%F SB_2003-2004__46__301_0
Pajot, Hervé. Capacité analytique et le problème de Painlevé, dans Séminaire Bourbaki : volume 2003/2004, exposés 924-937, Astérisque, no. 299 (2005), Exposé no. 936, pp. 301-328. http://archive.numdam.org/item/SB_2003-2004__46__301_0/

[1] L. Ahlfors - “Bounded analytic functions”, Duke Math. J. 14 (1947), p. 1-11. | MR | Zbl

[2] L. Ahlfors & A. Beurling - “Conformal invariants and function theoretic null-sets”, Acta Math. 83 (1950), p. 101-129. | MR | Zbl

[3] A. P. Calderón - “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), p. 1324-1327. | MR | Zbl

[4] M. Christ - “A T(b) theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math. 60-61 (1990), p. 601-628. | EuDML | MR | Zbl

[5] -, Lectures on singular integral operators, Regional Conference Series in Mathematics, vol. 77, American Mathematical Society, 1990. | MR | Zbl

[6] R. Coifman, A. Mcintosh & Y. Meyer - “L’opérateur de Cauchy définit un opérateur borné sur L 2 sur les courbes lipschitziennes”, Ann. of Math. 116 (1982), p. 361-388. | MR | Zbl

[7] R. Coifman & G. Weiss - Analyse harmonique non-commutative sur certains espaces homogènes, Lect. Notes in Math., vol. 242, Springer-Verlag, 1971. | MR | Zbl

[8] G. David - Wavelets and singular integral operators on curves and surfaces, Lect. Notes in Math., vol. 1465, Springer-Verlag, 1991. | MR | Zbl

[9] -, “Unrectifiable 1-sets have vanishing analytic capacity”, Rev. Mat. Iberoamericana 14 (1998), p. 369-479. | EuDML | MR | Zbl

[10] G. David & P. Mattila - “Removable sets for Lipschitz harmonic functions in the plane”, Rev. Mat. Iberoamericana 16 (2000), p. 137-215. | MR | Zbl

[11] G. David & S. Semmes - Singular integrals and rectifiable sets in n : Au-delà des graphes lipschitziens, Astérisque, vol. 193, Société Mathématique de France, 1991. | Numdam | Zbl

[12] -, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, 1993. | MR | Zbl

[13] -, “Quantitative rectifiability and Lipschitz mappings”, Trans. Amer. Math. Soc. 337 (1993), p. 855-889. | MR | Zbl

[14] A. Denjoy - “Sur les fonctions analytiques uniformes à singularités discontinues”, C.R. Acad. Sci. Paris 149 (1909), p. 258-260. | JFM

[15] H. Farag - “The Riesz kernels do not give rise to higher dimensional analogues to the Menger-Melnikov curvature”, Publ. Mat. 43 (1999), p. 251-260. | MR | Zbl

[16] J. B. Garnett - “Positive length but zero analytic capacity”, Proc. Amer. Math. Soc. 24 (1970), p. 696-699. | Zbl

[17] J. B. Garnett & J. Verdera - “Analytic capacity, bilipschitz maps and Cantor sets”, Math. Res. Lett. 10 (2003), p. 515-522. | MR | Zbl

[18] P. Jones - “Rectifiable sets and the traveling salesman problem”, Invent. Math. 102 (1990), p. 1-15. | MR | Zbl

[19] P. Jones & T. Murai - “Positive analytic capacity, but zero Buffon needle probability”, Pacific J. Math. 133 (1988), p. 99-114. | MR | Zbl

[20] H. Joyce & P. Mörters - “A set with finite curvature and projections of zero length”, J. Math. Anal. Appl. 247 (2000), p. 126-135. | MR | Zbl

[21] J.-C. Léger - “Rectifiability and Menger curvature”, Ann. of Math. 149 (1999), p. 831-869. | MR | Zbl

[22] J. Mateu, L. Prat & J. Verdera - “The capacity associated to signed Riesz kernels and Wolff potentials”, J. reine angew. Math. 578 (2005), p. 201-223. | MR | Zbl

[23] J. Mateu & X. Tolsa - “Riesz transforms and harmonic Lip 1 -capacity of Cantor sets”, Proc. London Math. Soc. (3) 89 (2004), p. 676-696. | MR | Zbl

[24] J. Mateu, X. Tolsa & J. Verdera - “The planar Cantor sets of zero analytic capacity and the local T(b) theorem”, J. Amer. Math. Soc. 16 (2003), p. 19-28. | MR | Zbl

[25] P. Mattila - “Smooth maps, null-sets for integral geometric measures and analytic capacity”, Ann. of Math. 123 (1986), p. 303-309. | MR | Zbl

[26] -, “Orthogonal projections, Riesz capacities, and Minkowski content”, Indiana Univ. Math. J. 39 (1990), p. 185-198. | MR | Zbl

[27] -, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, 1995. | MR | Zbl

[28] -, “On the analytic capacity and curvature of some Cantor sets with non-σ-finite length”, Publ. Mat. 40 (1996), p. 195-204. | MR | Zbl

[29] -, “Hausdorff dimension, projections, and the Fourier transform”, Publ. Mat. 48 (2004), p. 3-48. | MR | Zbl

[30] P. Mattila, M. Melnikov & J. Verdera - “The Cauchy integral, analytic capacity, and uniform rectifiability”, Ann. of Math. 144 (1996), p. 127-136. | MR | Zbl

[31] P. Mattila & P. V. Paramonov - “On geometric properties of harmonic Lip 1 -capacity”, Pacific J. Math. 171 (1995), p. 469-491. | MR | Zbl

[32] M. Melnikov - “Analytic capacity : discrete approach and curvature of measure”, Sb. Math. 186 (1995), p. 827-846. | MR | Zbl

[33] M. Melnikov & J. Verdera - “A geometric proof of the L 2 boundedness of the Cauchy integral on Lipschitz curves”, Internat. Math. Res. Notices 7 (1995), p. 325-331. | MR | Zbl

[34] F. Nazarov, S. Treil & A. Volberg - “Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices 15 (1997), p. 703-726. | MR | Zbl

[35] -, “Nonhomogeneous Tb theorem which proves Vitushkin’s conjecture”, Preprint no 519, CRM Barcelona, 2002.

[36] -, Tb theorems on nonhomogeneous spaces”, Acta Math. 190 (2003), p. 151-239.

[37] K. Okikiolu - “Characterizations of subsets of rectifiable curves in n , J. London Math. Soc. (2) 46 (1992), p. 336-348. | MR | Zbl

[38] P. Painlevé - Leçons sur la théorie analytique des équations différentielles professées à Stockholm, Hermann, 1897. | JFM

[39] H. Pajot - “Conditions quantitatives de rectifiabilité”, Bull. Soc. math. France 125 (1997), p. 15-53. | Numdam | MR | Zbl

[40] -, Analytic capacity, rectifiability, Menger curvature and the Cauchy integral, Lect. Notes in Math., vol. 1799, Springer-Verlag, Berlin, 2002. | MR | Zbl

[41] -, “Le problème géométrique du voyageur de commerce, et ses applications à l'analyse complexe et harmonique”, in Autour du centenaire Lebesgue, Panoramas & Synthèses, vol. 18, Société Mathématique de France, 2004, p. 123-156. | Zbl

[42] Y. Peres & B. Solomyak - “How likely is Buffon's needle to fall near a planar Cantor set ?”, Pacific J. Math. 204 (2002), p. 473-496. | MR | Zbl

[43] L. Prat - “Potential theory of signed Riesz kernels : Capacity and Hausdorff measures”, Internat. Math. Res. Notices 19 (2004), p. 937-981. | MR | Zbl

[44] R. Schul - “Subset of rectifiable curves in Hilbert space and the Analyst's TSP”, Thèse, Yale University, 2005. | MR | Zbl

[45] E. M. Stein - Harmonic analysis : real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 1993. | MR | Zbl

[46] X. Tolsa - L 2 -boundedness of the Cauchy integral for continuous measures”, Duke Math. J. 98 (1999), p. 269-304. | MR | Zbl

[47] -, “On the analytic capacity γ + , Indiana Univ. Math. J. 51 (2002), p. 317-343. | MR | Zbl

[48] -, “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math. 190 (2003), p. 105-149. | MR | Zbl

[49] -, “The L 2 boundedness of the Cauchy transform implies L 2 boundedness of all antisymmetric Calderón-Zygmund operators”, Publ. Mat. 48 (2004), p. 445-479. | MR | Zbl

[50] -, “Bilipschitz maps, analytic capacity, and the Cauchy integral”, Ann. of Math. (2) (à paraître). | Zbl

[51] J. Verdera - “The Fall of the doubling condition in Calderón-Zygmund theory”, in Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial 2000), Publ. Mat., 2002, numéro spécial, p. 275-292. | MR | Zbl

[52] A. G. Vitushkin - “The analytic capacity of sets in approximation theory”, Uspekhi Mat. Nauk 22 (1967), p. 141-199, en russe ; traduction en anglais dans Russian Math. Surveys 22 (1967), p. 139-200. | MR | Zbl

[53] A. Volberg - Calderón-Zygmund capacities and operators on nonhomogeneous spaces, Regional Conference Series in Mathematics, vol. 100, American Mathematical Society, 2003. | MR | Zbl