La mesure d’équilibre d’un endomorphisme de k ()
Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Exposé no. 939, pp. 33-69.

Soit f un endomorphisme holomorphe de k (). Je présenterai une construction géométrique, due à Briend et Duval, d’une mesure de probabilité μ ayant les propriétés suivantes : μ reflète la distribution des préimages des points en dehors d’un ensemble exceptionnel algébrique, les points périodiques répulsifs de f s’équidistribuent par rapport à μ et μ est l’unique mesure d’entropie maximale de f.

Let f be a holomorphic endomorphism of k (). I will present a geometric construction, due to Briend and Duval, of a probability measure μ having the following properties: μ reflects the distribution of preimages of points outside an algebraic exceptional set, repelling periodic points of f equidistribute with respect to μ and μ is the unique measure of maximal entropy of f.

Classification : 32H50
Mot clés : dynamique holomorphe, mesure d'équilibre, ensemble exceptionnel, entropie
Keywords: holomorphic dynamics, equilibrium measure, exceptional set, entropy
@incollection{SB_2004-2005__47__33_0,
     author = {Buff, Xavier},
     title = {La mesure d{\textquoteright}\'equilibre d{\textquoteright}un endomorphisme de $\mathbb {P}^k(\mathbb {C})$},
     booktitle = {S\'eminaire Bourbaki : volume 2004/2005, expos\'es 938-951},
     series = {Ast\'erisque},
     note = {talk:939},
     pages = {33--69},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {307},
     year = {2006},
     zbl = {1138.32009},
     language = {fr},
     url = {http://archive.numdam.org/item/SB_2004-2005__47__33_0/}
}
TY  - CHAP
AU  - Buff, Xavier
TI  - La mesure d’équilibre d’un endomorphisme de $\mathbb {P}^k(\mathbb {C})$
BT  - Séminaire Bourbaki : volume 2004/2005, exposés 938-951
AU  - Collectif
T3  - Astérisque
N1  - talk:939
PY  - 2006
SP  - 33
EP  - 69
IS  - 307
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/SB_2004-2005__47__33_0/
LA  - fr
ID  - SB_2004-2005__47__33_0
ER  - 
%0 Book Section
%A Buff, Xavier
%T La mesure d’équilibre d’un endomorphisme de $\mathbb {P}^k(\mathbb {C})$
%B Séminaire Bourbaki : volume 2004/2005, exposés 938-951
%A Collectif
%S Astérisque
%Z talk:939
%D 2006
%P 33-69
%N 307
%I Société mathématique de France
%U http://archive.numdam.org/item/SB_2004-2005__47__33_0/
%G fr
%F SB_2004-2005__47__33_0
Buff, Xavier. La mesure d’équilibre d’un endomorphisme de $\mathbb {P}^k(\mathbb {C})$, dans Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Exposé no. 939, pp. 33-69. http://archive.numdam.org/item/SB_2004-2005__47__33_0/

[1] E. Bedford, M. Lyubich & J. Smillie - “Polynomial diffeomorphisms of 𝐂 2 (V), The measure of maximal entropy and laminar currents”, Invent. Math. 112 (1993), p. 77-125. | DOI | EuDML | MR | Zbl

[2] E. Bedford & J. Smillie - “Polynomial diffeomorphisms of 𝐂 2 : Currents, equilibrium measure and hyperbolicity”, Invent. Math. 87 (1990), p. 69-99. | EuDML | MR | Zbl

[3] -, “Polynomial diffeomorphisms of 𝐂 2 (III)”, Math. Ann. 294 (1992), p. 395-420. | MR

[4] E. Bedford & B. Taylor - “A new capacity for plurisubharmonic functions”, Acta Math. 149 (1982), p. 1-39. | DOI | MR | Zbl

[5] J.-Y. Briend, S. Cantat & M. Shishikura - “Linearity of the exceptional set for maps of k (), Math. Ann. 330 (2004), p. 39-43. | MR | Zbl

[6] J.-Y. Briend & J. Duval - “Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de ℂℙ k , Acta Math. 182 (1999), p. 143-157. | DOI | MR | Zbl

[7] -, “Deux caractérisations de la mesure d’équilibre d’un endomorphisme de k (), Publ. Math. Inst. Hautes Études Sci. 93 (2001), p. 145-159. | EuDML | Numdam | Zbl

[8] M. Brin & A. Katok - “On local entropy”, in Geometric dynamics, Lect. Notes in Math., vol. 1007, Springer-Verlag, 1983, p. 30-38. | MR | Zbl

[9] H. Brolin - “Invariant sets under iteration of rational functions”, Ark. Mat. 6 (1065), p. 103-144. | MR | Zbl

[10] T.-C. Dinh & N. Sibony - “Dynamique des applications d'allure polynomiale”, J. Math. Pures Appl. 82 (2003), p. 367-423. | DOI | MR | Zbl

[11] -, “Distribution des valeurs de transformations méromorphes et applications”, Comment. Math. Helv. 81 (2006), no. 1, p. 221-258. | MR | Zbl

[12] J. E. Fornæss & N. Sibony - “Complex dynamics in higher dimension”, in Complex potential theory (Montreal, PQ, 1993), NATO Adv. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Press, Dordrecht, 1994, Notes partially written by Estela A. Gavosto, p. 131-186. | MR | Zbl

[13] -, “Complex dynamics in higher dimension I”, in Complex analytic methods in dynamical systems (IMPA, janvier 1992), Astérisque, vol. 222, 1994, p. 201-231. | Numdam | MR | Zbl

[14] -, “Complex dynamics in higher dimension, II”, in Modern Methods in Complex Analysis (Princeton, NJ, 1992), Ann. Math. Studies, vol. 137, Princeton University Press, Princeton, NJ, 1995, p. 135-187. | MR | Zbl

[15] -, “Dynamics of 𝐏 2 (Examples)”, in Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), Contemp. Math., vol. 269, Providence, RI, 2001, p. 47-85. | MR | Zbl

[16] A. Freire, A. Lopez & R. Mañe - “An invariant measure for rational maps”, Bol. Soc. Brasil. Mat. 14 (1983), p. 45-62. | DOI | MR | Zbl

[17] M. Gromov - “On the entropy of holomorphic maps”, 49 (2003), p. 217-235, Manuscrit 1977. | MR | Zbl

[18] V. Guedj - “Ergodic properties of rational mappings with large topological degree”, Ann. of Math. (2) 161 (2005), no. 3, p. 1589-1607. | MR | Zbl

[19] J. H. Hubbard & P. Papadopol - “Supperattractive fixed points in n , Indiana Univ. Math. J. 43 (1994), p. 321-365. | DOI | MR | Zbl

[20] P. Lelong - “Propriétés métriques des variétés analytiques complexes définies par une équation”, 67 (1950), p. 393-419. | EuDML | Numdam | MR | Zbl

[21] M. Lyubich - “Entropy properties of rational endomorphisms of the Riemann sphere”, Ergodic Theory Dynamical Systems 3 (1983), p. 351-385. | MR | Zbl

[22] R. Mañe - “On the uniqueness of the maximizing measure for rational maps”, Bol. Soc. Brasil. Mat. 14 (1983), p. 27-43. | DOI | MR | Zbl

[23] M. Misiurewicz & F. Przytycki - “Topological entropy and degree of smooth mappings”, 25 (1977), p. 573-574. | MR | Zbl

[24] W. Parry - Entropy and generators in ergodic theory, Benjamin Press, 1969. | MR | Zbl

[25] N. Sibony - “Dynamique des applications rationnelles de 𝐏 k , in Dynamique et géométrie complexes (Lyon, 1997), vol. 8, Paris, 1999, p. 97-185. | MR | Zbl

[26] P. Tortrat - “Aspects potentialistes de l'itération des polynômes”, in Differential geometry and differential equations (C. Gu, M. Berger & R.L. Bryant, éds.), Lect. Notes in Math., vol. 1255, Springer, 1987, p. 195-209. | MR | Zbl

[27] T. Ueda - “Fatou sets in complex dynamics on projective spaces”, J. Math. Soc. Japan 46 (1994), no. 3, p. 545-555. | MR | Zbl