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SOME OPEN PROBLEMS IN BANACH SPACE THEORY

by Joram LINDENSTRAUSS

Seminaire CHOQUET
(Initiation a l’analyse)

anné e I- t975/76, nO’ 18 ,, 91 p~ 8 avril 1976

My aimnn this talk is to discuss briefly some directions of research; in the iso-
morphic theory of Banach spaces. The’directions which I plan to discuss are the

following. 
’

(a) Existence of operators, 

(b) Local theory of Banach spaces, , 

.

(c) The approximation property ,

(d) Existence of bases,

(e). Non linear problems,

(f) Nbn separable problems.

In each of these directions, I shall discuss only very few open questions so as to
illustrate the specific direction. It should be emphasized that the choice of these
questions is based on my personal interest and there are many other (often more fun-
damental) open questions in these directions which are currently being studied by
various mathematicians. All the topics mentioned above are concdrned mainly with ge-
neral Banach spaces. Because of lack of time, I shall not enter into another very
active domain of research in the isomorplic theory of Banach spaces..- namely the
structure of special Banach spaces. Let me just mention that among the special Ba-
nach spaces the most widely studied ones are the classical Banach spaces, i. e.

spaces closely related to L (~) and C(K) ’ spaces. In spite of the very significant
progress made in recent years in the study of these spaces, there are still many
challenging open problems concerning them. Recently, there began also, a serious ef-
fort to study the structure of some non classical- spaces (like spaces of analytic
functions (especially the disc algebra), spaces of operators (especially the spaces
Cp , 1  P  ~ , of operators and Orlicz spaces). The study of the structure
of these spaces generates many interesting problems which are related to other areas
of analysis like. harmonic analysis, probability, complex analysis and operator thee-
ry.

As far as references are concerned, I shall give here mostly references to the
latest results in the specific direction (these references contain in turn references
to many earlier contributions).

Let us start with topic (a). The only general method for constructing operators.
between general Banach spaces X and Y is the Hahn-Banach theory This theorem
ensures the existence of continuous linear functionals on X and thus of operators



of rank 1 from X to Y. By taking sums, we get operators of finite rank, and by
taking limits, we get compact operators from X to Y’. At this stage, the general
construction methods stop. We shall come back a little bit later to the question
what kind of compact operators do we actually get. First, I want to discuss the ques-
tion of existence of non compact operators. There are simple and well known examples
of infinite dimensional Banash spaces X and Y such that every bounded lineai

operator from X to Y is compact (take e. g. X = ,~ p t Y with p. > r ). In
order to get a meaningful question, we have to restrict the pairs (X, Y’)’ . An in-
teresting situation occurs if X = Y. In this case, we always have a non compact
operator namely the identity I . Are there also other non compact operators ? More
precisely :

(Q.1~ Does there exist an infinite dimensional Banach space X so that every boun-
ded linear operator T : X -~ X is of the form T + K with K compact ?

If such; an X exists, it would have. several other interesting properties.

(i) X is not isomorphic to its subspaces of finite-codimension (every T : .X~ X
is either compact or a Fredholm operator of index 0 ).

(ii) X is indecomposable, e. every decomposition of X into a direct sum
X =~ Y’ p Z is trivial in the sense that either dim: or dim. 

(iii) Every bounded linear operator T : X -~- X has non trivial, closed invariant
subspaces.

There is no known example of a Banach space which has either one of these three
properties (concerning (iii), we have to add the assumption that X is separable to
make it non trivial. It should be pointed out also that P. ENFLO [7] constructed an
example of an operator on some Banach space which fails to have non trivial inva-
riant subspaces).

Coming back to the general available methods for constructing operators from X
to Y , we point out that the of the Hahn-Banach theorem insures in general only
the existence of operators T : X --. Y having the fonn

Such operators were called by GROTHENDIECK nuclear operators. He posed the follo-
wing question.

(Q.2) Does there exist a air of infinite dimensionsal Banach spaces X and Y so
that ever compact operator from X to Y is nuclear ?

This question is still open, but there are by now several strong partial results
which seem to suggest that the answer to (Q.2) is negative. The answer is e. g.
negative if X has an unconditional basis [10], or if either X or Y’ is uniformly
convex [5].



The question (Q.2) is actually already a question in item (b) of the list above

namely the local theory of Banach spaces. This theory is devoted to the study the

structure of finite-dimensional subspaces of Banach spaces or in other words to the

study of convex sets in the euclidean space l~n for n large: (but finite). If n

is large, there occur several phenomena which defy perhaps the common intuition

(derived from the cases n = 2 , 3 ). A central result in the local theory of Banach

spaces is the theorem of Dvoretzky which. asserts that for every e > 0 and integer

k there. is an integer n = n~s ~. k) so that every Banach space X of dimension

 n (in particular, if dim: X = ~ ) has a subspace Y with- dim.Y = k and’

The existence of finite-dimensional almost hilbertian subspaces in an arbitrary

Banach spaces enables one to reduce some questions on general Banach spaces to the

much simpler case of Hilbert space. In general the almost hilbertian subspaces of

concrete finite-dimensional Banach spaces are of ~ surprisingly high dimension (cf.

[8], and this fact increases very much .the effectiveness ot the use of almost 

bertian subspaces in the study of general Banach spaces. They would be even more

useful if one could show that there are "nicely situated". This leads to the follo-

wing question.

(Q.3) Let X be an infinite-dimensional unif orm~. convex Banach space. Does there

exist a constant C so that f or every n there is a subspace X so that

(Yn , ln2)  C and there is a projection Pn : X ~ Yn with ~Pn~  C ?

TZAFRIRI proved that the answer is positive if X has an unconditional bases. Some

stronger results can be found in JOHNSON and TZAFRIRI [91. Let us point out that the

assumption that X be uniformly convex is essential in (Q.3) since if e. g. .

X = C~~ , 1 ~ or X = L ~0 ~ i ; ~ it is easily verified th~t X does not have nicely

complemented copies of ~;n . These, spaces have however nicely complemented copies of

This observation. leads to a version of (Q.3) which makes sense
for arbitrary Banach spaces.

(Q.4) Let X be an infinite-dimensional Banach: space. Does there exist a constant

C and a p~: (equal either to so that f or every n there is a sub-

spaces Yn ~ X with d(Yn , lnp)  C and a projection Pn from X on to Yn with

The strongest known partial answers ta. (Q.4) are containe.d in the above mentioned

paper of JOHNSON and TZAFRIRI. Let me point out that. positive answer to (Q.4) im-
plies immediately that (Q.2) has a negative answer (this illustrates the claim made
abov~ that (Q.2); is a question in the "local theory").

In the study of the structure of non uniformly convex Banach spaces the spades

Nn and ln~ enter in a natural way (it is this fact whichimakes (Q.4) a reasonable

problem). This is shown most clearly in the work. of R. C. JAMES. A result which



started a research direction in the local theory of Banach spaces which is parallel
to the direction initiated by Dvoretzkij’s theorem is the following theorem of James.
Let X be a non reflexive Banach space. Then for every e > 0 there is a subspace
Y of X so that dim Y = 2 and d(Y , t + e . For a long time, it was not
known whether the same is true for ~ for every finite, n . JAMES settled this

problem by proving that the answer is negative for n = 3 (and thus for all n > 3 ).
There is however a stronger non reflexivity condition which implies the existence of
almost isometric copies of ~ . This is obtained in the following way : To say that
X is not reflexive means that the canonical isometry J : X ~ X** is not onto :
There are two canonical isometries from X** into namely (Jx)** and J **.
Either one of these maps is onto if and only if X is reflexives One can ask whether
both maps together yieldall of i. a. whether

(this is the case: if and only if is reflexive). It was shown in [6] that if
this is not the case then X contains almost isometric copies even of Among
the very many open problems in this direction let me mention the following.

(Q.5) Let X be a Banach space such that is not reflexive 1~ it true that
for every e and every inteqer n there is a subspace Y of X with .

In particular, what is the situation for n = 5 ?

We turn now to the approximation property. Let us recall that a Banach space has
the approximation property (AP in short), if for every compact subset K of X and
every E > 0 there i s an operator T : X ~ X which ;_

for every x e K . ENFLO was the first who proved that there are Banach spaces which
fail to have the approximation property. Since Enflo’s work several other examples of
spaces which fail to have the AP were constructed. We mention,in particular Davie~s
paper [4] which contains elegant examples of subspaces of lp , 2  p . , which
fail to have the AP and Szankowski’s example [t6] of a Banach lattice which fails
to have- the AP. It is however still far from being clear to what extent the AP holds
or fails to hold "in general". For example., the following problem is open.
(Q.6). 1~ X be an infinite-dimensional Banach space which is not isomorphic to a
Hilbert space. Does X have a subspace which fails to have the AP ?

All known examples of spaces which fail to have the AP are in some sense "artifi-
cial". It is of interest to exhibit spaces which appear naturally in analysis and
fail to have; the AP. This leads to the following.

B(l2) be the space of all bounded operators from l2 into itself. wi th,
the operator norm. Does B(~) have the AP ?’ Does the space of all bounded analytic



functions f(z) on ~z: ; ~ z ~  ~ ~ with the sup norm. have the AP ?’

Note that both spaces mentioned in (Q.T) are non separablee There are several

strong and simple criteria for checking the AP in separable spaces (the existence
of a Schauder basis for example), By rising such a criteria or even more simply by
arguing directly it is easy to prove. that the common separable spaces which appear
in analysis have the AP. There is a variant of the AP called the uniform approxima~
tion property (UAP in short) which leads to interring and perhaps difficult pro-
blems in the setting of several common separable spaces. This property was intro-
duced by PELCZYNSKI and ROSENTHAL and the point in it is that it does not only ask
whether a suitable T : X -> X with dim. TX exists but asks for an estimate

on dim TX  co . A Banach space X is said to have the X-UAP if there is a function

n ~ f(n) on the integers so that for every n vectors {xi}ni=1 in X there is

a T : X -> X with  03BB , Txi = xi for 1  i  n , and dim TX  f(n) . A
Banach space is said to have the UAP if it has the X-UAP for some X  ~ .. PEL-

CZYNSKI and ROSENTHAL proved that the spaces L p (~, ) and C(K) have the UAP ; they
use. however a method which works only for these spacesc There are no known general
criteria which can be used to verify the UAP in other concrete spader The existence.
of a basis in X and even the existence of an unconditional basis does not ensure

that X has the UAP (this follows from ~y ~~ ) ~ The only spaces (besides those. clo-
sely related.. to C(K), and L spaces) which are known to have the UAP are refle-

P
xive Orliez spaces ~12~~

(Q.8,) Does the space C(l2) ( the space of compact operators on l2 with the usual

operator norm) have the UAP ? Does the disc algebra have the UAP ?

Problems (Qc~) and (Q. $ ) are closely related. This follows from the observation
[12] that X has the UAP if and only if X** has the UAP (this is known to be
false if UAP is replaced by AP)c In this connection, V I would like to mention also.

(Q.9) Let X have X~ have the UAP ? It is known that the answer is
positive if we restrict ourselves to uniformly convex spaces ~2 a e

pass now to topic (d) - existence of bases. Of course the existence of separa-
ble spaces failing to have the AP implies in particular that there are separable
spaces which fail to have a basis. A quite simple fact which was known already to
Banach is that every infinite-dimensional Banach space has a subspace with a basis.
This fact is one of the very few known results which ensure the existence of nice
"infinite-dimensionel objects" in a general Banach space (there are more results

which ensure the existence of concrete finite-dimensional objects in general Banach
spaces, e. g. Dvoretzky’s theorem) Q It is therefore of much interest to investigate

the result on existence of a subspace. with a basis can be improved. In par-
ticular, the following question arises.

(Q.10) Let X be an infinite-dimensional Banach space. Does X have an infinite-
dimensional subspace with an unconditional basis.?



A recent result of MAUREY and ROSENTHAL [13] suggests that the answer to (Q.10)
may be negative. They showed that a natural approach to constructing unconditional

basic sequences does not work in general (they exhibited a sequence of elements
in a Banach space so that ~xn ~ = 1 for every n and lim; x = 0 but

’ n n=1 ~~ n ,r n

no subsequence {xnk}~k=1 of {xn }~n=1 forms an unconditional basic sequence).

A question closely related to (Q.1.0) is the following.

Let X be an infinite-dimensional Banach space. Does X contain an infinite-

dimensional subspace Y so that either reflexive or isomorphic to one of the

spaces Co and
An old result of JAMES shows that a positive answer to (Q.10) implies a positive

answer to (Q.11). It is however not unlikely that (Q.10) has a negative answer while
has a positive answer. There are several results which are related to (Q.11).

The deepest one is due to ROSENTHAL [15] who characterized those Banaeh spaoes which
have a subspace isomorphic to ~~ .
A different question on bases is concerned with their uniqueness, i. e. in what

sense is a coordinate system generated by a suitable basis in a Banach space a cano-

nical coordinate system. Let me recall that a besis {xn}~n=1 is said to ba equiva-
lent to a basis if a series 03A3n 03BBn xn with {03BBn}~n=1 scalars converges if

and only if 03A3
n 

x
n 
y
n converges.. Unconditional bases if they exist are rarely

unique. In fact, the only Banach spaces which have up to equivalence a unique norma-
lized unconditional basis are C0, l1 and l2 (a basis {xn }~n=1 is. said to be

normalized if = 1 for every n ). If a Banach space X has two non equiva-
lent normalized unconditional bases then it is easily seen to have a normalized

unconditional basis which is not symmetric (an unconditional basis 
is said to be symmetric if is equivalent to for every permu-
tation n of the integers). It is then easy to see that the family 
where n ranges over all permutations of the integers contains uncountably many
mutually non equivalent normalized unconditional bases on X . If we restrict our-
selves to symmetric bases then the phenomenon of uniqueness is much more common.
There are many examples of spaces which:have up to equivalence a unique symmetric
basis and thus in them the symmetric basis provides a canonical coordinate system;
(this is the case e. go v p; ~ ~ ? Lorentz sequence spaces, many Orliex
sequence spaces). In some. situations (even for Orlicz sequence spaces), a space.
may have more than one symmetric basise In all known examples of spaces having more
than one symmetric basis there are uncountably many mutually non equivalent 
tric Bases. Unlike the situation with non uniqueness of unconditional bases ( were:
we could simply use permutations to generate, new equivalence classes) ~ there seems
to be no general procedure to generate new symmetric bases if we know that there
exist two non equivalent ones. This .lives rise to the following question.

X be a Banach space having at least two non equivalent symm etric bas .



Must X have infinitely many mutually non equivalent symmetric bases ?

(For further’ background to (Q.’!2), cf. [’H]). 
’

We pass now to some non linear problems. The structure of a Banach space and its
convex subsets as metric spaces has been a subject of much research (of course, we
take as the metric the natural one induced by the norm, i. e. d(x, y) = t)x - 
There- are now many strong and beautiful theorems in this direction (cf. the book
[2~ Actually, the study of Banach spaces as metric spaces created a new branch if
topology called infinite-dimensional topology. That this subject is a branch- of topo-
logy rather than Banach space theory stems from. the fact that the linear topological.
properties of a Banach space have almost no topological meaning. For example, I

recall the result of KADEC which states that any two separable, infinite-dimensional
Banach spaces are homeomorphic. The situation changes completely if we take. into
account not only the topology induced by )j x - but the uniform structure indu--.
ced by it. The constructions used in infinite dimensional topology are almost never
uniformly continuous. It is not true that every two infinite-dimensional. separable
Banach spaces are uniformly homeomorphic. In fact, the uniform structure of a Banach

space gives much information on its linear structure, and it is not known whether
it determines it completely* .

(Q.13) Let X Y be two uniformly homeomorphic Banach. spaces. Is. X isomor-
phic to Y ?

The strongest known partial result to (Q.13) is a result of RIBE [14] which says
that if X is uniformly homeomorphic to Y then the local structure of X and Y
as Banach spaces are the same (i. e.. there is a constant X  m so that for every
subspace B of X with dim B  eo ther; is a B’ c y with d(B, B’)  B ~. An
interesting special case of (Q.13) is obtained if X = C and V=C(0 , t) (these
spaces have the same local structure so RIBE’s result does not say anything in this
case). AHARONI [t] proved that there is mapping T : Y X so that T and T"~
both satisfy a Lipschitz condition (it is well known that there is no linear T
which, satisfies this). Moreover there is a Lipschitz continuous projection from X
onto (it non linear subset) TV . These results seem. to suggest that C may be
uniformly homeomorphic to *!) .

As a matter of fact, there is very little known on the uniform structure of Banach
spaces. Let me mention just one more (among the very many natural) question on this
subject.

(Q.14) Is the Hilbert space l2 uniformly homeomorphic to a bounded subset of 
self ? 

’ "201420142014’""201420142014201420142014201420142014

AHARONI [1] observed that the answer is positive if we replace ~ by C .
We come. to cur last topic-non separable questions. Non separable questions. have

attracted much less attention than separable ones among the research, in Banach space,



theory. The lack of knowledge. on non separable; spaces is illustrated by the fact

that the following simple looking problem is still, apparently open.

(Q.1~) Does every infinitely dimensional- Banach space X have an infinite. dimensio-

naL separable quotient space ?

In many special case.s (,e;e g. if X is reflexive), the answer to (,Q.1;5) is posi-
tive and trivially so but no general construction of a separable quotient space is

known.

The most extensively studied class of non separable Banach space for which a

kind of structure theory is available is the class of WCG. spaces (spaces which.
have a weakly compact set which generates the whole spacer This class includes all.

reflexive spaces (where the unit ball is w - compact) as well as other spaces (e;.
g. L1( ) where  is a finite measure on an arbitrary measure space). Among the:

many problems concerning WCG spaces which are still open’I mention the following.:

(Q.16) X be a Banach space. Assume that X is a Lindelbf space in its w

topology 3 is X isomorphic to a subspace of a WCG space ?

TALAGRAND [117] showed recently that conversely every WCG space (ard thus every
subspace of a WCG space) is Lindelöf in its w topology.

In the non separable case., the question of classifying up to. isomprphism. the spa-
ces C(K) seems to pose very difficult questions. In: the separable case (i. e.

K compact metric), a complete classification up to isomorphism was carrie.d out by
BESSAGA and PELCZYNSKI and MLLUTIN. The main step was the result of MILUTIN which

showed that if K is compact metric uncountable then C(K) is isomorphic to

C.(p ) where p is the Cantor set. In the non-separable case ( i. e. K compact
Hausdorff non metrizabla) there is some information on special classes of K (e.
g. if K 

. 

is the space of ordinals in the order topology, or a topological. group or

a Stone-Cech compactification of a metric space or an Eberlein compact). The gene-
ral classification problem f.or non separable C(,K). spaces seems to be hopelessly

complicated. However there are some concrete questions which may have a reasonable

answer. The key point in the proof of MILUTIN’s result was that every separable
C(,K.). spaoe is isoporphia to such a space with K totally disconnected. Is this

true in general ?

(Q.17) Let K be a compac t Hausdorff Does there exist.. a totally disconnec-

ted compact Hausdorf f spa ce K so tha t C(K) ~ C(K0) ?
In the setting of non separable spaces, there are many open questions about the

existence of "nice We mention here one question of this type.

(Q.18) Characterize those Banach spaces which have an equivalent strictly convex
norm.

A norm is stictly convex if = = 1~ and ))x + y~I =. 2 imply that x = y .

~Q.1~8). is of course a vaguely stated problem. It is easily verified that every se-

parable Banach space has an equivalent strictly convex norm. The same is true for
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a general WCG space (and also for duals of WCG spaces);. On the other b.and, it

was shown by DAY that there exist Banach spaces which, do not have an equivalent

strictly convex norm. Some conjectures concerning a possible answer to. (Q.18) were
shown to be false in [3]o This paper shows that even for C(K) spaces it seame to

be a delicate and presumably difficult question to deciae under. which condition

there exists an equivalent strictly convex norm.
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