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SOME OPEN PROBLEMS IN BANACH SPACE THEORY

by Joram: LINDENSTRAUSS

My aim in this talk is to discuss briefly some directions of research in the iso~
morphic theory of Banach spaces. The directions which I plan to discuss are the
followinge.

(a) ExBtence of operators,

(b) Local theory of Banach spaces,
(¢) The approximation property,
(d) Existence of bases,

(e) Non linear problems,

(f) Non separable problems.

In each of these directions, I shall discuss only very few open questions so as to
illustrate the specific direction. It should be emphasized thet the choice of these
questions is based on my personal interest and there are many other (often more fun—
damental) open questions in these directions which are currently being studied by
various mathematicians. All the topics mentioned above are concdrned mainly with ge—
neral Banach spacese. Because of lack of time, I shall not enter into mnother very
active domain of research in the isomorpiic theory of Banach spaces, namely the
structure of special Banach spaces. Let me just mention that among the special Ba-
nach spaces the most widely studied ones are the classical Banach spaces, i. e.
spaces closely related to L (u) and C(K) spacess In spite of the very significant
progress made in recent years in the study of these spaces, there are still many
challenging open problems concerning thems Recently, there¢ began also a serious ef-
fort to study the structure of some non classical spaces (like spaces of analytic
funntions (especially the dise algebra), spaces of operators (especially the spaces
Cp vy 1 < pg o, of operators on L ) and Orlicz spaces). The study of the structure
of these spaces generates many 1nterest1ng problems which are related to other areas
of analysis like harmonic analysis, probability, complex analy51s and operator thece—
IV

As far as references are concerned, I shall give here mostly references to the
latest results in the specific direction (these references contain in turn references
to many earlier contributions).

Let us stert with topic (a). The only general method for constructing operators
between general Banach spaces X and Y is the Hahn=Banach theorem. This theorem
ensures the existence of continuous linear functionals on X and thus of operators
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of rank 1 from X to Y . By taking sums, we get operators of finite rank, and by
taking limits, we get compact operators from X to Y . At this stage, the general
construction methodsvstop. We shall come back a little bit later to the question
what kind of compact operators do we actually get. First, I want to discuss the ques~
tion of existence of non compact operators. There are simple and well known examples
of infinite dimensional Banagh spaces X and Y such that every bounded lineat
operator from X to Y is compact (take e. g« X = gp y Y =1, with p>r )e In
order to get a memningful question, we have to restrict the pairs (X , Y) + An in-—
teresting situation occurs if X =Y . In this case, we always have a non compact
operator namely the identity I . Are there also other non compact operators ? More

precisely

(Qe1) Does there exist an infinite dimensional Banach space X so that every boun—

ded linear operator T : X = X is of the form T =il + K with K compact ?

If such.an X exists, it would have several other interesting properties.

(1) X 4is not isomorphic to its subspaces of finite-codimension (every T : X - X
is either compact or a Fredholm operator of index O ).

(ii) X is indecomposable, i. e. every decomposition of X into a direct sum
X=Y@®Z is trivial in the sense that either dimY < o or dim Z < ® o

(iii) Every bounded linear operator T : X - X has non trivial closed invariant
subspaces.

There is no known example of a Banach space which has either one of these three
properties (concerning (iii), we have to add the assumption that X is separable to
make it non trivial. It should be pointed out also that P. ENFLO [7] constructed an
example of an operator on some Banach space which fails to have non trivial inva-
riant subspaces).

Coming back to the general available methods for constructing operators from X
to Y , we point out that the use of the Hahn-Banach' theorem insures in general only
the existence of operators T : X ~ Y having the form

—o * - * * * oo
Te) =200 %, (0 vy 0 % €X'y y €Y and T fIx]l v ]l <=

Such operators were called by GROTHENDIECK nuclear operators. He posed the follo-
wing questions

(Qe2) Does there exist a pair of infimite dimensionsal Banach spaces X and Y so
that every compact operator from X Xo Y 1is nuclear ?

This question is still openy but there are by now several strong partial results
which seem to suggest that the answer to (Q42) is negativee. The answer is e. g

negative if X has an unconditional basis [10], or if either X or Y is uniformly
convex [3].
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The question (Q.2) is actually already a question in item (b) of the list above
namely the local theory of Banach spaces. This theory is devoted to the study of. the
structure of finite-dimensionzl subspaces of Banach spaces or in other words to the
study of convex sets in the euclidean space R" for n large: (but finite)s If n
is large, there occur several phenomena which: defy perhaps the common intuition
(derived from the cases n =2 , 3 )e A central result in the locall theory of Banach
spaces is the theorem of Dvoretzky which asserts that for every e > C and integer
k there is an integer n = n(e 4 k) so that every Banach space X of dimension
>n (in particular, if dim X = » ) has a subspage Y with dimY =k and

d(y , ggj,g 1 +¢.

The existence of finite—dimensional almost hilbertian subspaces in an arbitrary
Banach spaces enables one to reduce some questions on general Banach spaces to the
much simpler case of Hilbert space. In general the almost hilbertian éubspaces of
concrete finite-dimensional Banach spaces are of a surprisingly high dimension (cfe
[8], and this fact increases very much .the effectiveness ot the use of almost hil=—
bertian subspaces in the study of general Banach spaces. They would be even more
useful if one could show that there are "nicely situated". This leads to the follo-

wing question.

(Qe3) Let X be an infinite—dimensional uniformly convex Banach space. Does there

exist a constant C so that for every n there is a subspace Yn < X so that
(Y s 45) <C and there is o projection P : X =Y with ||P ]| <C?

TZAFRIRI proved that the answer is positive if X has an unconditionalbasas. Some
stronger results can be found in JOHNSON and TZAFRIRI [91. Let us point out that the
assumption that X be uniformly convex is essential in (Q.3) since if ee ge
X=C(0,1) or X= Li(O , 1) ~it is easily verified that X does not have nicely
complemented copies of 52 . These snaces have however nicely complemented copies of
gz (resp. ﬁ? ). This observation.leads to a version of (Q.3) which makes sense

for arbitrary Banach spacess

(Qe4) Let X be an infinite-dimensional Banach. spaces Does there exist a constant
C and a p- (equal either to 1,2 or o ) so that for every n there is a sub-
space Yh c X with d(Yn 5 zg).s C and a projection Pn from X on to Y, with
Pl sc?

The strongest known partial answers to (Q.4) are contained in the above mentioned
paper of JOHNSON and TZAFRIRI. Let me point out that & peositive answer to (Q.s4) im=—
plies immediately that (Q.2) has a negative answer (this illustrates the claim made
above that (Q.2) is a question ip the "local theory").

In the study of the structure of non uniformly convex Banach spaces the spades
n n . A . .
£y and g enter.in a natural way (it is this fact which makes (Q.4) a reasonable

problem). This is shown most clearly in the work of Re C. JAMES. A result which
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started @ research direction in the local theory of Banach spaces which is parallel
to the direction initizted by Dvoretzkij's theorem is the following theorem of James.
Let X be a non reflexive Banach space. Then for every ¢ > O there is a subspace
Y of X so that dim Y =2 and d(Y, ﬁ%} &1+ e « For 2 long time, it was not
known whether the seme is true for z? for every finite n . JAMES settled this
problem by proving that the answer is negative for n = 3 (and thus for all n >3 ).
There is however a stronger non reflexivity condition which implies the existence of
almost isometric copies of 3? » This is obteined in the following ﬁiy ¢ To say that
X 1is not reflexive means that the canonical isometry J, : X =X is not onto
There are two canonical isometries from X = into X(IV namely (Jx)** and  Jy %%,
Either one of these maps is ontc if and only if X 1is reflexive¢ One can ask whether

both maps together yieldall of X(IV) s ie as whether

x(TV) o T (X + () X

*%
(this is the case if and only if X /X is reflexive)s. It was shown in [6] that if
this is not the case then X contains 2lmost isometric copies even of 2? » Among

the very many open problems in this direction let me mention the followinge

*x
(Qe5) Let X be a Banach space such that X /X is not reflexives Ig it true that
for every ¢ and every integer n there is a subspace Y of X with

d(Y 4 24) g1+ ¢ ?

In particular, what is the situation for n =5 ?

We turn now to the approximation property. Let us recall that a Banach space has
the approximation property (AP in short), if for every compact subset K of X and
every ¢ > O there is an operator T : X - X whidh

dim TX < « and ”Tx - x” <e

for every x € K « ENFLO was the first who proved that there are Banach spaces which
fail to have the approximation prepertys Since Enflo's work several othep examples of
spaces which fail to have the AP were constructed. We mention,in particular Daviet's
paper [4] which contains elegant examples of subspaces of 4 , 2<p< o s which
fail to have the AP and Szankowski's example [16] of a Banach lattice which fails
to have the AP, It is however still far from being clear to what extent the AP holds

or fails to hold "in general". For example, the following problem is opene

(Qe6). Let X be an infinite~dimensional Banach space which is not isomorphic to a
Hilbert space. Does X have 1 subspace which fails to have the AP ?

All known examples of spaces which fail to have the AP are in some sense "artifi-
cial"s It is of interest to exhibit spaces which appear naturally in analysis and
fail to have the AP. This leads to the followinge

(Q.7) Let B(zz) be the space of all bounded operators from Lo into itself with:
the operator norm. Does B(zz) have the AP ? Does the space of all bounded analytic
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functions f£(z) on {z 3 [z[ < 1} with the sup norm have the AP ?

Note that both spaces mentioned in (Q.7) are non separable. There are several
strong and simple criteria for checking the AP in separable spaces (the existence
of a Schauder basis for example)s By rising such a criteria or even more simply by
arguing directly it is easy to prove that the common separable spaces whioh appear
in analysis have the AP, There is a variant of the AP called the uniform approxima—
tion property (UAP in short) which leads to intere®ing and perhaps difficult pro-
blems in the setting of several common separable spaces. This property was intro-
duced by PELCZYNSKI and ROSENTHAL and the point in it is that it does not only ask
whether a suitable T : X = X with dim TX < » exists but asks for an estimate
on dim TX < @ « A Banach space X is said to have the )\-UAP if there is a function
n = f(n) on the integers so that for every n vectors {xi}?=4 in X there is
a T: X=X with |[T] <, Tx, =x; for 1gign, and dim TX g f(n) « A
Banach' space is said to have the UAP if it has the A-UAP for some )\ < @ « PEL-
CZYNSKI and ROSENTHAL proved that the spaces Lp(u) and C(K) have the UAP ; they
use however a method which works only for these spaces. There are no known general
criteria which can be used to verify the UAP in other concrete spadew. The existence
of a basis in X and even the existencd of an unconditional basis does not ensure
that X has the UAP (this follows from [16]). The only spaces (besides those clo-
sely related to C(K) and Lp spaces) which are known to have the UAP are refle-

xive Orliez spaces [12].

(Q.8) Does the space C(£2) (the space of @ompact operators on 4y with the usual
operator norm) have the UAP ? Does the disc algebra have the UAP ?

Problems (Q:7) and (Q.8) are closely related, This follows from: the observation
*%

[12] that X has the UAP if and only if X has the UAP (this is known to be

false if UAP is replaced by AP). In this connection, I would like to mention also.

*
(Qe9) Let X have the UAF; joes X  have the UAP ? It is known that the answer is
positive if we restrict ourselves to uniformly convex spaces [12].

We pass now to topic (d) - existence of bases. Of course the existence of separa-
ble spaces failing to have the AP implies in particular that there are separable
spaces which fail to have a basis. A quite simple fact which was known already to
Banach is that every infinite-dimensional Banach space has a subspace with a basis.
This fact is one of the very few known results which ensure the existence of nice
"infinite~dimensional objects" in a general Banach space (there are ma.ry more results
.which ensure the e xistence of ccncrete finite~dimensional objects in general Banach
spaces,y es g« Dvoretzky's theorem). It is therefore of much interest to investigate
whethgr the result on existence of a subspace with a basis can be improved. In par-—

ticular, the following question arises.

(Q:10) Let X be an infinite-dimensional Banach spaces Does X have an infinite-
dimensional subspace with an unconditional basis ?
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A recent result of MAUREY and ROSENTHAL [13] suggests that the answer to (Q.10)
may be negative. They showed that a natural approach to constructing unconditional
basic sequences does not work in general (they exhibited a sequence of elements
Y . DY T IV = !
{xn}n=1 in a Banach space so that ||x || =1 for every n and w - limx_ =0 but

[+ o0 P . .
no subsequence {xnk}]!@_1 of {xn}n=1 forms an unconditional basic sequence).
A question closely related to (Q.10) is the following.

(Qe11) Let X be an infinite—dimensional Banach space. Does X contain an infinite—

dimensicnal subspace Y so that Y is either reflexive or isomorphic to one of the
spaces CO and 24 ?
An old result of JAMES shows that a positive answer to (Q.10) implies a positive

answer to (Qe11). It is however not unlikely that (Q.10) has a negative answer while
(Qe11) has a positive answer. There are several results which are related to (Qe11)e
The deepe st one is due to ROSENTHAL [15] who characterized those Banach spaoes which

have a subspace isomorphic to Ly e

A different question on bases is concerned with their uniqueness, i. e. in what
sense is a coordinate system genmrated by a suitable basis in a Banach space a cano-
nical coordinate system. Let me recall that a besis {x,n}:=1 is said to be equiva-
lent to a basis {yn}::1 if a series §£ Ay X, With 95}:=1 scalars converges if
and only if Zg X, Y, converges. Unconditional bases if they exist are rarely
uniques. In fact, the only Banach spaces which have up to equivalence a unique norma—
lized unconditional basis are Cyor &g and 2o (= basis {xn}:::1 is said to be:
normalized if ”xn” =1 for every n ). If a Banach space X has two non equiva—
lent normalized unconditional bases then it is easily seen to have a normalized

o]

unconditional basis {xn}:___1 which is not symmetric (an unconditional basis {x} =t
=) R . ©

n=t 1s equivalent to {xn(n)}n=1 for everympermu_

tation n© of the integers). It is then easy to see that the family [xn(n)}n=1

where 1 ranges over all permutations of the integers contains uncountably many

is said to be symmetric if {xn}

mutually non equivalent normalized unconditional bases on X . If we restrict our—
selves to symmetric bases then the phemomenon of uniqueness is much more common.
There are many examples of spaces which: have up to equivalence a unique symmetric
basis and thus in them the symmetric basis provides a canaenical coordinate system
(this is the case e. ge for 4 5, 1< p< o, Lorentz sequence spaces, many Orliez
sequence spaces). In some situations (even for some Orlicz sequence spaces), a space
may have more than one symmetric basis. In all known examples of spaces having more
than one symmetric kasis there are uncountably many mutually non equivalent symmme-—
tric Bases. Unlike the situation with non uniqueness of unconditional bases (were
we could simply use permutations to generate new equivalence classes), there seems
to be no general procedure to generate new symnetric bases if we know that there

exist two non equivalent ones. This gives rise to the following question.

(Qe12) Let X be_a Banach space having at least two non equivalent symmetric bases.
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Must X have infinitely many mutually non equivalent symmetric bases ?

(For further background to (Q.12), cf. [11]).

We pass now to some non linear problems. The structure of a Banach. space and its
convex subsets as metric spaces has been a subject of much research (of course, we
take as the metric the natural one induced by the norm, i. e. d(x , y) = I[x - ﬂl).
There are now many strong and beautiful theorems in this direction (cfs the book
[2])¢ Actually, the study of Banach spaces as metric spaces created a new branch irf
topology called infinite~dimensional topology. That this subject is a branch of topo~
logy rather than Banach space theory stems from the fact that the linear topological
properties of a Banach space have almost no topological meaning. For example, I
recall the result of KADEC which states that any two separable. infinite~dimensional
Banach spaces are homeomorphice The situation changes completely if we take into
account not only the topology indused by [[x = ¥]l s+ but the uniform structure indu~
ced by it. The constructions used in infinite dimensional topology are almost never
uniformly continuous. It is not true that every two infinite-dimensionali separable
Banach spaces are uniformly homeomorphic. In facty, the uniform structure of a Banach
space gives much information on its linear stRucture, and it is not known whether

it determines it completely%

(Qe13) Let X and Y be two uniformly homeomorphic Banach. spaces. Is X isomor—
phic to Y ?

The strongest known partial result to (Q.13) is a result of RIBE [14] which says
that if X is uniformly homeomorphic to Y then the local structure of X and Y
as Banach spaces are the same (i. e. there is a constant A < » so that for every
subspace B of X with dimB < o there §8 a B' © Y with d(B y B') <A )e An
interesting special case of (Q.13) is obtained if X = G, and Y=C(0, t) (these
spaces have the same local structure so RIBE's result does not say anything in this
case)« AHARONI [17] proved that there is mapping T: Y > X so that T and T |
both: satisfy a Lipschitz condition (it is well known that there is no linear T
which satisfies this). Moreover there is a Lipschitz: continuous projection from X
onto (it non linear subset) TY . These results seem to suggest that Co may be
uniformly hameomorphic to C(0 4 1) .

As a matter of fact, there is very little known on the uniform structure of Banach

spaces. Let me mention just one more. (among the very many natural) question on this
subject.

(Qe14) Is the Hilbert space g, uniformly homeoporphic to a bounded subset of it~
self ? '

AHARONI [1] observed that the answer is positive if we replace Lo by CO .
We come to our last topic-non separable questionse Non separable questions have
attracted much less attention than separable ones among the research in Banach space
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theorys. The lack of knowledge on non separsble spaces is illustrated by the fact
that the following simple looking problem is still apparently open.

(Qe15) Does every infinitely dimensional Banach space X have an infinite dimensio-

nal separable queotient space ?

In many special cases (ew g if X is reflexive), the answer to (Q.15) is posi-
tive and trivially so but no general construction of a separable quotient space 1is

knowne

The most extensively studied class of non separable Banach space for which é
kind of structure théory is available is the class of WCG spaces (spaces which
have a weakly compact set which generates the whole space), This class:inzludes all
reflexive spaces (where the unit ball is w- compact) as well as other spaces (ee
Je Lm(u) where | 1s a finite measure on an arbitrary measure space)e Among the

many problems concerning WCG spaces which are still open: I mention the followings

(Qe16) Let X be a Banach space. Assume that X is a Lindeldf space in its w

topology 3 is X isomorphic to a subspace of a ¥iCG space ?

TALAGRAND [17] showed recently that conversely every WCG space (ard thus every
subsmce of a WCG space) is Lindeldf in its  topology.

In the non separable case, the question of classifying up to isomprphism. the spa-
ces C(K) seems to pose very difficult questions. In. the separable case (i. e.
K compact metric), a complete classification up to isomorphism: was carried out by
BESSAGA and PELCZYNSKI and MILUTIN. The main step was the result of MILUTIN which
showed that if K is compact metric uncounsable then C(K) is isomorphic to
C(p) where A is the Cantor set. In the non-separable case (i. e« K compact
Hausdorff non metrizable) there is some information on special classes of K (e.
ge if K 1is the space of ordinals in the order topology, or & topological group or
a Stone-Cech compactification of a metric space or an Eberlein compact). The gene—
ral classification problem for non separable C(K) spaces seems to be hopelessly
compliceted. However there are some concrete questionswhich may have a reasonable
answere The key point in the proof of MILUTIN!s result was that every separable
G(K) space is isoporphic to such a space with K totally disconnected. Is this
true in general ?

(Qe17) Let K be a compact Hausdorff spacee Does there exist a totally dispnnec-

ted compact Hausdorff space K, so that C(K) ~ CQKO) ?

In the setting of non separable spaces, there are many open questions about the

existence of "nice nomms". We mention here one question of this type.

(Q.18) Characterize those Bapach spaces which have an equivalent strictly convex

norms
A norm is stictly convex if ||| =|y]] =1 and ||x + V|| =2 imply that x =y .
(Qe18). is of course a vaguely stated probleme It is easily verified that every se=—

parable Banach space has an equivalent strictly convex norm. The same is true for
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a general WCG space (and also for duals of WCG spaces). On the other band, it

was shown by DAY that there exist Banach spaces which do not have an equivalent

strictly convex norme. Some conjectures concerning a possible answer to. (Q.18) were

shown to be false in [3]. This paper shows that even for C(K) spaces it semme to

be a delicate and presumably difficulit question to decice under which condition

there exists an equivalent strictly canvex norm.
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