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ON THE DISTRIBUTION OF NUMBER-THEORETIC FUNCTIONS

by Jonas KUBILIUS

Séminaire DELANGE-PISOT-POITOU
(Theorie des nombres)
11e ann4e, 1969/70, n° 23, 11 p. 15 juin 1970

1. - A real or complex-valued function f(m) , defined for all positive inte-
gers m, is called additive if

provided m and n are coprime. Analogously, a sequence of real or complex num-

bers g(m) (m = 1 , 2 , ...) is called a multiplicative function if

whenever m and n are relatively prime.

As it is well known, many classical number-theoretic functions are additive or

multiplicative, and many classical problems of number theory are closely connected

with the behaviour of these functions.

In general, the values of such functions are distributed very erraticaly. Never-

theless it turns out that, in the large, the distribution of values of many of

these functions are subject to certain simple laws, which can be formulated and

proved by using ideas and methods of probability theoryo

We naturally arrive at the concept of asymptotic local and integral distribution

laws. In the first case, it is a matter of finding an asymptotic expression for the

proportion of natural m ~ n for which a real arithmetic function h(m) assumes a

given value k ,

In the second case, we seek asymptotic expression for

where x is any real number.

2. - In case of additive functions, it is very convenient to use the theory of
Fourier transforms. If f(m) is a real additive function, then the characteristic

function of the distribution function F n (x) = v n (f(m)  x) ,



converges, as n -~ ~ , for all real t to some function c~(t~ ~ conti-
nuous at the point t = 0 , then F (x) converges to some distribution function

n

F(x) at each of its points of continuity, and is the characteristic func-

tion of F(x) . From the rate of convergence of c~ n (t~ to ~p(t~ , we can obtain
some information about the rate of convergence of to F(x) .

In case of multiplicative functions, a modification of Mellin transform is more

convenient. Let G(x) be a distribution function. ~le introduce the pair of charac-

teristic transforms

where the dash means that the point x = 0 is withdrawn from the path of the inte-

gration.

There exists a one-to-one correspondence between distribution functions and pairs
of their characteristic transforms. This correspondence is continuous in the follow-

ing sense.

Given a sequence of distribution functions G 
n 
(x) (n = 1 , 2 , ... ~ ~ and the

sequence of corresponding characteristic transforms w. (t) (k = 0 , 1 ; n = 1 , 2 , ...) ,
a necessary and sufficient condition for the convergence of the sequence G 

n 
(x) to

a distribution function G(x) at every of its points of continuity and for

-.~ G(0) , G~(+ 0) -..~ G(+ 0) (if x = 0 is not a continuity point of

is that, for every t, the sequences (k = 0 , l) converge to li-

mits Wk(t) , which are continuous at t = 0 . When this condition is satisfied,
the limits are identical with the characteristic transforms of the limiting
distribution function G(x) .

Now, let g(m) be a real-valued multiplicative function. The characteristic

transforms of the distribution function G n (x) = v n (g(m)  x) are the sums

Instead of the function G 
n (x) , we can consider the sums (t) .

30 - Thus in both cases of additive and multiplicative functions, the problem
is to investigate the asymptotic behaviour of the sum

where h(m) is a complex-valued multiplicative function satisfying ‘h(m~ ~ .~ 1



and depending on a parameter.

The sums of multiplicative functions were considered by many authors. In particu-

lar, H. DELANGE [2] obtained necessary and sufficient conditions in order that the

mean value (l) tends to a non-zero limit. From this result, it follows the well-

known ErdSs-Wintner theorem ([3]).

The distribution function v 
n 

(f(m)  x) of a real-valued additive number-

theoretic function, f(m) , converges to a limit distribution function F(x) at

its points of continuity if, and only if, there exists a positive constant c (con-

sequently, for every fixed c > 0 ) such that the series

where the sums are taken over all primes p with the indicated properties, conver-

ge. The characteristic function of the limiting distribution function F(x) , when-
ever it exists, is equal to

In case of integer-valued additive functions, the conditions (2) are equivalent to

It turns out that this condition is necessary and sufficient for the following lo-

cal theorem.

, 
THEOREM. - Let f(m) be an integer-valued additive function. For each integer k ,

tends to some ~ with the property

uniformly in k, as if, and only if, (3) is true.

The proof (~6 ~~ is based on the fact that, for integer-valued additive functions,
this statement is equivalent to the integral theorem of Erdos and Wintner.

4. - The case of multiplicative functions is more difficult (jl4]).

If for a given real-valued multiplicative function g(m) , there exists a constant



c > 1 such that the series

converge, then v 
n 

(g(m)  x) , as n -~ ~ , converges to a limiting distribution

function G(x) at its continuity points and at x = 0 (in the sense mentionned
above). The characteristic transforms of G(x) equal

A distribution function G(x) is said to be symmetric if

for all x.

In case of non-symmetric limiting distribution laws, necessary and sufficient

conditions can be given. So, v (g(m)  x) tends to a non-symmetric distributionn

function if, and only if, there exists a constant c > ~, such that the series (4)
converge and g(203B1) ~ - 1 for at least one 03B1 = 1 , 2 , ....

Though necessary and sufficient conditions for the convergence of v (g(m)  x)
n

to a limiting symmetric distribution function are unknown, however if 03BDn tg(m)  x)n

tends to a non-degenerate distribution function G(x) , then G(x) is symmetric if,
and only if, at least one of the following conditions is satisfied :

1° The series ~ ~ diverge ;
P

2° g( 2a) = - 1 for all a = 1, 2 , ....

5. - Let us return to the additive functions f(m) . If the series

converge, then Erdos-Wintner theorem gives necessary and sufficient conditions for
the existence of the asymptotic integral distribution law. The situation is more

complicated if these series diverge. In this case, we need to introduce normaliza-
tion factors. Thus we need to consider the asymptotic laws for

with some A and D .
n n

There are some methods for solving such problems ~~4~~ ~9~~. They consist, in



general, in the following. Instead of the function f(m) , we consider a "truncated"

function

where m contains only such prime factors which do not exceed a slowly increasing
r

function r = r(n) :

The function v(m) is either identical to 0 , or has the property that

for a given sequence lp , converges, as n to a distribution function at

each of its continuity points.

It turns out that the function ~(m) can be approximated by a sum of suitably

choosen independent random variables. Thus we are in a position to investigate the

distribution of the function ~(m) by means of the theory of summation of indepen-

dent random variables. An application of an analogue of the law of large numbers

leads to the limit theorems for the function f(m) itself.

There is a number of theorems proved by this way ( ~ 4~, ~ 9 ~~ . The class of all

possible limit distribution laws contains all stable laws. As an example, 2 mention

only one of such theorems ( ~ 4~~ .

Let f(m) be a real-valued additive function. Denote

where the summation is taken over prime powers p y cx = 1, r 2 , .... If for every

fixed e > 0 ,

( an analogue of Lindeberg’s condition), then



as n -"~ oa ~ tends to the normal law

Similar theorems can be proved for multiplicative functions (4).

6. - In this method, the transition from the "truncated" function ~(m) to

the function f(m) itself introduces certain error, and as result the accurasy of

the limit theorems for f(m) is reduced in comparison with the corresponding theo-

rems of probability theory. This is very important if we wish to estimate the rate

of convergence to the limit law.

In order to avoid this reduction in accurasy, we need to forego truncation. It

turns out that for a certain class of additive and multiplicative functions, the

difficulties can be circumvented by using methods of analytic number theory.

For the estimation of the sum

where h(m) is multiplicative function, )h(m) ) ~ 1 , we consider the generating
Dirichlet series

where s is the complex variable. The sum (6) can be represented by a contour in-

tegral of Z(s) multiplied by some simple function. In order to evaluate this in-

tegral, we need the analytic continuation of Z(s) at least into the half-plane
Re It can be done in some cases [.7j).

Suppose that the sum over all primes p ,

for some x not depending on p y cl ’ where c and cl are constants. In

this case, the function Z(s) can be represented in the form

where ç(s) is Riemann’s zeta-function, and H(s) is continuous for Re s >,,1 and

has the first derivative. This leads to the asymptotic formula



Here r(x) denotes the gamma-function. The constant in the symbol 0 depends only

on c and c .
This fonnula can be generalized (~7 j~ . Introducing stronger conditions, we can

. 

give a formula for (6) containing more terms with decreasing powers of 2n x .

Formula (7) permits to estimate error terms in integral and local theorems for a
class of additive and multiplicative functions (~7 ~, [8j).

7. - If f(m) is an integer-valued additive function, satisfying the condi-

tions

then uniformly for all integers k and n ~ 3 ,

where 6 is any fixed positive number, then the principal term in ( 10~ is less or
greater than the remainder correspondingly. If besides the condition ~8 ~ i the func-

tion f(m) satisfies a stronger condition than ~9~, we can enlarge the region of
the validity of the local theorem. Let us suppose that there exists an integer

r ~ 1 such that

Then uniformly in k and n >, 3 g



. 
where is a polynomial of degree 3j&#x26; with coefficients depending only on
the function f(m) .

then the principal term of the last formula is greater or less than the remainder

respectively.

Further restriction on the function f(m) makes it possible to enlarge the re-

gion of the validity of the local theorem to k = n + n) .

Let f(m) satisfy the condition (7~, and for some y > 0 ,

Then for all integers k, satisfying k = n n) ,

8. - We consider now an additive function f(m) assuming any real values.

Suppose that there exist two constants c > 0 and X d 0 such that

where a - Then uniformly in x and 

The constant in the symbol 0 depends only on the function f(m) y and ~(x~ is

the normal law (5).

: Replacing (11~ by



where r ~ 1 is an integer, we obtain

Here ~ ( ~~ is a polynomial of degree 3~ with coefficients depending only on the

function 9 and Q l(- 03A6) is obtained from Ql(- iz) by replacing all powers

(iz)q (q= 0 , 1 , ...) by 03A6(q)(x) .
Finally, repl acing by

with some y > 0 , and supposing x = we obtain that

for and

for x > 0 9 are equal to

9. - Now let g(m) be a real-valued multiplicative function. If for some
constants c > 0 and 



then uniformly in x and n ~ 3 ,

is equal to

for x > 0 , and to

for x  0 0 Here

An analogous result is true, if we replace g(p) > 0 by g(p)  0 in the inequa-
lities (12), and g(p) ~ 0 by g(p) in the inequality ( 13~ . In this case,

is equal to

for x > 0 , and to

for x0.
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