Séminaire Dubreil. Algèbre et théorie DES NOMBRES

Paul F. Conrad

Subdirect sums of integers and reals

Séminaire Dubreil. Algèbre et théorie des nombres, tome 20, n ${ }^{\circ} 2$ (1966-1967), exp. $\mathrm{n}^{\circ} 21$, p. 1-8
http://www.numdam.org/item?id=SD_1966-1967__20_2_A9_0
© Séminaire Dubreil. Algèbre et théorie des nombres
(Secrétariat mathématique, Paris), 1966-1967, tous droits réservés.
L'accès aux archives de la collection «Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
by Paul F. COITRAD

1. Introduction and statement of the main theorems.

The concept of a subdirect sum of integers is important in the study of abelian latticed-ordered groups (" ℓ-groups") since WEINBERG [12] has shown that a free abelian ℓ-group is a subdirect sum of integers and hence each abelian ℓ-group is a homomorphic image of a subdirect sum of integers. In this paper, those ℓ-groups which are subdirect sums of integers are characterized. We also characterize those ℓ-groups which are subdirect sums of subgroups of the naturally ordered additive group R of real numbers. TOPPING [10] has shown that each vector lattice is a homomorphic image of such an b-group.

PAPPERT [9] has determined a necessary and sufficient condition for a vector lat-. tice to be a subdirect sum of reals, and BERNAU [2] has shown that with a slight modification her theory applies to an arbitrary ℓ-group. Both of these authors use the fact that an archimedean l-group can be represented by almost finite functions on a Stone space to obtrin their results. Our condition is simplier, and the proof is elementary.

In [3], BERNAU characterizes those subdirect sums of integers which contain the small sum, and those which contain a dense subset of bounded elements. We can also characterize these classes of ℓ-groups. These and other special cases and corollaries of our two main theorems are contained in Section 3.

For each $\lambda \in \Lambda$, let $G \lambda$ be a totally ordered group (" o-group") that is oisomorphic to a subgroup of R. Thus, each G_{λ} is an archimedean o-group, or equivalently an o-group without proper convex subgroups. ΠG_{λ} will denote the large or unrestricted direct sum of the G ordered pointwise, the large cardinal
 ticular, ΠG_{λ} is an ℓ-group, and $\sum G_{\lambda}$ is an ℓ-ideal of ΠG_{λ}. If there exists an ℓ-isomorphism of an ℓ-group G onto a subdirect sum of ΠG_{λ}, then we say that G is a subdirect sum of reals. If, in addition, each G_{λ} is cyclic, then we say that G is a subdirect sum of integers.

Let G be an 2 -group, $G^{+}=\{g \in G \mid g>0\}$, and let Z^{+}be the set of all strictly positive integers. An element $x \in G^{+}$will be called real, if there exists a map $y \rightarrow \bar{y}$ of G^{+}into z^{+}such that :
(I) $(\bar{y} x-y) \wedge(\bar{z} x-z) \nless 0$ for all $y, z \in G^{+}$.

If, in addition, for all $y \in G^{+}$and all $n \in Z^{+}$:
(II) $\overrightarrow{\mathrm{y}}=1$ implies $\overline{\mathrm{ny}}=1$,
(III) $\mathrm{x} \geqslant 2 \mathrm{y}$ implies $\overline{\mathrm{y}}=1$,
then x will be called an integral element of G.

THEOREM 1. - An ℓ-group G is a subdirect sum of reals if, and only if, each $y \in G^{+}$exceeds a real element.

THEOREM 2. - An l-group G is a subdirect sum of integers if, and only if, each $y \in G^{+}$exceeds an integral element.

2. Proofs of theorems 1 and 2 .

In all that follows, let $G \neq 0$ be an ℓ-group. A convex ℓ-subgroup M of G is a subgroup that satisfies

$$
|x| \leqslant|a| \text { for } x \in G \text { and } a \in M \text { implies } \quad x \in M,
$$

or equivalently M is a sublattice and a convex subset of G. In particular, the set of all right cosets of a convex ℓ-subgroup M is a distributive lattice such that, for all $a, b \in G$,

$$
\mathbb{M}+a \vee \mathbb{M}+b=\mathbb{M}+a \vee b
$$

and dually, where, by definition, $M+a \geqslant M+b$ if $x+a \geqslant b$ for some $x \in \mathbb{M}$. A prime subgroup of G is a convex ℓ-subgroup for which the lattice of right cosets is totally ordered. For a convex 2 -subgroup M of G, the following properties are equivalent :
(a) M is prime ;
(b) The set of convex \&-subgroups that contain M is a chain with respect to inclusion ;
(c) If $a, b \in G^{+}, ~ M$, then $a \wedge b \in G^{+}, ~ M$.

Let $\mathbb{N b}^{6}$ be the set of all maximal prime subgroups of G. If $M \in \mathbb{M}$ and $M \triangleleft G$, then G / M is o-isomorphic to a subgroup of R (notation $G / M<R$). For proofs of the above, see [6].

We shall consider the following properties of $x \in G^{+}$:
(1) There exists $M \in M_{6}$ such that $M+x$ covers M and, for each $y \in G^{+}$, $M+n x>M+y$ for some $n \in Z^{+}$;
(2) x is an integral element of G;
(3) x is a real element of G ;
(4) There exists $M \in d i \quad$ such that, for each $y \in G^{+}, M+n x>M+y$ for some $n \in Z^{+}$.

LEMMA. - (1) $\Rightarrow(2) \Longrightarrow(3) \Leftrightarrow$ (4) and if each $M \in \mathbb{M}$ is normal in G, then $(2) \Rightarrow$ (1).

Proof. - It follows from the definition of real and integral elements that (2) \Rightarrow (3).
(4) \Rightarrow (3) : For each $y \in G^{+}$, let \bar{y} be the least element in Z^{+}such that $M+\overline{\mathrm{y} x}>\mathrm{M}+\mathrm{y}$. Then, for all $\mathrm{y}, \mathrm{z} \in \mathrm{G}^{+}$,

$$
M+(\bar{y} x-y) \wedge(\bar{z} x-z)=M+(\bar{y} x-y) \wedge M+(\bar{z} x-z)>M
$$

Thus $(\overline{\mathrm{y}} \mathrm{x}-\mathrm{y}) \wedge(\overline{\mathrm{z} x}-\mathrm{z}) \neq 0$, and so x is real.
(1) \Rightarrow (2) : Define \bar{y} as above. Since $M+x$ covers M, for $y \in G^{+}$and $n \in \mathrm{Z}^{+}$, the following are equivalent :

$$
\overline{\mathrm{y}}=1, \quad \mathrm{y} \in \mathbb{M}, \quad \mathrm{ny} \in \mathbb{M} \quad \text { and } \quad \overline{\mathrm{ny}}=1
$$

If $y \in G^{+}$and $x \geqslant 2 y$, then $y \in \mathbb{M}$, and so $\bar{y}=1$. For if $y \notin \mathbb{M}$, then $M+x \geqslant M+2 y>M+y>M$, but this contradicts the fact that $M+x$ covers M. Therefore x is an integral element in G.
(3) \Rightarrow (4): For $y, z \in G^{+}$,

$$
[(\bar{y} x-y) \vee 0] \wedge[(\overline{z x}-z) \vee 0]=[(\bar{y} x-y) \wedge(\bar{z} x-z)] \vee 0 \in G^{+} .
$$

Thus, $Q_{x}=\left\{(\bar{y} x-y) \vee 0 \mid y \in G^{+}\right\}$is contained in an ultrafilter K of G^{+}. That is, $0<a \wedge b \in K$ for all $a, b \in K$, and K is maximal with respect to this property. It follows that

$$
N=\bigcup_{k \in K} k^{\prime}
$$

is a minimal prime subgroup of G, and $K=G^{+}, ~ N$, where

$$
k^{t}=\{g \in G|\quad| g \mid \wedge k=0\}
$$

is the polar of k. This is theorem 5.1 in [7], and this result is also implicit in [1] and [8].
(A) $N+\bar{y} x>N+y, \quad$ for each $y \in G^{+}$.

For $(\bar{y} x-y) \vee 0 \in K=G^{+}, ~ \mathbb{N}$, and hence $N+(\bar{y} x-y) \vee O>N$, and so

$$
\mathrm{N}+\overline{\mathrm{y}} \mathrm{x}-\mathrm{y}>\mathrm{N}
$$

Since the convex ℓ-subgroups of G that contain \mathbb{N} form a chain, there is a unique convex \quad,-subgroup $M \supseteq N$ that is maximal, with respect to $x \notin M$.

$$
\begin{equation*}
M \in \mathbb{R} \tag{B}
\end{equation*}
$$

For if $y \in G^{+}$, then $N+\bar{y} x>N+y$, and hence $a+\overline{y x}>y>0$ for some $a \in N$. But clearly, $a+\bar{y} x$ is contained in any convex ℓ-subgroup that properly contains M. Therefore, G covers M, and hence $M \in\{\pi$. It follows from (A) that

$$
M+(\bar{y}+1) x>M+\bar{y} x \geqslant M+y
$$

Therefore (4) is satisfied.
To complete the proof, we need to show that (2) \Rightarrow (1) , provided that each $M \in \mathfrak{H}$ is normal in G. Let x be an integral element, and let M and N be as above. Suppose (by way of contradiction) that $M+x>M+y>M$ for some $y \in G$. Then, since

$$
M+y \vee 0=M+y \vee M=M+y \quad \text { and } \quad M+x \wedge y=M+x \wedge M+y=M+y
$$ we may assume that $x>y>0$. Now, $x=x-y+y$, and since $x-y, y \in G^{+}, ~ M$, and M is prime, $d=(x-y) \wedge y \in G^{+}, ~ M$. Clearly, $x \geqslant 2 d$, and hence $\bar{d}=1$ and $\overline{n d}=1$ for all $n \in Z^{+}$. Thus,

$$
M+x=M+\overline{n d} x \geqslant M+n d \geqslant M+d>M, \quad \text { for all } n \in Z^{+}
$$

but this is impossible, because $G / M \prec R$.
COROLLARY. - Suppose that each $M \in \mathbb{J}$ is normal in G, and consider $X \in G^{+}$.
(a) x is a real element of G if, and only if, $x \in G \backslash M$ for some $M \in d t$.
(b) X is an integral element of G if, and only if, $M+x$ covers M for some $\mathbb{M} \in \mathbb{M}$.

Proof. - This is an immediate consequence of the lemma and the fact that $G / M<R$ is an archimedean o-group for each $M \in \mathbb{M}$.

BYRD [4] has shown that G is a subdirect sum of o-groups if, and only if, for each prime subgroup M and each $g \in G,-g+\mathbb{M}+g \subseteq M$ or $-g+M+g \supseteq M$. Thus, for this cless of ℓ-groups, each $M \in \mathbb{R}_{R}$ is normal.

Proof of theorem 1. - Suppose that G is a sublattice and a subdirect sum of $\Pi R_{\lambda}(\lambda \in \Lambda)$, where each $R_{\lambda} \subseteq R$. If $x \in G^{+}$, then $x_{\lambda}>0$ for some $\lambda \in \Lambda$. Let $M=\left\{g \in G \mid g_{\lambda}=0\right\}$. Then $M \in J_{l}$ and $x \in G \backslash M$. Thus, by the corollary, X is real, and so each $X \in G^{+}$is real.

Conversely, suppose that each element in G^{+}exceeds a real element, and consider $y, z \in G^{+}$. There exists a real element $x \leqslant z$. Thus $\bar{y} x \nless y$, and hence $\overline{\mathrm{y}} \not \approx \mathrm{y}$. Therefore G is archimedean, and hence abelian. By the corollary, $\mathrm{x} \in \mathrm{G}, ~ M$ for some $M \in J$, and hence $z \in G \backslash M$. Therefore, $0=\cap\{M \mid M \in M i\}$, and so G is a subdirect sum of reals.

Proof of theorem 2. - Suppose that G is a sublattice and a subdirect sum of $\Pi z_{\lambda}(\lambda \in \Lambda)$, where each $Z_{\lambda}=Z$. If $g \in G^{+}$, then $g \geqslant x>0$ for some $x \in G$, where $X_{\lambda}=1$ for some $\lambda \in \Lambda$. Let $M=\left\{g \in G \mid g_{\lambda}=0\right\}$. Then $M \in \mathbb{M}$, and $M+x$ covers M, and hence, by the corollary, X is integral. Therefore each element in G^{+}exceeds an integral element.

Conversely, suppose that each element in G^{+}exceeds an integral element. Then, as in the proof of theorem 1, G is abelian. Let $J=\{M \in \mathbb{J} \mid G / \mathbb{M}$ is cyclic $\}$. Then, by the corollary, $\cap\{\mathbb{M} \mid \mathbb{M} \in \mathfrak{J}\}$ must be zero, since it contains no integral element. Therefore G is a subdirect sum of integers.
3. Special cases of theorems 1 and 2 .

An element $s \in G^{+}$is called basic, if $\{g \in G \mid 0 \leqslant g \leqslant s\}$ is totally ordered.

PROPOSITION A. - For an b-group G, the following properties are equivalent :
(1) G is a subdirect sum of reals that contains the small sum ;
(2) Each element in G^{+}exceeds a real element that is also basic ;
(3) G is archimedean, and each element in G^{+}exceeds a basic element.

Proof. - It is shown in [5] that (1) \Longleftrightarrow (3). If each element in G^{+}exceeds a real element, then G is archimedean, and hence (2) \Rightarrow (3). If (1) holds, then each element in G^{+}is real, and hence (1) and (3) imply (2).

There are many other equivalent conditions proven in the literature (see for example [11]).

An element $a \in G^{+}$is an atom, if it covers 0 . It is shown in [5] that x is a basic element in an archimedean l-group G if, and only if, $x^{\prime \prime}<R$, and G is the cardinal sum of $x^{\prime \prime}$ and x^{\prime}. Thus a basic element x is integral if, and only if, $x^{\prime \prime}$ is cyclic, and hence if, and only if, x is an atom.

PROPOSITION B. - For an b-group G, the following properties are equivalent :
(1) G is a subdirect sum of integers that contains the small sum ;
(2) Each element in G^{+}exceeds an integral element that is also basic ;
(3) G is archimedean, and each element in G^{+}exceeds an atom.

Proof. - Clearly (1) \Rightarrow (2) \Rightarrow (3).
(3) \Rightarrow (1) : Since each atom is a basic element, it follows from proposition A that G is a subdirect sum of reals that contains the small sum. Thus, without loss of generality,

$$
\sum R_{\lambda} \subseteq G \subseteq \prod R_{\lambda}
$$

where $R_{\lambda} \subseteq R$ for each $\lambda \in \Lambda$. If R_{λ} is not cyclic, then there exists an element in $\mathrm{R}_{\lambda}^{+} \subseteq \mathrm{G}^{+}$that does not exceed an atom, a contradiction. Therefore (1) holds.

An element $s \in G^{+}$is called singular, if $a \wedge(s-a)=0$ for each $0 \leqslant a \leqslant s$.
PROPOSITION C. - For an b-group G, the following properties are equivalent :
(1) G is a subdirect sum of integers, and each element in G^{+}exceeds a bounded element ;
(2) Each element in G^{+}exceeds an integral element that is also singular ;
(3) G is a subdirect sum of reals, and each element in G^{+}exceeds a singular element.

Proof. - In [7], it is shown that (1) \Longleftrightarrow (3), and clearly (2) \Longrightarrow (3). Suppose that (1) and (3) hold. Then, without loss of generality, $G \subseteq \prod Z_{\lambda}$, where for each $\lambda \in \Lambda, Z_{\lambda}=Z$, and in [7], it is shown that if $s \in G$ is singular, then $s_{\lambda}=1$ or 0 . Thus, it follows that s is integral, and hence we have (2).

BERNAU [3] has established (1) \Longleftrightarrow (3) in proposition B, and has derived a condition that is equivalent to (1) in proposition C.

Suppose that $x \in G^{+}$is real, and let A_{x} be the set of all maps $\pi: G^{+} \rightarrow Z^{+}$, such that for all $y, z \in G^{+}$,

$$
((y \pi) x-y) \wedge((z \pi) x-z) \nless 0 \quad .
$$

For $\alpha, \beta \in A_{x}$, define $\alpha \leqslant \beta$ if $y \alpha \leqslant y \beta$ for all $y \in G^{+}$. Then (A, \leqslant) is a po-set, and each element in A_{x} exceeds a minimal element in A_{x}. For if

$$
\left\{\alpha_{\lambda} \mid \quad \lambda \in \Lambda\right\}
$$

is a chain in A_{x}, then for each $y \in G^{+}$, define

$$
\mathrm{y} \pi=\min \left\{y \alpha{ }_{\lambda} \mid \lambda \in \Lambda\right\} .
$$

If $y, z \in G^{+}$, then there exists $\lambda \in \Lambda$ such that $y \alpha \lambda$ and $z \alpha \lambda$ are minimal,
and so

$$
((y \pi) x-y) \wedge((z \pi)-z)=\left(\left(y \alpha \alpha_{\lambda}\right) x-y\right) \wedge\left(\left(z \alpha_{\lambda}\right) x-z\right) \nless 0 .
$$

Therefore $\pi \in A_{x}$, and hence, by Zorn's lemma, each map in A_{x} exceeds a minimal map.

Definition. - A real element $\mathrm{x} \in \mathrm{G}^{+}$for which there exists a minimal map $\mathrm{y} \rightarrow \overline{\mathrm{y}}$ in A_{x} that also satisfies (II), will be called a m-element.

PROPOSITION D. - For an l-group, the following properties are equivalent :
(1) Each element in G^{+}exceeds a \quad-element ;
(2) G is (ℓ-isomorphic to) a subdirect. sum of ΠZ_{λ}, where for each $\lambda \in \Lambda$, $Z_{\lambda}=Z$, and ${ }_{\lambda}=\left\{g \in G \mid g_{\lambda}=0\right\}$ is both a maximal and a minimal prime subgroup of G.

Proof.

(1) \Longrightarrow (2) : Since each $\mathfrak{m}-\mathrm{element}$ is real, it follows from theorem 1 that G is abelian. Let x be a $\{$-element in G, and let $y \rightarrow \bar{y}$ be a minimal map in A_{x} that also satisfies (II). Construct M and \mathbb{N} as in the proof of ${ }^{\prime}(3) \Longrightarrow$ (4) in the lemma. Since $N+\bar{y} x>N+y$ for all $y \in G^{+}$, and the map $y \rightarrow \bar{y}$ is minimal, it follows that $\overline{\mathrm{y}}$ is the least element in Z^{+}for which $\mathbb{N}+\overline{\mathrm{y}} \mathrm{X}>\mathbb{N}+\mathrm{y}$, Suppose (by way of contradiction) that $\mathbb{M} \supset \mathbb{N}$, and pick $0<z \in \mathbb{M}, \mathbb{N}$, and let $y=-(x \wedge z)+x$. Then,

$$
\mathrm{M}+\mathrm{x}=\mathrm{M}+\mathrm{y} \quad \text { and } \quad \mathbb{N}+\mathrm{x}>\mathrm{N}+\mathrm{y} .
$$

Therefore $\overline{\mathrm{y}}=1$, and hence $\overline{2 \mathrm{y}}=1$, but clearly $\mathbb{N}+\overline{2 \mathrm{y} x}=\mathbb{N}+\mathrm{x}<\mathbb{N}+2 \mathrm{y}$, that is a contradiction. Thus, $\mathbb{N}=\mathbb{H}$ is both maximal and minimal. If $\mathbb{M}+x>M+y$, then $\bar{y}=1$, and hence $M+x=\mathbb{M}+\overline{n y} x \geqslant M+n y$ for all $n \in Z^{+}$. Thus, since $G / \mathbb{M}<R$, it follows that $y \in \mathbb{M}$, and so G / \mathbb{M} is cyclic.
(2) \Rightarrow (1) : We may assume that $G \subseteq \prod Z_{\lambda}$. If $z \in G^{+}$, then $z \geqslant x \in G^{+}$, where $x_{\lambda}=1$ for some $\lambda \in \Lambda$. For $y \in G^{+}$, define \bar{y} to be the least element in Z^{+}such that $\overline{\mathrm{y}} \mathrm{x}_{\lambda}>\mathrm{y}_{\lambda}$. Then, the map $\mathrm{y} \rightarrow \overline{\mathrm{y}}$ satisfies (I), (II) and (III). It remains to be show that this map is minimal in A_{x}. Suppose that $y \rightarrow \tilde{y}$ is a map in A_{x}, and $\tilde{y} \leqslant \bar{y}$ for all $y \in G^{+}$. Construct M and N as above, using the map $y \rightarrow \tilde{y}$. In particular, $N+\tilde{y} x>N+y$ and $M+\tilde{y} \geqslant M+y$ for all $y \in G^{+}$.

If $M \neq G_{\lambda}$, then there exists $y \in G^{+}$such that $y_{\lambda}=0$ and $y \notin M$. Since $y_{\lambda}=0, \bar{y}=1$, and so $\overline{n y}=\widetilde{n y}=1$ for all $n \in Z^{+}$, but this means that
$M+x \geqslant M+\widetilde{n y x} \geqslant M+n y$ for all $n \in Z^{+}$, and this contradicts the fact that $\mathrm{G} / \mathrm{M}<\mathrm{R}$.

If $M=G_{\lambda}$, then, since G_{λ} is a minimal prime, $M=N$, and so $M+\tilde{y} x>M+y$ for all $y \in G^{+}$, and it follows that $\bar{y}=\tilde{y}$ for all $y \in G^{+}$. Therefore x is a melement, and hence (1) is satisfied.

REFERENCES

[1] BANASCHEWSKI (B.). - On lattice ordered groups, Fund. Math., Warszama t. 55, 1964, p. 113-123.
[2] BERNAU (S.). - Unique representations of archimedean lattice groups and normal archimedean lattice rings, Proc. London math. Soc., t. 15, 1965, p. 599-631.
[3] BERNAU (S.). - On subdirect sums of integers (to appear).
[4] BYRD (R.). - Complete distributivity in lattice ordered groups (to appear).
[5] CONRAD (P.). - Some structure theorems for lattice-ordered groups, Trans. Amer. math. Soc., t. 99, 1961, p. 212-240.
[6] CONRAD (P.). - The lattice of all convex l-subgroups of a lattice-ordered group, Czech. math. J., t. 15, 1965, p. 101-123.
[7] CONRAD (P.) and McALISTER (D.). - The completion of a lattice-ordered group (to appear).
[8] JOHNSON (D.) and KIST (J.). - Prime ideals in vector lattices, Canadian J. of Math., t. 14, 1962, p. 517-528.
[9] PAPERT (D.). - A representation theory for lattice groups, Proc. London math. Soc., t. 12, 1962, p. 100-120.
[10] TOPPING (D.). - Some homological pathology in vector lattices, Canadian J. of Math., t. 17, 1965, p. 411-428.
[11] WEINBERG (E.). - Completely distributive lattice-ordered groups, Pacific J. of Math., t. 12, 1962, p. 1131-1137.
[12] WEINBERG (E.). - Free lattice-ordered abelian groups, Math. Annalen, t. 159, 1965, p. 217-222.

