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SUBDIRECT SUMS OF INTEGERS AND REALS

by Paul F. CONRAD

Seminaire DUBREIL-PISOT
(Algèbre et Theorie des nombres
20e ann6e, 1966/67, nO 21 5 juin 1967

1. Introduction and statement of the main theorems.

The concept of a subdirect sum of integers is important in the study of abelian

latticed-ordered groups (" ~~--groups"~ since WEINBERG [12] has shown that a free
abelian g-group is a subdirect sum of integers and hence each abelian £-group is

a homomorphic image of a subdirect sum of integers. In this paper, those g-groups

which are subdirect sums of integers are characterized. We also characterize those

t-groups which are subdirect sums of subgroups of the naturally ordered additive

group R of real numbers., TOPPING [ 10] has shown that each vector lattice is a

homomorphic image of such an £-group.

PAPPERT [9] has determined a necessary and sufficient condition for a vector lat-
tice to be a subdirect sum of reals, and BERNAU [2] has shown that with a slight
modification her theory applies to an arbitrary £-group. Both of these authors use

the fact that an archimedean £-group can be represented by almost finite functions

on a Stone space to obtain their results. Our condition is simplier, and the proof

is elementary.

In ~3~, BERNAU characterizes those subdirect sums of integers which contain the
small sum., and those which contain a dense subset of bounded elements. We can also

characterize these classes of g-groups. These and other special cases and corolla-

ries of our two main theorems are contained in Section 3.

For each X ~ A , let G, be a totally ordered group (" o-~group"~ that is o-

isomorphic to a subgroup of R a Thus, each G- A. is an archimedean o-group, or

equivalently an o-group without proper convex subgroups. H GÀ will denote the

large or unrestricted direct sum of the G. ordered pointwise, the large cardinal

sum of the G03BB , and I G03BB will denote the small cardinal sum of the G-- . In par-

ticular, it G. is an l-group, and I G is an £-ideal of 03C0 G . If there exists

an l-isomorphism of an l-group G onto a subdirect sum of D G , then we say
that G is a subdirect sum of reals. 4 If, in addition, each G03BB is cyclic, then we

say that G is a subdirect sum of integers.

Let G be an ,~~group, and let Z~ be the set of all

strictly positive integers. An element x E G will be called real, if there exists

a map y of G+ into Z such that :



If, in addition, for all y E G+ and all n E Z+ :

then x will be called an integral element of C~ .

THEOREM 1. - An G is a subdirect sum of reals if, and only if, each

exceeds a real element. 
°

THEOREM 2. - An l-group G is a subdirect sum of integers if, and only if, each

y E G~ exceeds an integral element.

2. Proof s of theorems 1 and 2.

In all that follows, 9 let G ~ 0 be an A convex g-subgroup M of G

is a subgroup that satisfies

or equivalently M is a sublattice and a convex subset of G . In particular, the

set of all right cosets of a convex ~-subgroup M is a distributive lattice such

that, for all a , b E G ,

and dually, where, by definition, M + a ? r~ + b if x + a ~ b for some x E M .

A prime subgroup of G is a convex l-subgroup for which the lattice of right co-

sets is totally ordered. For a convex l-subgroup M of G, the following proper-

ties are equivalent :

(a) M is prime ;

(b) The set of convex g-subgroups that contain M is a chain with respect to

inclusion ;

(c) If a, b then a A b M .

Let m be the set of all maximal prime subgroups of G . If M and M  G ,

then G/M is o-isomorphic to a subgroup of R (notation G/M  R ). For proofs
of the above, see [6].

We shall consider the following properties of x E G+ p

( I~ There exists M such that M + x covers M and, for each y E G+ ,
M + nx > M + y for some nE Z ;

(2) x is an integral element of G ;



(3) x is a real element of G ;

(4) There exists M e ?- such that, for each y ~ G+ , M + nx > M + y for some

LEMMA. - (l) ==> (2) ==> (3) ==> (4) , and if each is normal in

G , then (2) ===> (l) .

Proof. - It follows from the definition of real and integral elements that

(2r~> (3).

(~) -2014~ (~) ; For each y let y be the least element in Z such that

M+Yx>M +y . Then, for all y y 

(1) ====> (2) : Define y as above. Since M + x covers for and

n E Z+ , the following are equivalent :

If and x >, 2y , then y and so y = 1 . e For if y fi M , y then

but this contradicts the fact that M + x covers ~I .

Therefore x is an integral element in G .

Thus, Q 
x 
=((~x-y) vO j is contained in an ultrafilter K of ’ .

That is, 0 aAbeK for all a, and K is maximal with respect to

this property. It follows that

is a minimal prime subgroup of G, and K = G+ v N , where

is the polar of k . This is theorem 5.1 in and this result is also implicit

in [1] and [8].

For (yx-y) v 0 E K = G+ , N , y and hence N+ (yx-y) v 0 > N , and so



Since the convex £-subgroups of G that contain N form a chain, there is a uni-

que convex l-subgroup M ~ N that is maximal, with respect to x ~ M .

For if yE G+, then N+yx>N+y $ and hence a+yx>y>0 for some a EN.

But clearly, a + is contained in any convex £-subgroup that properly contains

M . Therefore, G covers M, and hence It follows from (A) that

Therefore (4) is satisfied.

To complete the proof, we need to show that (2) ==> ( 1 ~ , provided that each
is normal in G . Let x be an integral element, and let M and N be as

above. Suppose (by way of contradiction) that M + x > M + y > M for some y E G .

Then, since

we may assume that x>y>0 . Now, x = x - y + y , and since x - y , 

and M is prime, d = (x - y) A G+ ~ X . Clearly, x > 2d , and hence d = 1,

and for all n E Z . Thus,

but this is impossible, because R .

COROLLARY. - Suppose that each is normal in G, and consider x E G+ .

(a) x is a real element of G if, and only if, xe G ’ M for some o

(b) x is an integral element of G if, and only if, M + x covers M for

some M 

Proof. - This is an immediate consaquence of the lemma and the fact that G/M  R
is an archimedean o-group for each 11 

BYRD [4 ] has shown that G is a subdirect sum of o-groups if, and only if, for

each prime subgroup M and each or - g + M + g  M .

Thus, for this class of g-groups, each M is normal.

Proof of theorem 1. - Suppose that G is a sublattice and a subdirect sum of

n R. (X E A) , where each R. ~ R . If x E G+ , then > 0 for some À 

Let M = {g E G I gÀ = Then M and x ~ G B M . Thus, by the corollary,
x is real, and so each x e G+ is real.



Conversely, y suppose that each element in G exceeds a real element, and consi-

der y , z E G . There exists a real element x ~ z . Thus yx ~ y , y and hence

y . Therefore G is archimedean, and hence abelian. By the corollary, x EG ,M

for some M and hence z E G ~ r2 . . Therefore, 0 = (1 (M j I M e ~1~~ , and so G

is a subdirect sum of reals.

Proof of theorem 2. - Suppose that G is a sublattice and a subdirect sum of

fl Z (X E A) , where each Z = Z . If g E f , then g ~ x > 0 for some x E G ~
where xÀ = 1 for some À Let I~I = G I g == Then and

M + x covers M, y and hence, by the corollary, x is integral. Therefore each

element in G exceeds an integral element.

Conversely, suppose that each element in G+ exceeds an integral element. Then,
as in the proof of theorem 1, G is abelian. (M E i is cyclic) .
Then, by the corollary, n I M must be zero, since it contains no inte-

gral element. Therefore G is a subdirect sum of integers.

3. Special cases of theorems 1 and 2.

An element s E G+ is called basic, if G | I 0  g  s) is totally ordered.

PROPOSITION A. - For an A-group G, the f ollowing properties are equivalent :

(l) G is a subdirect sum of reals that contains the small sum ;

(2) Each element in G+ exceeds a real element that is also basic 9

(3) G is archimedean, and each element in G+ exceeds a basic element.

Proof. - It is shown in [5] that ( 1~ ==> (3) . If each element in G+ exceeds

a real element, then G is archimedean, and hence (2) ====> (3) . If (l) holds,
then each element in G+ is real, and hence (l) and (3) imply (2).

There are many other equivalent conditions proven in the literature (see for

example [11]).

An element a E G+ is an atom, if it covers 0 . It is shown in [5] that x is

a basic element in an archimedean l-group G if, and only if, x"  R , and G

is the cardinal sum of x" and xt . Thus a basic element x is integral if, and

only if, x" is cyclic, and hence if, and only if, x is an atom.

PROPOSITION B. - For an l-group G 9 the following properties are equivalent :

(l) G is a subdirect sum of integers that contains the small sum ;

(2) Each element in G+ exceeds an integral element that is also basic ; 9



(3) G is archimedean, and each element in G exceeds an atom.

(3) ~> ~ 1~ : Since each atom is a basic element, it follows from proposition A

that G is a subdirect sum of reals that contains the small sum. Thus 9 without

loss of generality,

where R s R for each A ~ ~~ . If R~ is not cyclic, then there exists an ele-

ment in R~ ~ G~ that does not exceed an atom, a contradiction. Therefore (l)

holds.

An element s E G+ is called singular, if a A (s - a) =0 for each 

PROPOSITION C. - For an ~-group G , 9 the f ollowing properties are equivalent :

(l) G is a subdirect sum of integers, and each element in G exceeds a boun-

ded element ; 

(2) Each element in G+ exceeds an integral element that is also singular ;

(3) G is a subdirect sum of reals, and each element in G+ exceeds a singular

element.

Proof. - In 7 >> it is shown that ( 1 ~ 3===> (3) , and clearly (2) ====> (3) .

Suppose that ( 1 and (3) hold. Then, without loss of generality, G ~ H Z~ ~ where

for each x E A, Z A = Z , and in ~7 ~, it is shown that if s E G is singular,

then sÀ = 1 or 0 . Thus, it follows that s is integral y and hence we have (2).

BERNAU [3] has established ( 1) ====> (3) in proposition B, and has derived a

condition that is equivalent to (1) in proposition C.

Suppose that x E G+ is real, p and let A x be the set of all maps 11: G ~~ Z+ ~
such that for all y , z E G+ 9

For a fl E A define 03B1  03B2 if y03B1  f or all y E G+ . Then (A , ) is a
x 

v , 1

po-set, and e ach el ement in A exceeds a minimal el ement in X . For ifx

is a chain in A ,then for each y e G°°°° , define
x

_ , _

If y , 9 then there exists X eA such that ya~ and are minimal,



and so

Therefore n ~ and hence, by Zorn’ s lemma, each map in A exceeds a minimal

map.

Definition. - A real element x ~ G for which there exists a minimal map

y 2014~y* in A 
x 

that also satisfies (II), will be called a *-element.

PROPOSITION D. - For an the following properties are equivalent :

(l) Each element in G exceeds a *-element ;

(2) G is ( ~-isomorphic to) a subdirect sum of where for each XeA?

Z. =Z y and G. =(g~ G I g. =0) is both a maximal and a minimal prime sub-

group of G.

Proof.

( 1) ===> (2) 1 Since each *-element is real, it follows from theorem 1 that G

is abelian. Let x be a *-element in G ~ and let y 2014~ y be a minimal map in

A that also satisfies (II) o Construct M and N as in the proof of (3) => (4)
in the lemma. Since for all yeG y and the map y-">y ismi-

nimal, it follows that § is the least element in Z~ for which N + yx > N + y .

Suppose (by way of contradiction) that M ~ N , y and pick 0  z N , and let

y=- (xAz) + x . Then, °

Therefore y - 1 9 and hence 2y - 1 , but clearly N + 2yx = N + x  l~ + 2y 9 that

is a contradiction. Thus, I’J = M is both maximal and minimal. If M + x > M + y 9

then y = 1 and hence 1I + x = M + M + ny for all n E Z+ . Thus 9 since

G~M ~ R , it follows that y and so is cyclic.

2 -> 1 : We ma y assume that G ~ 03A0 I Z . If z E G+ , then z  x E G+ 9

where x = Z for some 03BB ~  . For y E G+ , define y to be the least element

in Z+ such that y > y . Then, the map y --~ y satisfies (I~, and 

It remains to be shown that this map is minimal in Ax . Suppose that y --a y is

a map in AX , and y  y for all y E G+ , Construct M and N as above, using
x

themap y ~  . In particular, N + y.x > N + y and forall

yEG+.
If M ~ G , then there exists y E G+ such that y - 0 and y ~ M . Since

- -- .,. +~‘ . 
t

y ~ 0 , y ~ 1 9 and so ny = ny = 1 for all n E Z g but this means that
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M + x > M + nyx  l2 + ny for all n E Z+ , and this contradicts the fact that

~,’ rv .

If M = G03BB , 9 then, since G03BB is a minim.al prime, p M ’ N , and so M + yx > M + y
for all y E G+ , and it follows that y = for all y ~ G+ . Therefore x is

a *-element, 9 and hence (1) is satisfied.
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