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1. Summary.

We give an account of the relationship between the invariant (EGER-TODD) and co-

variant classes of an algebraic variety according to the differing treatments of

TODD and SEGRE, and then discuss the simplified treatment of the invariants due to

GROTHENDIECK.

Following this we emphasise the geometrical nature of the Grothendieck approach
to the invariants by identifying what we call the "Grothendieck primal ~ of the

tangent-direction bundle of an algebraic variety with the "invariant-lift" of

INGLETON-SCOTT, and we then show how the Grothendieck approach can be extended also

to the covariants.

2. The equivalence ring of a variety.

We shall consider the category of non-singular complex projective varieties with

the usual morphisms (everywhere defined rational transformations). We shall take
the old-fashioned view that an algebraic variety is merely the aggregate of zeros,

in a complex projective space, of a set of forms. Of course, as we say in England,

"maintenant nous avons change tout cela’i, but it doesn’t make much difference to

our subject matter.

We are concerned with the graded ring of rational equivalence on a variety
V (which we shall suppose to be of dimension n + 1 ). This ring, the so-called

Chow-ring, was effectively pioneered by SEVERI, and developed more recently by

and in the Chevalley seminar of 1958 ~ ~8 ~~ . If Ar is a. subvariety of

V of dimension r , we shall, by a customary abuse of notation, use the same sym-

bol for the variety A (which may be virtual, i. e. a formal difference of respec-

table objects of the category) and its rational equivalence class (and note that
the discussion of the equivalence class presupposes the acceptance of an ambient

variety). Indexing equivalence classes by dimension is not however a clever idea :
the functorial approach to, and the grading of, requires that we emphasise

the co-dimension (cf. ~8 ~~ . So we shall also use the symbol a - A where



and we shall use small or large letters according as we wish to emphasise the co-

dimension or the dimension.

The ring ~.‘v~ has properties similar to those of a cohomology ring. If we have

a morphism f ~

there is a contravariant ring-homomorphism f" (preserving the grading by co-
dimension) ,

precisely analogous to the cohomology situation.

There is also a covariant homomorphism f* of the graded groups of  preser-

ving dimension, but having no relation to the ring-structure

This corresponds to the mapping of cohomology groups of U into those of V ob~ ’

tained by first dualising in U , then using the covariant mapping of homology

groups, and then dualising back in ~~ .

We shall be mostly concerned with the case where f is an inclusion mapping i .

In this case, a.~~ a~ is the equivalence class on U of the intersection with U

of a suitable representative of the class a on V . Co-dimensions are preserved.
And is the class on V to which a suitable representative of the class b

on U belongs if it is regarded as a subvariety of V. In this case, dimensions

are preserved. If k is the co-dimension of U in V,

3. The canonical systems.

The canonical systems on a non-singular variety V were pioneered by SEVERI and

B. SEGRE, and developed by EGER and TODD independently just before the war. A full

history is provided by TODD 

For each dimension r (0 q r  n + there is an Eger-Todd class Xr(V)
which is a rational equivalence class on V . We shall write where

r + X == dim V = n + 1 . In fact, there is a possible improvement of sign (of which
TODD was not unaware, but he felt that he was bound by the then existing conven-

tions for canonical primals), and we shall take as our canonical systems not the

Eger-Todd classes but the classes c (v) where



(It is immaterial whether ~~e regard the c as the initial letter of "canonical" or

We also consider, in the polynomial ring ~,~V) ~t ~ , thé polynomial

C~V ~ t) .~c C +c 1 t+... tn+~ ’

where Co is the unit v 0 of As no élément of R has grade exceeding

n + 1 ~ we also have a formai inverse polynomial

D(V , t) = (C(V , t))’~- = ... -~ t~~

introduced by TODD for reasons of manipulative convenience. TODD used the symbol
instead of our Dr(V) . We shall call the d~ the "inverse canonical clas-

ses ".

4. The Todd covariant s stems.

Having introduced the invariants c , d of a single variety, TODD set out [9]

to consider the covariants of two varieties and ’Vn’+~’ where U C V and i

is the inclusion mapping of U into k = n - m is the co-dimension of U

on V ).

The mapping i : TU .-~ V enables us to dérive from the polynomials C(V , t)
and D(V , t) in the (mutually inverse) polynomials i~ C and D in

where

i~ C(V , t ~ i~ + ... + i 

and

i,# D V t ~ i~ d V + i ~~ d .~ ... + i d ~V) tn+1i" D(V , t) = i" d~(v) + i" ... + i" 

(which are in f act only of degree m + 1 ) .

TODD picked out two particular covari ant systems c ~U , V) and d ~U ~ V) de-

fined (as c l as s e s of U ) by

C(U , V , t) = C(t) = Z e. t ~ C(U , t) . i D(V, t) ,

0

and

~ m+ 1 ,~ 
D(t) = I d t~ =. D(U, t) . i’ C(V, t) .

o !~

Thèse covari ants were picked out as having the property of "section invariance".



This means that if we cut U and V by a variety W of the ambient space of V

which is in "general position" with respect to U and V , and if j is the in-

clusion, 
°

(assuming that the intersections U.W and V.W are non-singular) , then

TODD, in ~9 ~~ expressed the view that the d were more interesting s in fact,

D~U ~ ~V ~ t~ is fonnally simil ar to the (then unknown) Chern polynomi al of the
normal bundle of U in V .

5. The Segre covariants of immersion.

The Segre covariants were introduced in two papers ([6], [7J). On our variety V ~
we take a number of primals A. or a(i)1 according as we index by dimension or

co-dimension. For simplicity, we shall write A. instead of An , and a. instead

of but we must remember that, in i is an index and not a co-dimen-

sion. 

If We put, throUgh U , k general primals ... , Ak Of V , iTe eet a re°°°-

sidual intersection Wm+1 or w . (There is however a technical difficulty that

even though U be non-singular, tie A’s need not be if k is small enough.)

Thus in R(V) , we have the relation

which in principle gives the class of ~~~~‘ . However we shall write

If now we have U’ t of dimension m + 1 - r , or co-dimension k + r , could

similarly put k + r general primals through U t getting a similar relation



Now let us, instead of putting the k + r general primals through a variety of

co-dimension k + r , put them through U itself. We still get a residual inter-

section w
K+r 

on the right-hand-side of (A) , i. e. al a2 ... a 
K+r 

- is

still (apart from the technical difficulty referred to above) a good element of

(R(v) . SEGRE’ s first result in ~6 ]j is that this class is independent of the arbi-

trary choice of the a. , so that there is a well-defined class in R(V) .

The natural interpretation of this class is that it is the class on V of U

regarded as having only accidentally the dimension m + ~. f but having the virtual

dimension m + 1 - r . Indeed we have simply treated U as if it had the virtual

dimension instead of its actual dimension.

It is further shown (of course SEGRE’s language was different) that there is a
class u 

r 
in such that

We thus have a formal polynomial

in (where u is the unit of ~,~U~ ~ . This polynomial has a formal
inverse

The two systems ... and U ~- e . a 9 

of elements of are called the Segre covariant sequence of immersion and its

formal inverse.

6. The relation between the Todd and Segre systems.

So far there is no obvious connection between the Todd and Segre covariants. But,
where as TODD had started wi th invariants and derived covariants from them, SEGRE

started with covariants and ~~~7 ~~ deduced the invariants from them. His trick for
doing this is one of the oldest in the algebraic geometry repertoire, which is now

widely believed to have been invented by topologists.

We consider the diagonal mapping 

A : V -~ V x V = ~°~

and we derive the canonical classes on V , g, or more precisely on A(v) (inciden-

tally the not the x’s ~ ? as the sequence In fact, it is remarked



by TODD ( ~ 10 ~~ ~ who attributes the essential step to VESENTINI ( ~ 11 ~~ ~ 12~~ ~ that

Thus Segre’s approach to the canonical systems justifies Todd’s guess about the

comparative importance of his two covariant sequences.

7. Canonical systems and the Grothendieck primal.

Taking as his starting point a property of the cohomology classes dual to the ci
(i. e. the Chern classes of the tangent bundle) given by taking this

over to rational equivalence, and then using it for a definition of the canonical

classes, GROTHENDIECK (~2~)) gave an approach to the canonical systems much simpler
than the original ones of TODD and EGER.

We consider the tangent bundle T(V) of V , which is not, in the sense of this

lecture, an algebraic variety. But the derived projective bundle or tangent direc-

tion bundle PT(V) (which we shall henceforth abbreviate to V ) is an algebraic
variety and there is a morphism p (the natural bundle projection) ,

Note that V T has dimension 2n + 1 (the fibre being of dimension n ~.

Now ~,(VT~ has , given a very simple structure. The mapping

is an isomorphism into, and in addition A(f ) is generated by the adjunction to

p*( of a single class § , of co-dimension 1 , representing what I shall

can the Grothendieck primal of VT . The class § is in fact the negative
of the divisor class defined on V , by the line-bundle over VT associated wi th

T(V) . The elements (L , I , 03B62 , ... , 03B6n) of R(VT) are independent over

p"(fl(V) ) , and 03BE satisfies the minimal equation

Thus’ as 03C1* is an isomorphism, this defines the classes c ! ... ! c in
1 n+ 1

R.~V~ being the unit).

8. Geometrical identification of the Grothendieck rimal.

The purpose of this lecture is to add two points to the foregoing theory. In this

section, we give a ometrical identification of Grothendieck primal of V~



which is very similar to the classical geometrical approach to the canonical pri-
m

mals. In the next section, we shall use w~ to identify the covariant systems in

a way similar to Grothendieck’s identification of the invariants.

The identification of S is nominally due to INGLETON and myself ~~ 3~~ ? but
INGLETON contributed the technical expertise. I shall first explain the case n = 1

(i. e. V is a surface) , and then it is easy to see how the idea carries over to

general n.

original problem was to find a base (for homologyt not the stricter rational

equivalence) on given a base on V. At the time I was inexcusably, but

perhaps fortunately, ignorant of the general theory. It started with a simple ob-

servation. If instead of V T we had the locally isomorphic (in the complex topolo-
gy) V x pl , all we have to do to obtain a base on V x P is to for each

base element r of V , the elements r x P and r x p ( p being a point of

P ) on V x P .

The first is the inverse image of r under the natural fibre projection. The

second is the intersection of this inverse image with the global section V x p .

In the case of the inverse image under the fibre projection p is straight-

toward. It is the non-existence (in general) of the global section which causes
trouble. But nevertheless, the algebraic situation enables us to produce if not a

global section, at least a "near~section~’.

Take a pencil A~ of curves on the surface

V . Through a generic point q of V passes one

curve of A~ which has a definite tangent, gi-

ving rise to a unique point r in the fibre over

q . Trouble arises only at the base points of

~ A ~ 1 and a-t the points where a member of the pen-
cil has a singularity, and at these places things

get wrapped right round the fibre.

The upshot of all this is to give a near-section V say of which r is the

generic point. The obvious question now is does V|A| L change if we alter the

pencil The a.nswer is that if is another pencil, t then on VT ( remem-
bering that p* A is the class of p~~ A ~

So the class of 2o A is naturally called the "invariant lift’’ of V to

V" .



A similar trick, using a pencil of primals, works if n > 1 . Then q does not

lift to a point in the overlying fibre, but to a primal in the fibre, and the locus

of a generic point of this gives the lift Again the class of

is invariant (i. e. independent of the lifting pencil A~ ~ . It is this invariant
lift V which is the "Grothendieck primal" and thus provides all the canonical

systems of V.

9. A new geometrical approach to the covariants.
m

can use VL to give an approach to the covariants as well as the invariants.

The tangent direction bundle of U is, if U is contained in V , naturally
embedded in VT . The class ( of co-dimension 2k ) of U" in will be

called the "natural lift" of U to V~ . (Natural lifts are tricky, they don’t gi-
ve even an additive homomorphism of equivalence classes of into R(VT) .)

Now the class uT2k can be expressed in terms of the powers of § and the ele-

ments of p~(~(V~~ . In fact there is a relation

(The fact that 03B6k is the highest power of 03BE is easily established and so is the

~’k ~ ~k ~
What 1 have recently managed to show ([ 5]) is essentially that

where d == u are the Todd-Segre covariants previously discussed.

In fact, my results are weaker than the Todd-Segre theory in two important ivays,
but these defects are doubtless inessential. In the first place, have got as the

coefficients of the powers in the expression for u~ 2k not the Todd-Segre

covariant classes of but only their i~ images in But this is easi-

ly dealt with: instead of considering the class of UT in the equivalence ring of

we can confine ourselves to that part of vT ~i, e. U ) lying over U ,
and consider the equivalence class of UT in R(03C1-1 U) .

The second difficulty is also technical. My results were obtained in terms of ra-

tional homology instead of the stronger relation of rational equivalence. This too

can doubtless be repaired, but my technique for finding may well be



capable of simplification, though neither nor I have yet seen how) depends
essentially on the Universal contact formula" of INGLETON-SCOTT ([3]). Once this
formula has been reworked in terms of the Grothendieck approach instead of Chern’s,

there should be no further difficulty. After this has been done, we can deal geome-

trically with the covariants as effectively as the Grothendieck approach (with the

Ingleton identification of the Grothendieck primal) enables us to treat the inva-
riants.

There remain one or two minor points to be made. If U is a complete intersec-

tion of primals, the calculation of is very easy and thus gives simple formu-

lae for the covariants (already found by Also our approach gives only

k (not as one might expect m + 1 ) covariant classes. This enables us to show
/s

that d vanishes if its co-dimension in U exceeds the co-dimension of U on

V , and this is a non-trivial restriction on the covariants if the dimension of U

exceeds half the dimension of V (again this was previously found by SEGRE).

Finally, it is not altogether surprising that the covariants arise in this way.
It is difficult to see what there is to be known about the immersion of U in iT

which is not to be deduced from the way U T lies in or even in U . But

it is perhaps a little surprising that we don’t lose more of this information by

considering only the equivalence class of U~ .
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