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DG5-01

COMMUTATIVE ARCHIMEDEAN CANCELLATIVE SEMIGROUPS

WITHOUT IDEMPOTENT

by Takayuki TAMURA

Seminaire DUBREIL-PISOT
(Algèbre et Théorie des nombres)
23e année, 1969/70
Demi-groupes, n° 5, 19 p.

Part 1 : Survey of R-semigroups.

0. Introduction.

A commutative semigroup S is called archimedean, if, for every a, y b E S ,
there are positive integers m, n and elements c, dES such that bc

and bn = ad . Every commutative semigroup is the disjoint union of commutative ar-
chimedean semigroups. By an n-semigroup, we mean a commutative cancellative archi-
medean semigroup without idempotent. All commutative archimedean semigroups are
cl assif ied into (cf. [ 19 ~, [27], [29]) :

(o.~.~ Nil-semigroups (i. e. some power of every element is 0 ) ,
(0.2) Abelian groups,
(0.3) Ideal extensions of a non-trivial abelian group G by a non-trivial semi-

group of type (0.1~,
(0.4) R-semigroups,

(0.5) Archimedean, non-cancellative semigroups without idempotent.

R-semigroups were studied for the first time by the author ([28]) in 1957, but
the tenninology is due to PETRICH [23].

1. Basic representation.

Let P be the set of all positive integers, and P~ be the set of all non-

negative integers throughout this paper.

(1.0) THEOREM ([6], [28], [ 31 ~~ . -. Let ..., G be an abelian group. Let I be a

function G x G ~ PO which satisfies the following conditions : o’ 

(1.1) I(03B1 , 03B2) = I(03B2 , (y) , for e G ; 9
(1.2) g) + y) = py) + I(a , y) , for all a~ ~ a ~ ’Y E G ;
(l.3) a) = 1 , for all 03B1 E G, ~ bein g the identi ty element of G ;
(1.4) For every c~ E G , there is a positive integer m such that a) > 0 .



We define an operation on the set x o) : me 9 by

(m y a)(n , E~~ - (m + n + I (c~ , ~~ , Then, S is an n-semigroup. S is de-

noted by S = (G ; I) . Every R-semigroup can be obtained in this manner. The
function p) is called an ~-function on G.

Let S be an R-semigroup, and let a E S . Define a relation r by :

(1.5~ XT y if 9 and only if, 0 y for some m, y n E P .

Then, T 
a 

is a congruence on S, and S/T 
a 

is a group (see [28], [30]) . Each T a --
class Sx contains exactly one prime element ph with respect to a , i. e. an

element p, which cannot be divisible by a . Let G = A function

I : G x G ~ P is defined by 
a a

Then, S is isomorphic to (G ; I) . G is called the structure group of S
a a

with respect to a y I is the 03B8-function (of S ) with respect to a. The ele-

ment a is called the standard element of the representation I~ for S.
a

Since S is cancellative, S can be embedded into a group.

Let Q be the quotient group of S, and a E S . The structure group G is
a

nothing but Q/A , where A - ~a~ is the cyclic subgroup of Q generated by a.

Let

be the decomposition modulo A. Then it follows that each coset A intersects

S . Let ~x~ : ~ e G ) be a complete representative system of Q modulo A .

There is an integer 8(~~ such that, for each § ,

Let p = a x . The element p is a prime element with respect to the ele-
ment a for each 03BE ~ G

a 

Remark. - If G is periodic’ then ( 1.4~ can be removed, since it is automatical-

ly satisfied.

2. "~-functions and structure groups.

Given arbitrary abelian group G , there is at least one 03B8-function
I e G x G -~ PG satisfying ( 1.. Z ~ through ( 1.4~ ? for example

~~ - 1. ~ for all 6 e G .



(2.1) If ~) - 1 for then (G ; I ) is isomorphic to

the direct product of the positive integer additive semigroup P and the group G.

(2.2) How can we determine all §-functions for a given G ? The explicit form of

??-functions is obtained in case where G is cyclic group ; p and we can describe the

~~.-functions I on the direct product of A and B , in terms of the ð-functions

1. on A , and I B on B (cf. [2]). However, a general case is not known.

( 2. 3) The structure group and the 3-function depend on the choice of a standard

element, hence the study of the relation between two 3-functions is requested.

Suppose two pairs (G ; I) , ( G’ ; I’ ) satisfying (1.1) through ( Z. 4) are given.

Under what condition on G , G’ , I , I’ , do they determine isomorphic R-semi-

groups ? In other words, does there exist an R-semigroup S such that G = Ga
and G’ = Gb for some a, y b E S ? SASAKI studied this problem, and gave a neces-

sary and sufficient condition ([24], [25]), but it seems to be complicated.

3. Generalized representation.

This section is due to DICKENSO:N [8], SASAKI [26 ~. Let G be an abelian group,

and P the set of all non-negative integers. Let a function I’ : G x G -~ P
which satisfies (1.1), ( 1.2) and ( 1.4). Such a function I’ is called a generali-
zed ð-function, or simply, ð’-function. The two conditions ( 1.1. ) and (1.2) for
03B8’-function imply I’(~ , 03B1) = I’(~ , ~) for all 03B1 E G .

( 3. l ) Let I’: G x G -"~> PO be an ~’-~function. ve define an operation in the

set x G as in theorem (1.0) .

(3.1.1) (m, y a)(n , p) = (m + n + I t (~ ~ ~~ s 0153S) .

Then, S is an R-semigroup. Every R-semigroup is obtained in this manner. (The
second assertion is obvious.)

(3.2) Let I’ be a function G x G -~ PO and let S = G x pO . If S is an

n-semigroup with respect to the operation ( 3. ~, .1 ) , then the function I’ satisfies

~~.1), (1.2), ( 1 . 4) .

We call S = (G ; 9 I’ ) a generalized representation of S , while the representa-
tion by theorem (1.0) will be called Tamura representation of S .

(3.3) Let S = (G ; I’ ) be a generalized representation of an 3i-semigroup S .

Let

k =I’(e , e) ,
and let

cx) E S ~ .

Let (m, c~) , (n , 8) E H . There are non-negative integers u, v, °  v  k - 1 ,



such that m + n + I’ (a , ~ ~ - uk + v . Define a binary operation in H by

(m , ~~ = (v , 

Define I on H x H by

l((ni , ~) , (n , = u .

Let

H is an extension of C , y cyclic group, by the group G . Then, (H ; I) is a

Tamura representation with standard element (0 , e) .

Generalized representations occur when working with ideal of an R-semigroup and

treating right zero composition of R-semigroups (cf. DICKINSON [8 ]).

4. Ideals of R-semigroups.

Ideals of an R-semigroup are also R-semigroups. This section is due to [8J.

(4.1) Let S = (G ; II) be an R-semigroup with generalized function. Let J be

an ideal of S . Define cp : G -~ PO by

A non-negative valued function on G is called an ideal function relative to

(G ; I f ~ 9 if it satisfies ( 4.1= ~,~ . Let K be the set of all ideals of S, and $

be the set of all ideal functions relative to (G; I’) . Then, the map f : K ~ 03A6

defined by f(J) = cp , is surjective. In particular, if (G ; is a

Tamura representation, then f is bi j ective.

(4.2) Let S be an n-semigroup with Tamura representation (G ; 9 Let J be

an ideal of S . Then J, an R-semigroup, has generalized representation

(G ; I’ ) , where Ij is defined by

cp being the ideal function associated with J relative to ~G 9 I~ . Ij is an

~function if 9 and only if, ~o , y e) E J . Let T be the product set P x G . We
define

Then, J is isomorphic onto T by the map (n, ~~ --~ (n - ~(~~ ~ §) .



5. Power joinedness and structure groups.

(5.1) (CHRISLOCK [3], [4] ; 9 HIGGINS ~i4~, An n-semigroup S is finitely
generated, if, and only if, Ga is finite for all a e S , equivalently for some
a e S .

S is power joined, if, for a , b E S , there are positive integers m and n

such that a = b . o

(5.2) ([3], [4]). An R-semigroup S is power joined, if, and only if, G is
a

periodic for all a E S , equivalently for some a E S .

Also (5.1) and (5.2) are partially due to PETRICH [23].

(5.3) ([14], [15]). S is a finitely generated R-semigroup, if , and only if,
S is isomorphic to a subdirect product of a positive integer additive semigroup
and an abelian group.

(5.4) ([32]). S is a power joined R-semigroup, if, and only if 9 S is isomor-

phic to a subdirect product of a positive rational additive semigroup and an abe-
lian group.

Remark. - (5.1~ and (5.2) hold in the case without cancellation. In such case,

9 defined in paragraph 1, is still a group congruence, and G - is consi-

dered as the structure group with respect to a (see LEVIN [20], [21], [22]).

6. Representation in power joined case.

(6.1) ( ~32 ~~ . Let S be a power joined n-semigroup, S = (G ; I) , where G is

a periodic abelian group. define a function G --> R 
+ 

the set of all positi-
ve rational numbers ;

where s is the order of the element o’ of G. Then (p satisfies the following
properties :

(6.1.2) (p(e) = 1 , e being the identity element of G ;
(6.1.3) + ~(p) - is a non-negative integer ;
(6.1.4) l(o’ , p) = + :p(p) - 

Conversely, let Q be a function, satisfies (6.1.2) and (6.1.3).
If we define I by (6.1.4), then I satisfies (l.l) through (l.4), and (6.1.l).

Thus a power joined R-semigroup is determined by G, and G 2014>. R 
+ 

with



(6. ~.2~ ~ (6.1.3). Notice that (p induces a homomorphism of G onto the additive

group of the rational numbers modulo integers.

(6.2) (~ 14~, ~ 15 ~~ . If an n-samigroup is finitely generated, then G is finite,
and

Notice that is the number of prime elements with respect to

(0 , a~ E S = (G; 1) .

7. Positive rational semigroups.

This section is due to [32~].

(7. ~~ If S is a commutative power joined semigroup without idempotent, then S

is homomorphic into the semigroup R 
+ 

of all positive rational numbers with addi-

tion. The homomorphism is unique in the following sense. Let cp and be homo-

morphisms of S into R + g then r is a positive rational

number, and is the usual multiplication of r and Hence,

cp(S~ N c~ 0 (S~ . In particular, if S and S’ are positive rational semigroups with

addition, and if tp i s a homomo rphi sm o f S onto S ’ , then ~ i s an isomorphism,
and r. x .

A semigroup S is called power cancellative, if S satisfies

(7.2) Let S be a non-trivial commutative semigroup. Then S is power joined
and power cancellative, 9 if, and only if, S is isomorphic to a positive rational

semigroup. S is a finitely generated, power joined, power cancellative semigroup,
if, and only if, it is isomorphic to a positive integer semigroup.

(7.3) A semigroup S is isomorphic to a positive rational semigroup, if, and on-

ly if, S is isomorphic to a direct limit of finitely generated commutative, power
joined, power cancellative semigroups.

8. n-semigroups and quo tient groups ([31]) .
Recall the theory of abelian group extensions (see, 9 for example, C9 ~~ . By a fac-

tor system f of an abelian group A into an abelian group B(+) , we mean a
function A x A ~-.~ B such that



A factor system f determines the abelian group extension ~(B , y A ; y f)) of B by

A with respect to f 9 that is,

and the operation is defined by

A factor system g(c~ ~ ~~ is said to be equivalent to if there is a

map B --.~ A such that ~~ - f (~’ ~ ~~ + + ~p(~~ - o

We are interested in the c ase where B is the group Z of all integers with ad-

dition. The results are seen in [29J.

(8.1) Let S be an R-semigroup, S = (G 9 I) . The quotient group Q of S is

the abelian extension ((Z , G ; f)) with respect to f defined by

S can be embedded into Q by the map

The identity element of Q is ((0, e)) , and the inverse element of ((x, a)) is

(8.2) Let Q be an abelian group which is not torsion, S be an !n-subsemigroup

of Q , and A be the infinite cyclic subgroup of Q generated by a of S . The

following properties are equivalent :

(8.2.1~ ~ is the quotient group of S;

(8.2.2) Q = A.S ;

(8.2.3) S intersects each congruence class of Q modulo A .

(8.3) Let Q be a non-torsion abelian group, and let a be an element of Q

which is of infinite ordero There exists a maximal R-subsemigroup S containing

a , such that Q is the quotient group of S .

(8.4) Let K be an abelian group, 9 and A be the group of all integers under ad-

dition. If G = ((A 9 K j 9 f~; , then there exists a factor system p) such

that o



This is obtained as the application of (8.3) to the abelian group theory.

(8.5) can describe R-subsemigroups of a group Q , when Q is given. Let Q

be a non-torsion abelian group, hence Q = ((A, K ; f)) . Let 5 be a map, K --~ A ,

satisfying :

(8.5.~.~ 8(E~ - ~ , ~ being the identity element of K ;

(8.5.2) f (~ ~ ~~ + 8(~x~ + b(~~ -- s(c~~~ >, ~ , for all , 6 E K ;

(8.5.3) For every a E K , y there is a positive integer m such that

If S is defined by S = (((x , 03B1)) ; x 03B4(03B1) , 03B1 e K) as a subsemigroup of Q ,
then S is an R-semigroup. Every R-subsemigroup containing ((1 , ~)) , whose quo-
tient group is Q, can be obtained in this manner. Notice that 6 is obtained in

paragraph 1.

(8.6~ An ?-semigroup S is power cancellative, if, and only if, Q is torsion

free.

9. Translations of TI-semigroups.

This section is due to HALL [ 13] and DICKINSON [8].

(9.1~ Let S = (G ; I) with Tamura representation. Let (m ! a) be an element

of S such that

Then, f is a translation of S . Note that f((0 , e)) = (m , (v) . All translations
of S can be obtained in this manner.

(9.2) Thus f is associated with (m , cy) . Let P~ be the set of all non-

negative integers. Let

T = ~ ((m a )) p such that for 

and define operation by

( 9. 2.1 ) ((m , a))((n , ~)) = ((m + n + R) - 1 , .

Then, the translation semigroup T(S) of S is isomorphic to J by the map
K : f ~ ((m , c~)) such that f((0 , e)) = ((m , (y)) .



Let T. (S) be the inner translation semigroup of S. Then
ln

For convenience, T will be denoted by T(S) identifying f with M.(f)  Hence

(9*3) If A is a commutative cancellative semigroup, then every translation of

A is injective, and the translation semigroup T(A) is commutative, cancellative.

Furthermore, T. (A) is isomorphic with A in the natural way.

(9.4) [l3]. Let S == (G ; I) . Then, T. (s) is contained in a single archime-

dean component of T(S) . Let denote the archimedean component of T(S)
containing T. (s) . Then

and a~ > 1 for some 

(9.5) (~8~, ~13~~. Let T g (S) denote the unique maximal subgroup of T(S) . Then

T 
g 
(S) is isomorphic with a subgroup of G , ble have one of invariant properties

of the structure groups : Every structure group of S contains a subgroup which is

isomorphic to T (S) .
g

if G is periodic.

(9.7) Observation of translations from quotient group j~8].
Let S be a commutative cancellative semigroup, and Q be the quotient group of

S . We assume S = Q disregarding the inclusion map j : S -~> Q . If f e T(S) ,
then f can be extended a translation f* of Q as follows : for x e Q ,
x = 

(9.8) Let i o i S ~ T ( S~ be def ined by i(a) =f , where f a (x~ _ ax . Let
h o T(S) -.~ T( Q~ be given by h(f~ ~ f~~ , Let k : T( Q) ~~ ~ be given by
k(~’~~ - f~~(e~ ~ where e is the identity element of Q. Let j ° S ~.~ Q . Then,



j(a) = k(h(i(a)) for a E S . Each map is injective. k is bijective.

(9.9~ j (S~ ~ kh(T(S~ ~ ~ ~ , and kh(T(S~ ~ is the idealizer of j (S) in Q ,
that is,

for all x ~ j(S~~ . .

Therefore ((m , a)) , ((x, in (9.2) are regarded as elements of Q. Also,

Part 2 : Cancellative congruences on n-semigroups.

10. Congruences. 
’

Since commutativity and archimedeaness are preserved by homomorphisms, every ho-

momorphic image of an R-semigroup has one of types (0.1) through (0.5). At the
present time, we are most interested in the study of the homomorphisms of type
(0.2) and (0.4~, but we will not deal with the remaining cases. As seen in HALL
~ 13~, the homomorphisms of type (0.4) play an important part in the construction of
commutative cancellative or separative semigroups. On the other hand, we know pe-
riodic R-semigroups are homomorphic to semigroups of type (0.2) and (0.4) in their
subdirect decompositions (§5). What can we say about a similar conjecture for a
general case ? These motive the investigation of homomorphisms, congruences of the
above type. Most of this part will be published in [33].

Let S be an h-semigroup, and p be a congruence on S . If S/p is a group,

p is called a group-congruence on S ; if S/p is an R-semigroup, y p is called

an ?-congruence on S ; 9 if S/p is cancellative, y p is called a cancellative

congruence. If p is not the universal relation, S x S , then p is a cancella-

tive congruence, if, and only if, it is either a group-congruence or an !H-

congruence.

11. Group-c ongruenc e s .

Let S be an R-semigroup. All structure groups are the group-homomorphic images
of S, and hence every Ta defined by (1.5) is a group-congruence on S.

If T is a group-congruence on S, then T a G T for some a E S .

As well known, DUBREIL [9] established the theory of group-congruences on arbi-
trary semigroups, but we can directly obtain it in our special case.

( 11.2~ Definition. - Let S be a commutative semigroup. A subsemigroup C of S

is called cofinal in S, if, for every there is an element y e S such



that xy E C . A subsemigroup A of S is called unitary in S, if x E S , y

a ~ A , and ax E A implies x E A .

( ~.1, 3~ Let S be a commutative semigroup, and A a cofinal subsemigroup of S .

Define a relation Ta on S by sA y , if, and only if, ax = by for some

a , b E A . Then, TA is a group-congruence on S, and A ~ Ker TA , where

Ker T. denotes the kernel of the homomorphism S ~ S/TA . The kernel U of the

homomorphism S ~ S/TA is equal to A , if, and only if, A is unitary.

Thus the map A --~ TA from the join semilattice of all unitary subsemigroups of

S onto the join semilattice of all group-congruences on S is a join semilattice

isomorphism.

The argument becomes simpler in the case of archimedeaness.

(ll.4) Every subsemigroup of a commutative archimedean semigroup is cofinal. If

every subsemigroup of a commutative semigroup S is cofinal, then S is archime-

dean.

Now let us return to R-semigroups.

(ll.5) Let A be a non-void subsemigroup of an h-semigroup S . Let Q be the

quotient group of S . Then the following are equivalent :

(1I.5.~~ A is unitary in S ;

( 11.5 a 2~ A = S n K , for some subgroup K of Q ~

( Z 1. 5. 3~ T A is a group-congruence on S ;

( ~i.5.4~ T A is a congruence on S such that has identity element.

K , described in (21.5.2~9 is called a group-kernel of S . Clearly, the cyclic

subsemigroup [a] generated by an element a is unitary in S .

12. ~-congruences, cancellative congruences, and quotient group.

R-congruences on an R-semigroup S can be treated from the point of the quo-
tient group of S, analogously to (ll.5.2). s

(12.1) Let S and S’ be R-semigroups, y and suppose h : S ~ S’ t be a homo-

morphism of S onto S’ . Let Q and Q’ be the quotient groups of S and S’

respectively. Then, the homomorphism h can be extended to a homomorphism
h : ~ --~ ~’ of Q onto Q’ , that is, if z E S , h(z)=h(z) . Accordingly, an

~--congruence p on S induces a congruence p on Q.

A subgroup K of Q is called an ~--kernel of S, if the congruence p on Q

detennined by K induces an !)1-congruence p on s 9 that is p = p’)s .



(l2.2) A subgroup K of Q is an ~~kernel of S, if, and only if, S n K ~ ~ .
There is one to one correspondence between all n-congruences p on S and all

~-.kernels K of S . For example, the torsion subgroup of Q is an ~--kernel of

S .

( 12. 3) Let £ be the set of all cancellative congruences on S , ~ 
g 

the set of

all group-congruences on S, and the set of all R-congruences on S . Then,

E = C ~ Ln is disjoint union. C is the lattice which is isomorphic to the lat-
g n

tice of congruences on Q , equivalently the lattice of subgroups g 
is a

join subsemilattice n 
is a meet subsemilattice of £ . Furthermore, £ 

g

is a join-ideal 9 but C need not be a meet-ideal of £ .

(12.4) If K is an R-kernel of an R-semigroup S, and if C is an infinite

cyclic subgroup of Q generated by an element a E S , then

C n K = £e~ ~ e being the identity element of Q .

We have a generalization of (5.4) and (5.5) as follows : 1

(12.5) PROPOSITION. - If an n-semigroup S is properly homomorphic onto an !R-

semigroup S’ , then S is isomorphic onto a subdirect product of S’ and every

structure group of S .

(12.6) By using Zorn’s lemma, we can prove that there exists a maximal subgroup ,

K.. of Q which is disjoint from S . The ?-congruence p~ on S, associated

with n-kernel KC , is a maximal ~-~congruence.

(12.7) If S is a power joined R-semigroup, then the torsion subgroup of Q is

a unique maximal R-kernel of S .

The next step is to study how to determine ~-congruences more explicitly, and to

characterize the structure of R-semigroups which occur as the homomorphic images
of an h-semigroup induced by a maximal R-congruence.

13. R-kernels.

Following the notations in paragraph 8 , the quotient group Q of S = (G ; I)
is ((Z, G J f)) , where 03B2) - 1 . Let K be an R-kernel of S . It is

obvious ((0 , y e)) E K .

( 1.3.1 ) If ((x 9 E K , y then x ~ 0 . In particular, if ((x, e)) E K , then

x = 0 .

( 13.2) Let H = E G p ((x , a)) E K for some x ~ 0) . Then, H is a subgroup
of G.



(13.3) If ((x, a)) and ((y, cx)) are in K , y then x = y . Thus, x of ((x, a))
is uniquely determined by cx E H in ((x, a)) E K .

(13.4) Let cp(a~ _ - x . Then, >, 0 for all cr E H , 9 and = 0 , and

the ~2-kernel K is obtained by

Conversely, assume a subgroup H of G and a H --~ PC ~ satisfy

(13.4.2), and define K by (13.4.1). Then, K is an R-kernel of S . The couple

(H , cp~ satisfying (13.4.2) is called an n-couple of S = (G ; I ~ ..

(l3.5) Given S = (G ; g I) , and an ~.-coupl e (H , cp~ of S, we define a rela-
tion p on S by

Then, p is an 3i-congruence on S. All ~-congruences on S are obtained in

this manner.

14. Analyzing of ~-congruences.

We will attack ~-congruences by the direct method without using the quotient
group.

(l4.l) Let p be an ~-congruence on an 3’l-seaigroup S = (G ; I) . Given p ,
a congruence o- on G is defined by 2

(14.1.1) if, and only if, (m ~) p (n , p) for some m, n 6 Let H

be the subgroup of G induced by o . H will be called the kernel of o- .

(14.2) (m, o~) p (n , p) implies (m + i , c~) p (n + i , p) for i - minfm , n) .
(l4.3) If (m , cy) p (n, 0) ~ then m = n .

(14.4) If (0 , e) p (n , (y) , e being the identity element of G ~ then n = 0 .

( 14.5) For each a e H , there is a non-negative integer £ such that :

(14.5.1) (i , o~) p (~ + i , e) , i = 0 , 1 , 2 , ... , and

(14.5.2) If (m ~) p (n, e) ~ then n - m = ~ .

(14.6) If (m~ , (y) p (n~ , p) and (m~ , a) p (n~ , p) , then ~ - 1~ = n? - ii~



( 14.7) Given p, relations on S, and &#x26; are defined by

(m , o’)~(n , p) if, and only if, (m , a) p (n ~ p) and 

03B103B2 if, and only if, (m, p) for some m, 

Recall Z, in (14.8) below, denotes the set of integers.

( 14.8) 03BE~ for all § ~ H . Hence d(03BE , e) >.0 for all E;=H .

(14.9) THEOREM. - If p is an R-congruence on S= l) , then a congruence
~ on G and a function d : a -~- Z are determined such that the following con-
ditions are satisfied :

(14.9.1) d(o’, p)=-d(p , ~) , if 
(14.9.2) d(of, p) =d(o’, y) +d(y , and 03B303C303B2 ;
(14.9.3) d(03C303B4 , 03B203B4) = d(a , fl) - I(a , &#x26;) +l(p , 03B103C303B2 and 6 E G..

Conversely, assume that a congruence o on G and a function d : o -~ Z sa-

tisfy the above three conditions. Define a relation p on S by :

(14.9.4) (m , 03B1) p (n , fl) if, and only if, 03B103C303B2 and n-m=d(x, p) .
Then, p is an 3’l-congruence on S. Every R-congruence is obtained in this man-
ner~

(14.10) Suppose S has a non-trivial ~-congruence p (i. e. p ~ ~ ). Let
S = (0 ; 1) and T = Sjp . Let T be the group-congruence on S defined by

(x , ~) T (y , ~) if, and only if, ~ = ~ .

Then, we can easily prove p n T = z. by using (l4.9.l). Thus we have a same result
as (12.5).

15. d-functions.

Thus R-congruences are determined by the d-functions. Now, the next question is
how to characterize the d-functions in other terms.

(15.1) If ~ ~ and if a2 Y2 and p~ p~ ~ for some

03B31 , Y2 ~ G , then

I(~ , y~) + y~) = p~) - I(~ , ~) + i(p~ , ~) .
(15.2) A d-functionwith (l4.9.l), (14.9.2), and (14.9.3), is detennined by the

restriction d1 of d to H x H , where H is the kernel of 03C3 . This means that,
if d and d’ satisfy (l4.9.l),(l4.9.2),(l4.9.3), and if 

then d = d’ .



(l5.3) THEOREM. - Let S=(G; I) , and assume there is a subgroup S of G

with a function p : H satisfying :

(l5.3.l) p(e) = 0 , e being the identity element ;

(15.3.2) = l(c~~ p) - 1 , for all ~ y 

If we define d by d ((y , p) = d is a function

H x H -~ Z which satisfies (l4.9.l)~ (l4.9.2)~ and (l4.9.3)~ in the restricted

sense, (in other words , d satisfies the axioms (l4.9.l) through (l4.9.3)~ except
replacing " 03B103C303B2 ", " " 6 e G ", by " (03B1 , p) e H x 

" ((y y y) ~ H x H ", " (y , p) e H x H ", " 6 ~ H " respectively.) All d -
functions are deteimined by 03C6 in this manner.

(l5.4) A d-function and p can be described in terms of I and (p :

G such 

We arrive at the same conclusion as (l3.5).

The following is a restatement of (l5.3).

(15.5) TEEOREFI. - Let S= (G ; l) . Assume a subgroup H of G and a factor

system f of H into Z satisfy :

(15.5.1) p) ~- 1 ~
(15.5.2) There is : H such that

Then, we c an def ine d 1 by d 1. (a , ~ ~ - ~p(~~ .. ~( ~ ~ .

16. Tamura representation of n-homomorphic images.

Let S = (G ; I) , and p be an ~-~congruence on S ~ and 

( 16.1 ~ Let X be a p-class of S . The following are equivalent :

( ~,6 ~ I. ~. ~ X is a prime element of S ;

(16.1.2) If ( x , n) EX, then x = 0 ;

(16.1.3) X ~. ~(0 , n) E S; d(n, s) = 0 for all 6:~Tr) ,
where d is the d-function associated with p .

( 1 6 . 1 . 3 ’ ) x = ~ (0 , n) e S j d(~r , ~~  0 for all S such that 

Such r~ E G is called a p-maximal element of is p-maximal in G, if,
and only if, (m y c~~ is maximal with respect to  for each m E P~ .



(l6.2) Let (m , a) denote the element of S ~ i. e. the p-class containing

(m , a~ of S . A congruence ’5’ of S is associated with o of G in the fol-

lowing way :

Let 03B1 E G , and let (0 , n) be a prime element of the 5-class containing

(0 , 03B1) . rr is a p-maximal element of G associated with Define

: G ~ PG b :tp G~Po by :

( 1~.2.1~ ~(a~ = d(a , 

Then, 03C6 is an extension of 03C6 to G, and $ is detennined by cp as follows :

where ~r is p-maximal associated with ~ . ( 16.2. 2~ can be adopted as the defini-
tion of ~p .

Also, we have :

(16.2.3) q~~) =maxd(a, a 1~ .) ~C) 
c~ 

( ,~),, ,

(16.3) THEOREM. - Let S = ( G ; l) y and p be an R-congruence on S . Let Q

on G , and d : 03C3 ~ Z be induced by p (as theo rem (14.9)) ; let 03C6 be defi-

ned by ( 16.2.1~ . Let G == and let n be an element of G. Now

where being p-maximal associated with rr. TT2.

Then, sip is isomorphic to (G 9 I~ .

17. ~-congruences on power joined 

( 1? .1 ~ Let S = (G ; I) be power joined. A subgroup H of G has a function

H satisfying (15.3.1) and ~ ~,5.3.2 ~ , if, and only if , H is a subgroup
of G such that 03C6(03BE) is a positive integer for all S E H , where 03C6 is defined

in paragraph 6. In this case, 03C6 is uniquely determined by H , that is,

A subgroup H of G , on which (p is positive integer valued, is called K-

subgroup of G with respect to cp .

(17.2) Let H~ denote the set of all elements a of G such that ~(~~ is a

positive integer, equivalently,



Then, H 0 is a subgroup of G, and every subgroup of HO is an R-subgroup of G .

(17.3) We can characterize R-congruences on a power joined R-semigroup in the

two ways : in terms of subgroups of the torsion subgroup of Q , in the sense of

( 12.7 ~ , and in terms of subgroups of as the above.

(17.4) The set of all ~~-congruences on a power joined n-semigroup S is a lat-

tice, which is isomorphic to the lattice of subgroups of HO , and to the lattice

of subgroups of the torsion subgroup of Q.

18. Irreducible R-semigroups.

(18.1) An R-semigroup S is called irreducible, if there is no n-congruence on

S except the identity relation z . Every R-semigroup is homomorphic to an irre-

ducible R-semigroup. It is induced by a maximal R-kernel (§ 12).

(18.2) Let S be an R-semigroup. S is irreducible, if, and only if, for every

a , b E S , there is m E P and an element x ~ S such that either x or

b m = a m x.

(18.3) THEOREM. - An irreducible n-semigroup is isomorphic to a semigroup of o--
sitive real numbers with addition.

( 18. 4) THEOREM. - Every R-semigrou is isomorphic to a subdirect product of an
additive positive real semigroup and an abelian group.

Remark. - To prove (l8.3) and (18.4), we use C5 ~~ ~ 12~, [l7]. Irreducible
R-semigroups are closely related to R-semigroups satisfying the divisibility chain

condition. A commutative semigroup S is said to satisfy the divisibility chain

condition, if, for any distinct elements a, y b E S , either a = bx or b = ax

for some x e S . The information related to such semigroups are obtained in

CLIFFORD [5], FUCHS [12], and ETTERBEEK 

ADDENDUM. - Recently, R. P. DICKINSON has detennined all congruences p of type

(0.5) on an n-semigroup S = (G ; I in terms of a certain function 

when an n-congruence p 1 is associated with d, o such that sjp is the

greatest cancellative homomorphic image of 



REFERENCES

[1] ALIMOV (N. G. ) . - On ordered semigroups [in Russian], Izvest. Akad. Nauk SSSR,
Serija mat., t. 14, 1950, p. 569-576.

[2] BIGGS (R.), SASAKI (M.) and TAMURA (T.). - Non-negative integer valued func-
tions on commutative groups, I, Proc. Japan Acad., t. 41, 1965, p. 564-569.

[3] CHRISLOCK (J. L.). - The structure of archimedean semigroups, Dissertation,
University of California, Davis, 1966.

[4] CHRISLOCK (J. L.). - On medial semigroups, J. of Algebra, t. 12, 1969, p. 1-9.

[5] CLIFFORD (A. H.). - Naturally totally ordered commutative semigroups, Amer. J.
of Math., t. 76, 1954, p. 631-646.

[6] CLIFFORD (A. H.) and PRESTON (G. B.). - The algebraic theory of semigroups,
Volume 1. - Providence, American mathematical Society, 1961 (Mathematical
Surveys, 7).

[7] CLIFFORD (A. H.) and PRESTON (G. B. ) . - The algebraic theory of semigroups,
Volume 2. - Providence, American mathematical Society, 1967 (Mathematical
Surveys, 7).

[8] DICKINSON (R. P.). - Right zero union of semigroups, Dissertation, University
of California, Davis, 1970.

[9] DUBREIL (Paul). - Contribution à la théorie des demi-groupes. - Paris, Gauthier-
Villars, 1941 (Mém. Acad. Sc. Inst. France, Série 2, t. 63, 52 p.).

[10] ETTERBEEK (W. A. ) . - Semigroups whose lattice of congruences form a chain,
Dissertation, University of California, Davis, 1970.

[11] FUCHS (Laszló). - Abelian groups. - Budapest, Hungarian Academy of Science,
1958.

[12] FUCHS (Laszló). - Partially ordered algebraic systems. - Oxford, Pergamon
Press, 1963 (International Series of Monographs in pure and applied Mathema-
tics, 28).

[13] HALL (R. E.). - The structure of certain commutative separative and commutati-
ve cancellative semigroups, Dissertation, Pennsylvania State University,
1969.

[14] HIGGINS (John C.). - Finitely generated commutative archimedean semigroups
without idempotent, Dissertation, University of California, Davis, 1966.

[15] HIGGINS (John C. ) . - Representing N-semigroups, Bull. Australian math. Soc.,
t. 1, 1969, p. 115-125.

[16] HIGGINS (John C. ) . - A faithful canonical representation for finitely genera-
ted N-semigroups, Czech. math. J., t. 19, 1969, p. 375-379.

[17] HION [KHION] (Ja. V.). - Ordered semigroups [in Russian], Izvest. Akad. Nauk
SSSR, Serija mat., t. 21, 1957, p. 209-222.

[18] HÖLDER (0. ) . - Die Axiome der Quantität und die Lehre vom Mass, Bericht.
Verhandl. Sächs. Ges. Wiss. Leipzig, Math.-phys. Kl., t. 53, 1901, p. 1-64.

[19] KIMURA (Naoki) and TAMURA (Takayuki). - On decomposition of a commutative semi-
group, Kodai math. Sem. Rep., t. 6, 1954, p. 109-112.

[20] LEVIN (Richard G.). - The structure of locally cyclic semigroups and of other
power joined semigroups, Dissertation, University of California, Davis, 1966.



DG5-19

[21] LEVIN (Richard G.). - On commutative nonpotent archimedean semigroups, Pac. J.
of Math., t. 27, 1968, p. 365-371.

[22] LEVIN (R. G.) and TAMURA (T.). - Note on commutative power joined semigroups,
Pac. J. of Math. (to appear).

[23] PETRICH (Mario). - On the structure of a class of commutative semigroups,
Czech. math. J., t. 14, 1964, p. 147-153.

[24] SASAKI (Morio). - On the isomorphism problem of certain semigroups constructed
from indexed groups, Proc. Japan Acad., t. 41, 1965, p. 763-766.

[25] SASAKI (Morio). - Commutative nonpotent archimedean semigroups with cancella-
tion law, II, Math. Japon., t. 11, 1966, p. 153-165.

[26] SASAKI (Morio). - On N-semigroups, Memoirs of seminar on the algebraic theory
of semigroups, Research Inst. for math. Sc., Kyoto University, 1967, p. 65-
86.

[27] TAMURA (Takayuki). - Note on unipotent inversible semigroups, Kodai math. Sem.
Rep., t. 6, 1954, p. 93-95.

[28] TAMURA (Takayuki). - Commutative nonpotent archimedean semigroups with cancel-
lation law, 1, J. of Gakugei, Tokushima Univ., t. 8, 1957, p. 5-11.

[29] TAMURA (Takayuki). - Recent study of semigroups, Memoirs of seminar on the al-
gebraic theory of semigroups, Research Inst. for math. Sc., Kyoto University,
1967, p. 1-35.

[30] TAMURA (Takayuki). - Construction of trees and commutative archimedean semi-
groups, Math. Nachr., t. 36, 1968, p. 255-287.

[31] TAMURA (Takayuki). - Abelian groups and N-semigroups, Proc. Japan Acad., t.
46, 1970, p. 212-216.

[32] TAMURA (T.) and SASAKI (M.). - Positive rational semigroups and commutative
power joined cancellative semigroups without idempotent (to be published).

[33] TAMURA (Takayuki). - N-congruences on N-semigroups (to be published).

(Texte reçu le 15 septembre 1970)
Takayuki TAMU RA
Department of Mathematics
University of California
DAVIS, Calif. s (Etats-Unis)


