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THE STRUCTURE OF 03C9-REGULAR SEMIGROUPS

by Janet AULT and Mario PETRICH

Séminaire DUBREIL-PISOT

(Algèbre et Theorie des nombres)
23e année, 1969/70
Demi-groupes, n° 6, 5 p.

1. - Finding the complete structure of regular semigroups of a certain class

has succeeded only when sufficiently strong conditions on idempotents and (or)
ideals have been imposed. On the one hand, there is the theorem of REES [? ~~ giving
the structure of completely 0-simple semigroups, and its successive generaliza-

tions to primitive regular semigroups [2~ , and ~- and 3 -regular semigroups
j[4] . On the other hand, with very different restrictions, REILLY [8J has detenni-

ned the structure of bisimple 03C9-semigroups and, independently of each other,
KOCHIN of inverse simple 03C9-semigroups, and MUNN [5] of inverse w-semigroups.

An 03C9-chain with zero is a I i  0} u 0 , with e. > e , if i  j ,
and 0  e. for all i , j . We call a regular semigroup S 03C9-regular, if S has

a zero, and the poset of its idempotents is an orthogonal of 03C9-chains

with zero. We announce here the complete cfetennination of the structure of such

semigroups, including various special cases thereof, and briefly mention their iso-

morphisms.

2. - An 03C9-regular semigroup can be uniquely written as an orthogonal sum of

ur-regular prime (i. e., with 0 a prime ideal) semigroups. This reduces the pro-
blems of structure and isomorphism to 03C9-regular prime semi groups. We distinguish
three cases :

(i) 0-simple,

(ii) Prime with a proper 0-minimal ideal,
(iii) Prime without a 0-minimal ideal. 

’

Case (i) is the most difficult (and interesting?, and includes a variety of spe-
cial cases some of which reduce to those constructed by REILLY ~8 ~, KOCHIN ~I ~,
and MUNN [5], ~6]. .

3. - Let A be a nonempty set, d be a positive integer, V be a semigroup
which is a chain of d groups GO > G > ... > Gd-l ’ and 03C3 be a homomorphism of
V into Let w : A ..~ ~0 , 1 , ... , d - l~ be any function, denoted by
w : a -~ w~ . For 0 ,~ i , j  d , define (a ! i ) by

~a ~ i) .~ w a + i (mod d) , 0  (c~ ~ i)  d ,



Construction 1. - 0n the set

S = i(a , m , g , n , » I a , B G A , m , n > o , g e ili u 0 ,

define a multiplication by, for g, e G, , g, e G. , v = n - s - [I , fl , j ] ,
i i J J

~" ’ ~ ’ fi ’ ~ ’ ?~~T ’ ~ ’ ~j ’ ~ ’ ~)

and all other products are equal to 0 . The set S ~ with this multiplication,
will be denoted by 0(A ~ w ; V , cr) .

Construction 2. - On the set

m , g , n , p) ) ~~ ==i u0

define a multiplication by, for g. s=G. ~ G. , v=n’ -s’-[i ~ p , j],i "* J J
where s Cn"~ s"d ,

and all other products are equal to 0 . The set S’ , with this multiplication,
will be denoted by ~~A , w ; V , o] .

The following is our fundamental result.

THEOREM 1. - For a groupoid S, the f ollowing s tatements are equivalent :

(i) S is a 0-simple 03C9-regular semigroup ;
(ii) S is isomorphic to t~~A ~ w ; V , o-) ;
(iii) S is isomorphic to w ; V , u] .

The proof of "(i) => consists of "introducing coordinates" into various
L- and R-classes, and of constructing the homomorphism 03C3 ; it is quite long, and



is broken into a sequence of lemmas. For "(ii) => (iii)", one finds a suitable
isomorphism, while "(iii) => (i)" consists of a verification of the defining
properties of a 0-simple (~-regular semigroup.

Define the top of S in the theorem by = (a e S j I e E a , a R f for

some maximal idempotents e, f) u 0 . Then 3(s) is a primitive inverse semi-

group. It follows from the proof that we can always suppose that w = 0 for some

a 6 A . Call S balanced, if any two maximal idempotents of S are D-equivalent.

THEOREM 2. - The following conditions on a 0-simple 03C9-regular semigroup S are

equivalent :

(i) S is balanced ;
(ii) S admits a representation as in theorem 1, with w = 0 for all (y = A ;
(iii) 3(s) is a Brandt semigroup ; 

- a 
’

(iv) S is isomorphic to a Rees matrix semigroup lP(K ; A , A ; A) over a sim-

ple inverse 03C9-semigroup K, A is the identity matrix.

The structure of the semigroup K in theorem 2 was detennined by KOCHIN [l] and
MUNN [5], the Rees matrix semigroups over bisimple inverse semigroups were studied
in [3] (for the 0-simple case in the theorem, cf. [3], cor. 5.7, and [6], th. 4.2).
Various other special cases include : 0-bisimple, combinatorial, balanced, and
combinations thereof.

~. - For the remaining cases, we will need the following.

Construction 3. - Let Y be a tree semilattice satisfying one of the two condi-
tions :

(l) Y has a zero C, and all elements of Y are of finite height ;
(2) Y has no zero, and is of locally finite length.

To every non-zero element (y of Y, associate a Brandt semigroup S , suppose
that the family {S03B1} is pairwise disjoint, and that a homomorphism S ~ S-
is given, where 5 is the unique element of Y covered by with the proper-
ties :

(it) ?Or every’ infinite ascending chain 03B11   ... in Y , and every a e Sa1 ,
there exists 03B1k such that a j S 

"k 
tp 

03B1k tp lk-1 .. , rp 
"2 

. 

(B’1

. Let 03C8
cY,a 

be the identity mapping on S cY ’ and for cy > fl ’ let



where § is the zero of Y (if Y has one), and 0 is an element not contained

in any S ; and on S define the multiplication * by

if and in 

and all other products are equal to 0 . The set S , with this multiplication,

will be called a Brandt tree, if Y has a zero and a rooted Brandt tree otherwise.

THEOREM 3. - A semigroup S i s prime 03C9-regular and has a proper 0-minimal

ideal if, and only if, S is an ideal extension of a 0-simple 03C9-regular semi-

group I by a Brandt tree T detennined by a 0-restricted homomorphism of T

into the top of I .

Such a homomorphism is completely determined by its restriction to the socle

6(T) of T , so all such homomorphisms are given by 0-restricted homomorphisms of

6(T) both of which are primitive inverse semigroups, and are easy to

find explicitly. 
,

THEOREM 4. - A groupoid S is a prime 03C9-regular semigroup without 0-minimal

ideals if, and only if, S is a rooted Brandt tree.

5. - The semigroups O(A , w ; V ,a) and w ; V , cr] do not seem to

admit a neat isomorphism theorem, except in special cases. In the balanced case,

using theorem 2, ([3], 4.1) and ([1], theor.4), we derive a satisfactory isomorphism
theorem. A direct proof does the same in the case these semigroups are combinatorial.

Isomorphisms of the semigroups in construction 3 are similar to those in [4], theo-
rème 3.1, while isomorphisms of the semigroups in theorem 3 can be expressed by
isomorphisms of I and T satisfying a commutative diagram.
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